
Homework set 4

Modes of convergence, optional stopping

Martingale Theory with Applications, 1st teaching block, 2025
School of Mathematics, University of Bristol

Problems with •’s are to be handed in. These are due in Blackboard before noon on Thursday,
6th November. Please show your work leading to the result, not only the result. Each problem
is worth the number of •’s you see right next to it. Make sure you find all 10 •’s!

Use of AI: Minimal - You may only use tools such as spelling and grammar checkers in

this assignment, and their use should be limited to corrections of your own work rather than

substantial re-writes or extended contributions.

4.1 Formulate necessary and sufficient conditions for αi < βi such that independent (but not
identically distributed) Uniform(αi, βi) variables Xi converge to 0

a) in distribution;

b) almost surely.

4.2 ••• Formulate necessary and sufficient conditions for independent (but not identically
distributed) Exponential(λi) variables Xi to converge to 0

a) in distribution;

b) almost surely.

4.3 Let ξ1, ξ2, . . . be i.i.d. Poisson(1) random variables. (Recall their moment generating
function: E(etξi) = ee

t−1.) Let a, b ∈ R,

Sn =

n
∑

k=1

ξk, and Xn = eaSn−bn.

Show that
Xn → 0 a.s. ⇔ b > a,

but for any r ≥ 1

Xn → 0 in Lr ⇔ b >
era − 1

r
.

4.4 •• Let ξ1, ξ2, . . . be i.i.d. standard normal random variables. (Recall their moment gen-
erating function: E(eλξi) = eλ

2/2.) Let a, b ∈ R,

Sn =

n
∑

k=1

ξk, and Xn = eaSn−bn.

Show that
Xn → 0 a.s. ⇔ b > 0,

but for any r ≥ 1

Xn → 0 in Lr ⇔ r <
2b

a2
.

4.5 Let S and T be stopping times w.r.t. the filtration Fn. Which of these are stopping times?
Explain.

S∧T : = min(S, T ), S∨T : = max(S, T ), T+S, T−S (assume T ≥ S here.)
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4.6 Let X1, X2, . . . be i.i.d. Exponential(1) random variables, Sn = X1 + · · ·+Xn, and {Fn}
the natural filtration. Show that

n!

(1 + Sn)n+1
eSn

is a martingale w.r.t. {Fn}.

4.7 An urn contains n white and n black balls. We draw them one by one without replacement.
We receive £1 for any white ball, while nothing happens upon drawing a black one. Denote
by Xi our money after the ith draw (X0 = 0). Let

Yi =
2Xi − i

2n− i
(1 ≤ i ≤ 2n− 1), and

Zi =
2n− i

2n− i− 1
Y 2
i −

1

2n− i− 1
(1 ≤ i ≤ 2n− 2).

(a) Show that both Yi and Zi are martingales.

(b) Calculate the mean and variance of Xi.

4.8 ••• An urn contains n white and n black balls. We draw them one by one without
replacement. We pay £1 for any black ball drawn but receive £1 for any white one.
Denote by Xi our money after the ith draw (X0 = 0). Let

Yi =
Xi

2n− i
(1 ≤ i ≤ 2n−1), and Zi =

X2
i − (2n− i)

(2n− i)(2n− i− 1)
(1 ≤ i ≤ 2n−2).

(a) Show that both Yi and Zi are martingales.

(b) Calculate the variance of Xi.

4.9 Let Xj, j ≥ 1, be absolutely integrable random variables, and Fn : = σ(Xj, 1 ≤ j ≤ n),
n ≥ 0, their natural filtration. Define the new random variables

Z0 : = 0, Zn : =

n−1
∑

j=0

(

Xj+1 − E(Xj+1 | Fj)
)

.

Prove that the process n 7→ Zn is an (Fn)n≥0-martingale.

4.10 A biased coin shows head with probability θ ∈ (0, 1), and tail with probability 1−θ. The
value θ of the bias in not known. For t ∈ [0, 1] and n ∈ N we define pn,t : {0, 1}n → [0, 1]
by

pn,t(x1, x2, . . . , xn) = t
∑n

j=1
xj · (1− t)n−

∑n
j=1

xj .

