
Homework set 4

Doob’s decomposition, uniformly integrable martingales, Doob’s submartingale inequality

Martingale Theory with Applications, 1st teaching block, 2024
School of Mathematics, University of Bristol

Problems with •’s are to be handed in. These are due in Blackboard before noon on Thursday,
28th November. Please show your work leading to the result, not only the result. Each problem
worth the number of •’s you see right next to it. Make sure you find all 20 •’s!

4.1 Recall the abracadabra problem, and the variable Xn being the total wealth of all
gamblers in play after the nth letter has been typed. Perform Doob’s decomposition on
Xn.

4.2 Let Γ0 = 0, and Γ1, Γ2, . . . be the marks of a rate λ homogeneous Poisson process on R
+.

(a) Perform Doob’s decomposition on Γn.

(b) Show that the martingale M you found above is L2. Find its brackets process 〈M〉
and the Doob decomposition of M2.

4.3 Fix β < λ, and for the Poisson process of Problem 4.2 define Xn : = eβΓn . Perform Doob’s
decomposition on this process. (It is not going to be very nice.)

4.4 ••• Decomposing in a product sense. Let Xn be an adapted process, and assume that it
is bounded: supn Xn < K < ∞ and bounded away from zero: infnXn > δ > 0 for some
non-random K and δ. Show that

(a) there is

– a martingale (Mn)n≥0 with M0 = 1,

– a predictable process (Bn)n≥0 > 0 with B0 = 1

such that Xn = X0 · Mn · Bn. This decomposition is almost everywhere unique in
the sense that for any other pair (M̂n, B̂n)n≥0 with the above properties we have

P{Mn = M̂n and Bn = B̂n for all n ≥ 0} = 1.

(b) (Xn)n≥0 is a submartingale if and only if P{Bn ≤ Bn+1 for all n ≥ 0} = 1 in the
above decomposition.

4.5 •••• Fix β < λ, and for the Poisson process of Problem 4.2 define Xn : = eβΓn.

(a) Find a predictable process Bn > 0 for which Xn = Mn ·Bn where Mn is a martingale.
(Hint: while Xn does not have the bounds assumed in 4.4, the calculation still works.

Check that the martingale is in L1 separately.)

(b) Fix t > 0 and T : = inf{n : Γn > t}. Assume β > 0 and use the memoryless property
of the Exponential distribution to bound the stopped martingale MT from above by
a random variable of finite mean. Hence show that optional stopping applies.

(c) Show from the above that the number of marks before t is Poisson(λ · t) distributed
(just by assuming the i.i.d. Exponential(λ) interarrival times in the Poisson(λ) pro-
cess). (Hint: use its generating function.)

4.6 Let Yi, i = 1, 2, . . . be i.i.d. variables in L2 with mean µ and variance σ2. Define X0 = 0,
Xk : = 1

k

∑k
i=1 Yi (k ≥ 1).

(a) Perform Doob’s decomposition on X .
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(b) Show that the martingale M you found above is L2. Find its brackets process 〈M〉
and the Doob decomposition of M2.

(c) Show that the martingale M converges a.s.

4.7 Beta function. Prove that for any a, b ≥ 0 integers,

Ia,b : =

1∫

0

θa(1− θ)b dθ =
a! · b!

(a+ b+ 1)!
.

Hint: show via integration by parts that for b ≥ 1, Ia,b = b
a+1

· Ia+1,b−1, while the case

b = 0 is easy. From here, a recursive argument does the trick.

4.8 Bayes urn. Assume we have a randomly biased coin that shows head with probability θ

and tail with probability 1− θ. This parameter θ is random and has the Uniform(0, 1)
distribution. We flip this coin repeatedly and record

B0 : = 1, Bn : = 1 + no. of heads in the first n trials,

R0 : = 1, Rn : = 1 + no. of tails in the first n trials.

Notice that Bn + Rn = n + 2. Define the filtration generated by the first n flips, Fn =
σ(B1, B2, . . . , Bn), and mind that θ is not included in here.

(a) •• Determine the probability of a given sequence of flips,

P{B1 = b1, B2 = b2, . . . , Bn = bn}.

Hint: Condition on θ and use Problem 4.7.

(b) •• Based on the previous part, find the distribution of Bn+1, given Fn. Compare
with the Pólya urn. Remember: θ is not included in Fn.

(c) •• Show that, modulo zero measure sets, θ is F∞ = σ
(⋃∞

n=1Fn

)
-measurable.

(d) •• What is the conditional expectation of θ, given the first n flips? Explain. Hint:

the Pólya urn, and our theorem on uniformly integrable martingales. . .

(e) No marks for this, only for pride, as you might not have met conditional densities

before. Use the Bayes urn to find the conditional density of M∞, given Fn in the
Pólya urn.

4.9 Let M be a uniformly integrable martingale in the filtration (Fn)n≥0 in the probability
space (Ω, F , P). Let S ≤ T a.s. be finite stopping times. We denote by FT the collection
of all events A ∈ F such that A∩{T = n} ∈ Fn for all n, which can be thought of as the
set of events whose occurrence or non-occurrence is known by time T .

(a) Prove that FT is a σ-algebra.

(b) Prove that MT = E(M∞ | FT ) and that MS = E(MT | FS). Hint: observe that FT is

generated by sets A ∩ {T = n} where A ∈ F and n ∈ Z
+.

