
Homework set 1

Measure theory background; conditional expectation

Martingale Theory with Applications, 1st teaching block, 2024
School of Mathematics, University of Bristol

Problems with •’s are to be handed in. These are due in Blackboard before noon on Thursday,
3rd October. Please show your work leading to the result, not only the result. Each problem
is worth the number of •’s you see right next to it. Hence, for example, Problem 1.8 is worth
three marks. Make sure you find all 20 •’s!

1.1 •• Let (Ω, F) be a measurable space. Prove that if A, B ∈ F , then

A ∩ B, A−B (set-difference,) A∆B (symmetric set-difference)

are also in F .

1.2 Is the union of two σ-algebras (on the same set) also a σ-algebra? If yes, prove it, if no,
give a counterexample.

1.3 Is the intersection of two σ-algebras (on the same set) also a σ-algebra? If yes, prove it,
if no, give a counterexample.

1.4 •• Define the Borel σ-algebra on R as we did in class:

B(R)

: = σ
{

n
⋃

i=1

(ai, bi] : n < ∞, and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn in R ∪ {−∞};

n
⋃

i=1

(ai, bi] ∪ (c, ∞) : n < ∞, and a1 < b1 ≤ · · · ≤ an < bn ≤ c in R ∪ {−∞}
}

.

Show that each of

(a, b), [a, b), [a, b], {a}, (a, ∞)

are in B(R) for any a < b in R.

1.5 •• (Shiryaev.) Let Ω be a countable set and F the collection of all its subsets. Put
µ(A) = 0 if A is finite and µ(A) = ∞ if A is infinite. Show that the set function µ is
finitely additive but not σ-additive.

1.6 •• (Shiryaev.) Let µ be the Lebesgue-Stieltjes measure generated by a continuous distri-
bution function. Show that if the set A is at most countable, then µ(A) = 0.

1.7 (Construction of the Vitali set – an example that cannot be Lebesgue measurable.) Let
Ω := [0, 1) and define on Ω the following equivalence relation:

x ∼ y iff x− y ∈ Q (the rational numbers).

Let V ⊂ [0, 1) consist of exactly one representative element from each equivalence class of

∼. (Notice: this construction relies on the Axiom of Choice.) For q ∈ Q ∩ [0, 1), denote

Vq : = {x+ q (mod 1) : x ∈ V }.

Prove that
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(a) The sets Vq are congruent: for any q, q′ ∈ Q ∩ [0, 1), Vq′ = (q′ − q) + Vq (mod1).

(b) If q 6= q′ in Q ∩ [0, 1), then Vq ∩ Vq′ = ∅.

(c)
⋃

q∈Q∩[0, 1) Vq = [0, 1).

Conclude that the Vitali set V cannot be Lebesgue measurable.

1.8 ••• Consider the example from class: Ω = {1, 2, . . . , 12}, F = P(Ω), P is uniform on Ω,
and the random variables X and Y are defined by X(ω) = ⌈ω

2
⌉, Y (ω) = ⌈ω

4
⌉, G = σ(Y ).

Show by explicit calculations in this example that E(XY | G) = Y E(X | G). This is
referred to as ‘taking out what’s known’ or ‘given Y , Y is not random’.

1.9 •• In the example of Problem 1.8, let H : = σ(X). Calculate each of

� E
(

E(X | G) | H
)

,

� E
(

E(X | H) | G
)

,

� E
(

E(Y | G) | H
)

,

� E
(

E(Y | H) | G
)

.

Compare with E(X | G), E(X | H), E(Y | G), E(Y | H). It is important here that one of

the two σ-algebras contains the other!

1.10 However, give an example of a probability space (Ω, F , P), sub-σ algebras F1 ⊂ F ,F2 ⊂
F , and a random variable X such that

E
(

E(X | F1) | F2

)

6= E
(

E(X | F2) | F1

)

.

Why is it not a contradiction with the previous problem?

1.11 (Monty Hall problem with σ-algebras.) The famous Monty Hall problem goes like this:

We have three doors. Behind one of them is a car, behind the others, goats.

1. You pick a door, let us assume it’s door number 1.

2. Monty opens another door with a goat behind it.

3. Now you pick one of the two closed doors (repeat your choice, or switch to the other
one).

4. Whatever is behind this door is yours.

Make the natural assumptions about the probabilities of the location of the car and the
choice of door Monty opens (if he has a choice). Would you repeat your choice or switch?

(a) Write the full probability space of the experiment that involves the first two steps
above.