We make two hypotheses about the possible value of θ: either θ = a, or θ = b, where
a, b ∈ [0, 1] and a 6= b. We toss the coin repeatedly and form the sequence of random
variables

Zn : =
pn,a(ξ1, ξ2, . . . , ξn)

pn,b(ξ1, ξ2, . . . , ξn)
,

where we write ξj = 1 if the jth flip is head and ξj = 0 if it is tail. Show that the
process n 7→ Zn is a martingale (w.r.t. the natural filtration generated by the coin tosses)
if and only if the true bias of the coin is θ = b.
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4.11 Let ηn be a homogeneous Markov chain on the countable state space S : = {0, 1, 2, . . . }
and Fn : = σ(ηj , 0 ≤ j ≤ n), n ≥ 0 its natural filtration. For i ∈ S denote by Q(i) the
probability that the Markov chain starting from site i ever reaches the point 0 ∈ S:

Q(i) : = P{∃m < ∞ : ηm = 0 | η0 = i}.

Prove that Zn : = Q(ηn) is an (Fn)n≥0-martingale.

4.12 Bellman’s Optimality Principle. We model a sequence of gamblings as follows. Let
ξ1, ξ2, . . . be i.i.d. random variables with P{ξn = +1} = p, P{ξn = −1} = q, where
p = 1− q > 1/2. Define the entropy of this distribution by

α = p ln
( p

1/2

)

+ q ln
( q

1/2

)

= p ln p+ q ln q + ln 2.

A gambler starts playing with initial fortune Y0 > 0. Her return at time n on a unit bet

is the random variable ξn, and she plays Cn in round n. In other words, with probability
p she doubles her bet and with probability q she looses it. Therefore her fortune after
round n is

Yn = Yn−1 + Cnξn.

The bet Cn may depend on the values ξ1, ξ2, . . . , ξn−1, and has bounds 0 ≤ Cn < Yn−1.
The expected rate of winnings up to time n is

rn : = E ln
(Yn

Y0

)

,

which the gambler wishes to maximise.

(a) Prove that no matter what strategy C the gambler chooses,

Xn : = lnYn − nα

is a supermartingale, hence her expected average winning rate, rn
n
≤ α.

(b) However, there exists a gambling strategy that makes the above X a martingale,
hence realises the average expected winning rate α. Find this strategy.

4.13 •• Let Sn be a simple symmetric random walk on the square lattice Z
2 with S0 = (0, 0).

That is, the walker starts from the origin and at each step independently, she steps
one unit to East, North, West or South with equal chance. Denote by Dn the walker’s
Euclidean distance from the origin of Z2 at time n, and let νr = inf{n : Dn > r}.

(a) Show that D2
n − n is a martingale.

(b) Show that r−2
E νr → 1 as r → ∞.

4.14 The problem is the same as the previous one, except that the walk is on R
2 and steps are

of length one in i.i.d. Uniform(0, 2π) directions.

4.15 Let Sn be a simple symmetric random walk on the cubic lattice Z
3 with S0 = (0, 0, 0).

That is, the walker starts from the origin and at each step independently, she steps one
unit to up, down, left, right, forward or backward with equal chance. Denote by Dn the
walker’s Euclidean distance from the origin of Z3 at time n, and let νr = inf{n : Dn > r}.

(a) Show that D2
n − n is a martingale.

(b) Show that r−2
E νr → 1 as r → ∞.
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4.16 We repeatedly toss a fair coin.

(a) What is the expected number of tosses until we have seen the pattern hhhhhh for
the first time?

(b) We stop when six consecutive tosses result in the same outcome, in other words when
either the pattern hhhhhh or tttttt first appears. What is the expected number
of tosses until this moment?

4.17 We repeatedly toss a fair coin.

(a) What is the expected number of tosses until we have seen the pattern htht for the
first time?

(b) What is the expected number of tosses until we have seen the pattern thth for the
first time?

(c) What is the expected number of tosses until we have seen the pattern htth for the
first time?

(d) What is the expected number of tosses until we have seen the pattern thht for the
first time?

(e) Give an example of a four letter pattern of h-s and t-s that has the maximal expected
number of tosses, of any four letter patterns, until it is seen.

4.18 The previous question with a biased coin. Explain your answer.

4.19 Let m ≥ 2 be an integer. At time n = 0, an urn contains 2m balls of which m are red
and m are blue. At each time n = 1, 2, . . . , 2m we draw a randomly chosen ball without
replacement from the urn and record its colour. For n = 0, 1, . . . , 2m− 1 let Nn denote
the number of red balls left in the urn after time n, and

Pn : =
Nn

2m− n

denote the fraction of them. Let (Fn)0≤n≤2m be the natural filtration generated by the
process (Nn)0≤n≤2m.

(a) Show that n 7→ Pn is an Fn-martingale.

(b) Let T be the first time at which the ball drawn is red. Show that the (T +1)st draw
is equally likely to be red or blue.
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