Homework set 2

Probabilistic tools, convergence of random variables
(and a bit of martingales)
Martingale Theory with Applications, $1^{\text {st }}$ teaching block, 2023
School of Mathematics, University of Bristol
Problems with •'s are to be handed in. These are due in Blackboard before noon on Thursday, $2^{\text {nd }}$ November. Please show your work leading to the result, not only the result. Each problem is worth the number of ${ }^{\bullet}$'s you see right next to it. Make sure you find all $20{ }^{\bullet}$'s!
2.1 ・ツe perform infinitely many independent experiments. The $n^{\text {th }}$ one is successful with probability $n^{-\alpha}$ and fails with probability $1-n^{-\alpha}, 0<\alpha$. Let $k \geq 1$. We are happy if we see k consecutive successes infinitely often. What is the probability of this?
2.2 (The longest run of heads, I.)

Let X_{1}, X_{2}, \ldots be iid. random variables with $\mathbf{P}\left\{X_{k}=1\right\}=p, \mathbf{P}\left\{X_{k}=0\right\}=q$, where $p+q=1$. Fix a parameter $\lambda>1$, and denote by $A_{k}^{(\lambda)}$ the following events for $k=$ $0,1,2, \ldots$:

$$
A_{k}^{(\lambda)}:=\left\{\exists r \in\left[\left\lfloor\lambda^{k}\right\rfloor,\left\lfloor\lambda^{k+1}\right\rfloor-k\right] \cap \mathbb{N}: X_{r}=X_{r+1}=\cdots=X_{r+k-1}=1\right\}
$$

In plain words: $A_{k}^{(\lambda)}$ means that somewhere between $\left\lfloor\lambda^{k}\right\rfloor$ and $\left\lfloor\lambda^{k+1}\right\rfloor-1$ there is a sequence of k consecutive 1 's. Prove that
a) If $\lambda<p^{-1}$, then a.s. only finitely many of the events $A_{k}^{(\lambda)}$ occur.
b) If $\lambda>p^{-1}$, then a.s. infinitely many of the events $A_{k}^{(\lambda)}$ occur.
c) What happens for $\lambda=p^{-1}$?
2.3 (The longest run of heads, II.)

Let

$$
R_{n}:=\sup \left\{k \geq 0: X_{n}=X_{n+1}=\cdots=X_{n+k-1}=1\right\} .
$$

That is: R_{n} is the length of the run of consecutive 1's that starts at n. (If $X_{n}=0$, then set $R_{n}=0$.) Prove that

$$
\mathbf{P}\left\{\limsup _{n \rightarrow \infty} \frac{R_{n}}{\log n}=|\log p|^{-1}\right\}=1 .
$$

HINT: For a fixed parameter $\alpha>0$, let

$$
B_{n}^{(\alpha)}:=\left\{R_{n}>\alpha \log n /|\log p|\right\} .
$$

If $\alpha>1$, then by the first Borel-Cantelli Lemma and direct computation, only finitely many of the $B_{n}^{(\alpha)}$'s occur a.s. If $\alpha \leq 1$, then from the previous exercise it follows that a.s. infinitely many of the $B_{n}^{(\alpha)}$,s occur.
2.4 Let X_{1}, X_{2}, \ldots be independent. Prove that $\sup _{n} X_{n}<\infty$ a.s. if and only if $\sum_{n=1}^{\infty} \mathbf{P}\left\{X_{n}>\right.$ $A\}<\infty$ for some positive finite A.
2.5 Prove that for any sequence X_{1}, X_{2}, \ldots of random variables there exists a deterministic sequence c_{1}, c_{2}, \ldots of real numbers for which $\frac{X_{n}}{c_{n}} \xrightarrow{\text { a.s. }} 0$.
2.6 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}, \ldots, X$ and Y be defined on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$, and suppose $X_{n} \xrightarrow{\mathbf{P}} X$ and $Y_{n} \xrightarrow{\mathbf{P}} Y$. Prove
a) $X_{n}+Y_{n} \xrightarrow{\mathbf{P}} X+Y$,
b) $X_{n}-Y_{n} \xrightarrow{\mathbf{P}} X-Y$.
2.7 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}, \ldots, X$ and Y be defined on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$, and suppose $X_{n} \xrightarrow{\mathbf{P}} X$ and $Y_{n} \xrightarrow{\mathbf{P}} Y$. Prove
a) $X_{n} Y_{n} \xrightarrow{\mathbf{P}} X Y$,
b) if $Y_{n} \neq 0$ and $Y \neq 0$ a.s., then $X_{n} / Y_{n} \xrightarrow{\mathbf{P}} X / Y$.
2.8 Formulate necessary and sufficient conditions for $\alpha_{i}<\beta_{i}$ such that independent (but not identically distributed) Uniform $\left(\alpha_{i}, \beta_{i}\right)$ variables X_{i} converge to 0
a) in distribution;
b) almost surely.
$2.9 \cdots$ Formulate necessary and sufficient conditions for independent (but not identically distributed) Exponential $\left(\lambda_{i}\right)$ variables X_{i} to converge to 0
a) in distribution;
b) almost surely.
2.10 Let ξ_{1}, ξ_{2}, \ldots be iid. Poisson(1) random variables. (Recall their moment generating function: $\mathbb{E}\left(\mathrm{e}^{t \xi_{i}}\right)=\mathrm{e}^{\mathrm{e}^{t}-1}$.) Let $a, b \in \mathbb{R}$,

$$
S_{n}=\sum_{k=1}^{n} \xi_{k}, \quad \text { and } \quad X_{n}=\mathrm{e}^{a S_{n}-b n}
$$