(b) In this sample space, write the event A = {door 3 has a goat}, and its generated
σ-algebra F = σ(A).

(c) Let X = 1, 2, 3 be the location of the car. Calculate E(X | F).

(d) Now write the event B = {Monty opens door 3}, and its generated σ-algebra G =
σ(B).

(e) Calculate E(X | G).

(f) Conclude the optimal strategy for the player in this problem.
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1.12 ••• Let X and Y be random variables on a probability space (Ω, F , P), and G = σ(Y ).
Show that X is independent of G if and only if for any bounded and measurable functions
f and g, we have E

(

f(X) · g(Y )
)

= E f(X) · E g(Y ) (the Probability 1 definition of
independence).

1.13 Let A and B be two events in a probability space, B of positive probability. Derive
the Probability 1 definition of the conditional probability P{A |B} from our definition of
conditional expectations.

1.14 Based on your definition above, show that for any fixed event B of positive probability in
the probability space (Ω, F , P), the set function Q(·) : = P{· |B} is a probability measure.

1.15 Continuing the previous problem, show that for any events B and C with a positive
probability intersection,

Q(· |C) = P(· |B ∩ C).

1.16 Fix 0 < p = 1−q < 1 reals, let Ω = {0, 1, 2, . . . } be the non-negative integers, F = P(Ω)
the power set, and P the probability measure that assigns P{n} = qnp to n ≥ 0. Define
the function X : Ω → {0, 1, 2, . . . } to be the identity function. Notice that so far this
is a way to describe a Pessimistic Geometric(p) random variable (counting the failures
before the first success). Define also

Y : = (X mod 2) = 1{X is odd} =

{

0, if X is even,

1, if X is odd.

(a) What is the σ-algebra generated by X?

(b) What is the σ-algebra generated by Y ?

(c) Use Kolmogorov’s theorem on conditional expectations to calculate E(X | Y ).

1.17 •••• Let X and Y be two i.i.d. Exp(1) random variables, and Z = X + Y .

(a) Write down an actual probability space (Ω, F , P) to model this situation.

(b) Fix any t ∈ R with 0 < |t| < 1 and show that the random variable etZ−1
tZ

satisfies Kol-
mogorov’s theorem on conditional expectations for E(etX |Z), hence by uniqueness
etZ−1
tZ

is a version of this conditional expectation.

Hint1: recall from earlier studies or accept the fact that the expectation of a function

of X and Y is calculated as a double integral of that function with the joint density,

which latter in our case is just the product of the marginal Exponential densities due

to independence.

Hint2: σ(Z) is generated by events of the form G = {Z ≤ z}, hence it is enough to

work with these.

Hint3: A substitution of v = x+ y, then swapping integrals might prove useful.

(c) Conclude that (X |Z) ∼ Uniform(0, Z). In other words, X given the sum Z = X+Y

has the uniform distribution on the allowed range (0, X + Y ).

1.18 We call two random variables X and Y jointly continuous with joint probability density

function f : R2 → R, if for any borel set B ∈ B(R2) of R2,

P{(X, Y ) ∈ B} =

∫∫

B

f(x, y) dx dy.
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(a) For such pair, show that Y is an absolutely continuous random variable with (mar-
ginal) probability density function

fY (y) : =

∞
∫

−∞

f(x, y) dx.

(b) Fix any y where fY (y) > 0. Use the Kolmogorov definition of conditional expec-
tations to show that the conditional distribution of X given Y = y is absolutely
continuous with probability density function

fX|Y (x | y) =
f(x, y)

fY (y)
.

1.19 Let X1, X2, . . . , Xn be iid. random variables with finite mean, and Sn their sum. Calcu-
late E(X1 |Sn).

1.20 Let X and Y be random variables with finite mean on a probability space. Prove that if
E(X | Y ) = Y and E(Y |X) = X , then X = Y a.s.

1.21 Let X and Y be random variables with finite second moment on the probability space
(Ω, F , P). Let G be a sub-σ algebra of F . Suppose that E(X | G) = Y and EX2 = EY 2.
Prove that X = Y a.s.

1.22 Let G ⊂ F be a σ-algebra on the probability space (Ω, F , P). If X is G-measurable, then
E(X | G) = X which suggests that the map X 7→ E(X | G) is a projection. Show that
indeed: this map is an orthogonal projection in the Hilbert space L2(Ω, F , P) (with inner
product 〈X, Y 〉P = E(XY )) onto the subspace L2(Ω, G, P).
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