HOMEWORK SET 4
Modes of convergence, optional stopping
Martingale Theory with Applications, 15 teaching block, 2025
School of Mathematics, University of Bristol

Problems with *’s are to be handed in. These are due in Blackboard before noon on Thursday,
6" November. Please show your work leading to the result, not only the result. Each problem
is worth the number of *’s you see right next to it. Make sure you find all 10 *’s!

Use of Al: Minimal - You may only use tools such as spelling and grammar checkers in
this assignment, and their use should be limited to corrections of your own work rather than
substantial re-writes or extended contributions.

4.1 Formulate necessary and sufficient conditions for «; < f; such that independent (but not
identically distributed) Uniform(c;, ;) variables X; converge to 0
a) in distribution;
b) almost surely.
4.2 *** Formulate necessary and sufficient conditions for independent (but not identically
distributed) Exponential()\;) variables X; to converge to 0
a) in distribution;

b) almost surely.

4.3 Let &, &, ... be ii.d. Poisson(1) random variables. (Recall their moment generating
function: E(e%) = e*~1) Let a, b € R,

n
S, = E ks and X, = ¢nn
k=1

Show that
X, —0as.<b>a,

but for any » > 1
e —1

r

X,—>0inL"<b>

4.4 ** Let &, &, ... be i.i.d. standard normal random variables. (Recall their moment gen-
erating function: E(e*¢) = e/2)) Let a, b € R,

n
S, = g &k, and X, = en~bn
k=1

Show that
X, —0as. < b>0,

but for any » > 1

2b
Xn—>01n£7’4:>r<—2.
a

4.5 Let S and T be stopping times w.r.t. the filtration F,,. Which of these are stopping times?
Explain.

SAT :=min(S, T), SVT :=max(S, T), T+, T—S (assume T' > S here.)
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4.6

4.7

4.8

4.9

4.10

Let X7, X, ... be i.i.d. Exponential(1) random variables, S,, = X7 +---+ X,,, and {F,}
the natural filtration. Show that

n!
e
(1+Sp)ntt
is a martingale w.r.t. {F,}.

An urn contains n white and n black balls. We draw them one by one without replacement.
We receive £1 for any white ball, while nothing happens upon drawing a black one. Denote
by X; our money after the i*" draw (X, = 0). Let

2X; —i .
Y, = ,Z (1<i<2n-1), and

2n —1

2n —1 1
Zi=-—"l y2 o (1<i<2-2).

2n—i—1" 2n—i-—
(a) Show that both Y; and Z; are martingales.

(b) Calculate the mean and variance of Xj.

*** An urn contains n white and n black balls. We draw them one by one without
replacement. We pay £1 for any black ball drawn but receive £1 for any white one.
Denote by X; our money after the i*" draw (X, = 0). Let

X? — (2n —1)
2n—49)(2n—1—1)

X
Y—i_ %

= - (1<i<2n-1), and Z; =
2n —1

(1<i<2n-2).
(a) Show that both Y; and Z; are martingales.

(b) Calculate the variance of Xj.

Let X, j > 1, be absolutely integrable random variables, and F,, : = o(X;, 1 < j < n),
n > 0, their natural filtration. Define the new random variables

i
L

Zy =0, Ly i = (Xj+1—E(Xj+1|]:j))'

Prove that the process n — Z, is an (F,),>o-martingale.

A biased coin shows HEAD with probability 6 € (0, 1), and TAIL with probability 1—6. The
value € of the bias in not known. For ¢ € [0, 1] and n € N we define p,,; : {0, 1} — [0, 1]
by

Pri(T1, To,y ..o, @y) = 120217 (1 — )" 2=,

We make two hypotheses about the possible value of 6: either § = a, or § = b, where
a, b € [0, 1] and a # b. We toss the coin repeatedly and form the sequence of random

variables
7 = pnﬂ(&lu §27 ) gn)
" pn,b(&lu £27 ey fn)7
where we write {; = 1 if the j flip is HEAD and & = 0 if it is TAIL. Show that the

process n — Z, is a martingale (w.r.t. the natural filtration generated by the coin tosses)
if and only if the true bias of the coin is # = b.