Show that

$$
X_{n} \rightarrow 0 \text { a.s. } \Leftrightarrow b>a,
$$

but for any $r \geq 1$

$$
X_{n} \rightarrow 0 \text { in } \mathcal{L}^{r} \Leftrightarrow b>\frac{\mathrm{e}^{r a}-1}{r}
$$

$2.11 \cdots$ Let ξ_{1}, ξ_{2}, \ldots be iid. standard normal random variables. (Recall their moment generating function: $\mathbb{E}\left(\mathrm{e}^{\lambda \xi_{i}}\right)=\mathrm{e}^{\lambda^{2} / 2}$.) Let $a, b \in \mathbb{R}$,

$$
S_{n}=\sum_{k=1}^{n} \xi_{k}, \quad \text { and } \quad X_{n}=\mathrm{e}^{a S_{n}-b n} .
$$

Show that

$$
X_{n} \rightarrow 0 \text { a.s. } \Leftrightarrow b>0,
$$

but for any $r \geq 1$

$$
X_{n} \rightarrow 0 \text { in } \mathcal{L}^{r} \Leftrightarrow r<\frac{2 b}{a^{2}} .
$$

2.12 Let S and T be stopping times w.r.t. the filtration \mathcal{F}_{n}. Which of these are stopping times? Explain.
$S \wedge T:=\min (S, T), \quad S \vee T:=\max (S, T), \quad T+S, \quad T-S$ (assume $T \geq S$ here.)
2.13 Let X_{1}, X_{2}, \ldots be iid. Exponential(1) random variables, $S_{n}=X_{1}+\cdots+X_{n}$, and $\left\{\mathcal{F}_{n}\right\}$ the natural filtration. Show that

$$
\frac{n!}{\left(1+S_{n}\right)^{n+1}} \mathrm{e}^{S_{n}}
$$

is a martingale w.r.t. $\left\{\mathcal{F}_{n}\right\}$.
2.14 An urn contains n white and n black balls. We draw them one by one without replacement. We receive $£ 1$ for any white ball, while nothing happens upon drawing a black one. Denote by X_{i} our money after the $i^{\text {th }}$ draw $\left(X_{0}=0\right)$. Let

$$
\begin{aligned}
Y_{i} & =\frac{2 X_{i}-i}{2 n-i} \quad(1 \leq i \leq 2 n-1), \quad \text { and } \\
Z_{i} & =\frac{2 n-i}{2 n-i-1} Y_{i}^{2}-\frac{1}{2 n-i-1} \quad(1 \leq i \leq 2 n-2)
\end{aligned}
$$

(a) Show that both Y_{i} and Z_{i} are martingales.
(b) Calculate the mean and variance of X_{i}.
2.15 ••••• An urn contains n white and n black balls. We draw them one by one without replacement. We pay $£ 1$ for any black ball drawn but receive $£ 1$ for any white one. Denote by X_{i} our money after the $i^{\text {th }}$ draw $\left(X_{0}=0\right)$. Let
$Y_{i}=\frac{X_{i}}{2 n-i} \quad(1 \leq i \leq 2 n-1), \quad$ and $\quad Z_{i}=\frac{X_{i}^{2}-(2 n-i)}{(2 n-i)(2 n-i-1)} \quad(1 \leq i \leq 2 n-2)$.
(a) Show that both Y_{i} and Z_{i} are martingales.
(b) Calculate the variance of X_{i}.
2.16 Let $X_{j}, j \geq 1$, be absolutely integrable random variables, and $\mathcal{F}_{n}:=\sigma\left(X_{j}, 1 \leq j \leq n\right)$, $n \geq 0$, their natural filtration. Define the new random variables

$$
Z_{0}:=0, \quad Z_{n}:=\sum_{j=0}^{n-1}\left(X_{j+1}-\mathbb{E}\left(X_{j+1} \mid \mathcal{F}_{j}\right)\right)
$$

Prove that the process $n \mapsto Z_{n}$ is an $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.
2.17 A biased coin shows HEAD with probability $\theta \in(0,1)$, and TAIL with probability $1-\theta$. The value θ of the bias in not known. For $t \in[0,1]$ and $n \in \mathbb{N}$ we define $p_{n, t}:\{0,1\}^{n} \rightarrow[0,1]$ by

$$
p_{n, t}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=t^{\sum_{j=1}^{n} x_{j}} \cdot(1-t)^{n-\sum_{j=1}^{n} x_{j}} .
$$

We make two hypotheses about the possible value of θ : either $\theta=a$, or $\theta=b$, where $a, b \in[0,1]$ and $a \neq b$. We toss the coin repeatedly and form the sequence of random variables

$$
Z_{n}:=\frac{p_{n, a}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)}{p_{n, b}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)}
$$

where we write $\xi_{j}=1$ if the $j^{\text {th }}$ flip is HEAD and $\xi_{j}=0$ if it is TAIL. Show that the process $n \mapsto Z_{n}$ is a martingale (w.r.t. the natural filtration generated by the coin tosses) if and only if the true bias of the coin is $\theta=b$.
2.18 Let η_{n} be a homogeneous Markov chain on the countable state space $S:=\{0,1,2, \ldots\}$ and $\mathcal{F}_{n}:=\sigma\left(\eta_{j}, 0 \leq j \leq n\right), n \geq 0$ its natural filtration. For $i \in S$ denote by $Q(i)$ the probability that the Markov chain starting from site i ever reaches the point $0 \in S$:

$$
Q(i):=\mathbb{P}\left\{\exists m<\infty: \eta_{m}=0 \mid \eta_{0}=i\right\}
$$

Prove that $Z_{n}:=Q\left(\eta_{n}\right)$ is an $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.