4.10 Let Y0, Y1, Y2, . . . be independent random variables with

P{Yn = 1} = P{Yn = −1} =
1

2
, ∀n.

For n ≥ 1, define
Xn : = Y0Y1 · · ·Yn.
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Prove that the variables X1, X2, . . . are independent. Define

Y : = σ(Y1, Y2, . . . ), Tn : = σ(Xn+1, Xn+2, . . . ).

Prove that
L : =

⋂

n

σ(Y , Tn) 6= σ
(
Y ,

⋂

n

Tn

)
= : R.

Hint: Prove that Y0 is L-measurable but independent of R.

4.11 N people queue for a concert the ticket for which costs £1. Each person, independently
and with equal chance, has a £1 coin or a £2 coin so these customers need £1 change.
The cashier starts selling tickets with a number m of £1 coins in reserve, and we are
interested in how this number changes over time.

(a) Find a natural martingale Mn for the problem.

(b) Use M2
n to give a bound on the probability that the cashier ever runs out of coins.

(c) Use an exponential ofMn to bound the same. Make your bound as strong as possible.

4.12 ••• 2N people queue for a concert the ticket for which costs £1. Exactly N of the queuing
people have a £1 coin each and N of them have a £2 coin so these customers need £1
change. The problem is that the queue is in a uniformly random order, hence the cashier
starts selling tickets with a number m of £1 coins in reserve. Find a natural martingale
for the problem and use Doob’s submartingale inequality on its square to give a bound
on the probability that the cashier ever runs out of coins. Hint: Use Problem 2.15. Deal

with the first N customers only, then use the symmetry of the problem.

4.13 Azuma-Hoeffding concentration inequality.

(a) Let c > 0, and −c ≤ Y ≤ c a mean zero random variable. Then for any θ ∈ R we
have

EeθY ≤ cosh(θc) ≤ eθ
2c2/2.

Hint: for any convex function g and −c ≤ y ≤ c,

g(y) ≤
c− y

2c
· g(−c) +

c+ y

2c
· g(c).

eθ· is a convex function.

(b) Let M be a martingale with M0 = 0, and assume |Mn − Mn−1| ≤ cn, ∀n with a
deterministic sequence {cn}n∈N. Then for any x > 0

P

{
sup
k≤n

Mk ≥ x
}
≤ e

−x2/(2
n∑

k=1

c2
k
)
.

Hint: apply the above and Doob’s submartingale inequality, then optimise in θ.

4.14 Apply the Azuma-Hoeffding inequality to bound the probability that the cahsier of Prob-
lem 4.11 ever runs out of coins.

4.15 •• Apply the Azuma-Hoeffding inequality to bound the probability that the cahsier of
Problem 4.12 ever runs out of coins.
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4.16 Let X be a random variable on the probability space (Ω, F , P), and G ⊂ F a sub σ-
algebra. Show that given G, E(X | G) is the best predictor of X in the following sense:
the minimum mean square error E(V −X)2 among G-measurable random variables V is
achieved for V = E(X | G). What is this minimal mean square error? Hint: use a tower

rule first, then minimise pointwise among G-measurable functions.

4.17 We are given n many intervals of i.i.d. Uniform(0, 1) lengths that need to be packed into
“boxes” that is, intervals, of length 1. Let Bn be the minimum number of boxes needed
to do that. Apply the Azuma-Hoeffding inequality to bound the deviation between our
best estimates after observing the first i Uniforms and the mean of Bn.

4.18 Given are N balls and K, initially empty, urns. We place the balls, one by one, into the
urns without removing them. Each ball independently goes to a uniformly chosen urn from
1 to K. These choices are denoted by X1, X2, . . . , XN , which are therefore i.i.d. discrete
uniform on the set {1, 2, . . . , K}. The generated filtration is Fn = σ(X1, X2, . . . , Xn)
for n = 0, 1, . . . , N . Denote by Z the number of empty urns when all N balls have been
placed, and Zn the number of empty urns after the nth step.

(a) Calculate the best prediction martingale (Problem 4.16) Mn = E(Z | Fn), (n =
0, 1, . . . , N) explicitly, and show its martingale property via direct computation
based on your explicit form. Hint: use indicators for urns to stay empty.

(b) What is M0 and what is MN?

(c) Find EZn (0 ≤ n ≤ N) and EZ.

(d) Apply the Azuma-Hoeffding inequality to bound the deviation between our best
estimate for Z after observing the first n balls and the mean of Z.

4.19 The Erdős-Rényi random graph on n vertices is a random subset of
(
n
2

)
possible edges

between the vertices, where each edge is independently present with probability p. The
chromatic number χ of a graph is the minimum number of colours for the vertices needed
to avoid the same colour of any two vertices that are adjacent in the graph (i.e., connected
by an edge). Let Fk be the sigma-algebra generated by the presence or absence of all
edges among the first k vertices of the Erdős-Rényi graph, k = 0 . . . n. Apply the Azuma-
Hoeffding inequality with this filtration on the chromatic number of this graph.

4.20 A monkey repeatedly types any of the 26 letters of the English alphabet independently
with equal chance, until a total of N letters are typed. Let X be the number of times the
word “ABRACADABRA” appears. Overlaps are acceptable e.g., we have it three times
in EABRACADABRACADABRABRACADABRAX. Show that for any x > 0,

P

{∣∣∣X − (N − 10) ·
1

2611

∣∣∣ ≥ x
}
≤ 2e−x2/8N .
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