4.11

4.12

4.13

4.14

4.15

Let 7, be a homogeneous Markov chain on the countable state space S := {0, 1, 2, ...}
and F,, := o(n;, 0 < j <n), n > 0 its natural filtration. For ¢ € S denote by (i) the
probability that the Markov chain starting from site ¢ ever reaches the point 0 € S:

Q) :=P{3Im < oo : ny =0]ny =i}
Prove that Z,, : = Q(n,) is an (F,),>o-martingale.

Bellman’s Optimality Principle. We model a sequence of gamblings as follows. Let
&1, &2, ... be iid. random variables with P{¢, = +1} = p, P{{, = —1} = ¢, where
p=1—¢q>1/2. Define the entropy of this distribution by

Q@ :p1n<li;2) +qln<1q%) =plhp+qlng+1n2.

A gambler starts playing with initial fortune Y > 0. Her return at time n on a unit bet
is the random variable &,,, and she plays C,, in round n. In other words, with probability
p she doubles her bet and with probability ¢ she looses it. Therefore her fortune after
round n is

Y, =Y,1+ C.&,..

The bet C),, may depend on the values &, &, ..., &,-1, and has bounds 0 < C,, < Y,,_;.
The expected rate of winnings up to time n is

Y,
Ty = Eln(%)’

which the gambler wishes to maximise.

(a) Prove that no matter what strategy C' the gambler chooses,
X, :=InY, —na

is a supermartingale, hence her expected average winning rate, *= < a.

(b) However, there exists a gambling strategy that makes the above X a martingale,
hence realises the average expected winning rate o. Find this strategy.

** Let S, be a simple symmetric random walk on the square lattice Z* with Sy = (0, 0).
That is, the walker starts from the origin and at each step independently, she steps
one unit to East, North, West or South with equal chance. Denote by D, the walker’s
Euclidean distance from the origin of Z? at time n, and let v, = inf{n : D, > r}.

(a) Show that D? —n is a martingale.
(b) Show that r2Ev, — 1 as r — oo.

The problem is the same as the previous one, except that the walk is on R? and steps are
of length one in i.i.d. Uniform(0, 27) directions.

Let S, be a simple symmetric random walk on the cubic lattice Z* with Sy = (0, 0, 0).
That is, the walker starts from the origin and at each step independently, she steps one
unit to up, down, left, right, forward or backward with equal chance. Denote by D,, the
walker’s Euclidean distance from the origin of Z?* at time n, and let v, = inf{n : D, > r}.

(a) Show that D? —n is a martingale.

(b) Show that r2Ev, — 1 as r — oo.



4.16 We repeatedly toss a fair coin.
(a) What is the expected number of tosses until we have seen the pattern HHHHHH for
the first time?

(b) We stop when six consecutive tosses result in the same outcome, in other words when
either the pattern HHHHHH or TTTTTT first appears. What is the expected number
of tosses until this moment?

4.17 We repeatedly toss a fair coin.
(a) What is the expected number of tosses until we have seen the pattern HTHT for the

first time?

(b) What is the expected number of tosses until we have seen the pattern THTH for the
first time?

(c) What is the expected number of tosses until we have seen the pattern HTTH for the
first time?

(d) What is the expected number of tosses until we have seen the pattern THHT for the
first time?

(e) Give an example of a four letter pattern of H-s and T-s that has the maximal expected
number of tosses, of any four letter patterns, until it is seen.

4.18 The previous question with a biased coin. Explain your answer.

4.19 Let m > 2 be an integer. At time n = 0, an urn contains 2m balls of which m are red
and m are blue. At each timen =1, 2, ..., 2m we draw a randomly chosen ball without
replacement from the urn and record its colour. Forn =0, 1, ..., 2m — 1 let N,, denote
the number of red balls left in the urn after time n, and

C 2m—n

P, :

denote the fraction of them. Let (F,)o<n<2m be the natural filtration generated by the
process (Ny,)o<n<2m.
(a) Show that n +— P, is an F,-martingale.

(b) Let T be the first time at which the ball drawn is red. Show that the (7' + 1)** draw
is equally likely to be red or blue.



