Homework set 5

Martingale convergence (and Doob's decomposition)
School of Mathematics, University of Bristol
Problems with •'s are to be handed in. These are due in Blackboard before noon on Thursday, $1^{\text {st }}$ December. Please show your work leading to the result, not only the result. Each problem worth the number of ${ }^{\bullet}$'s you see right next to it.
5.1 ••• Pólya urn. At time $n=0$, an urn contains $B_{0}=1$ blue and $R_{0}=1$ red balls. At each time $n>0$ a ball is chosen uniformly at random from the urn and returned to the urn, together with a new ball of the same colour. We denote by B_{n} and R_{n} the number of blue, respectively, red balls in the urn after the $n^{\text {th }}$ turn of this procedure. Notice that $B_{n}+R_{n}=n+2$. Let

$$
M_{n}:=\frac{B_{n}}{B_{n}+R_{n}}
$$

be the proportion of blue balls in the urn just after turn n.
(a) Show that M_{n} is a martingale w.r.t. the natural filtration of the process.
(b) Show that B_{n} is discrete uniform: $\mathbb{P}\left\{B_{n}=k\right\}=\frac{1}{n+1}$ for $1 \leq k \leq n+1$.
(c) Show that $M_{\infty}:=\lim _{n \rightarrow \infty} M_{n}$ exists a.s. What is its distribution?
(d) Let T be the time the first blue ball is drawn. Show that $T<\infty$ a.s. Hint: show that the events $\{T>n\}$ are decreasing and find the limit of their probabilities.
(e) Show that $\mathbb{E} \frac{1}{T+2}=\frac{1}{4}$.
$5.2{ }^{\bullet \bullet}$ Let $X_{1}, X_{2} \ldots$ be independent random variables with

$$
\mathbb{P}\left\{X_{n}=i\right\}= \begin{cases}\mathrm{e}^{-n}, & \text { if } i=0 \\ 1-2 \mathrm{e}^{-n}, & \text { if } i=1, \\ \mathrm{e}^{-n}, & \text { if } i=2\end{cases}
$$

and $M_{n}=\prod_{k=1}^{n} X_{k}$.
(a) Show that M_{n} is a martingale w.r.t. the natural filtration.
(b) Show that M_{n} has an almost sure limit M_{∞} that is almost surely finite.
(c) Construct a random variable Z that bounds M_{n} for each n, and is of finite mean.
(d) Show that $\mathbb{E} M_{\infty}=1$.
5.3 Let X_{1}, X_{2}, \ldots be strictly positive i.i.d. random variables such that $\mathbb{E} X_{1}=1$ and $\mathbb{P}\left\{X_{1}=\right.$ $1\}<1$.
(a) Show that $M_{n}=\prod_{i=1}^{n} X_{i}$ is a martingale w.r.t. the natural filtration.
(b) Deduce that there exists a real valued random variable L such that $M_{n} \rightarrow L$ a.s. as $n \rightarrow \infty$.
(c) Show that $\mathbb{P}\{L=0\}=1$. Hint: argue by contradiction and note that if $M_{n}, M_{n+1} \in$ $(a-\varepsilon, a+\varepsilon)$ then $X_{n+1} \in\left(\frac{a-\varepsilon}{a+\varepsilon}, \frac{a+\varepsilon}{a-\varepsilon}\right)$.
(d) Use the Strong Law of Large Numbers to show that there exists $c \in \mathbb{R}$ such that $\frac{1}{n} \ln M_{n} \rightarrow c$ a.s. as $n \rightarrow \infty$. Use Jensen's inequality to show that $c<0$.
5.4 Let $X_{n} \in[0,1]$ be adapted to \mathcal{F}_{n}. Let $\alpha, \beta>0$ such that $\alpha+\beta=1$ and suppose

$$
\mathbb{P}\left\{X_{n+1}=\alpha+\beta X_{n} \mid \mathcal{F}_{n}\right\}=X_{n}, \quad \mathbb{P}\left\{X_{n+1}=\beta X_{n} \mid \mathcal{F}_{n}\right\}=1-X_{n}
$$

Show:
(a) $\mathbb{P}\left\{\lim _{n} X_{n}=0\right.$ or 1$\}=1$. Hint: Use martingale convergence, and try to find an independent sequence U_{n} that generates X_{n}.
(b) If $X_{0}=\theta$ then $\mathbb{P}\left\{\lim _{n} X_{n}=1\right\}=\theta$.
5.5 Recall the ABRACADABRA problem, and the variable X_{n} being the total wealth of all gamblers in play after the $n^{\text {th }}$ letter has been typed. Perform Doob's decomposition on X_{n}.
5.6 Let $\Gamma_{0}=0$, and $\Gamma_{1}, \Gamma_{2}, \ldots$ be the marks of a rate λ homogeneous Poisson process on \mathbb{R}^{+}.
(a) Perform Doob's decomposition on Γ_{n}.
(b) Show that the martingale M you found above is \mathcal{L}^{2}. Find its brackets process $\langle M\rangle$ and the Doob decomposition of M^{2}.
5.7 Fix $\beta<\lambda$, and for the Poisson process of Problem 5.6 define $X_{n}:=\mathrm{e}^{\beta \Gamma_{n}}$. Perform Doob's decomposition on this process. (It is not going to be very nice.)
$5.8 \cdots$ Decomposing in a product sense. Let X_{n} be an adapted process, and assume that it is bounded: $\sup _{n} X_{n}<K<\infty$ and bounded away from zero: $\inf _{n} X_{n}>\delta>0$ for some non-random K and δ. Show that
(a) there is

- a martingale $\left(M_{n}\right)_{n \geq 0}$ with $M_{0}=1$,
- a predictable process $\left(B_{n}\right)_{n \geq 0}>0$ with $B_{0}=1$
such that $X_{n}=X_{0} \cdot M_{n} \cdot B_{n}$. This decomposition is almost everywhere unique in the sense that for any other pair $\left(\widehat{M}_{n}, \widehat{B}_{n}\right)_{n \geq 0}$ with the above properties we have $\mathbb{P}\left\{M_{n}=\widehat{M}_{n}\right.$ and $B_{n}=\widehat{B}_{n}$ for all $\left.n \geq 0\right\}=1$.
(b) $\left(X_{n}\right)_{n \geq 0}$ is a submartingale if and only if $\mathbb{P}\left\{B_{n} \leq B_{n+1}\right.$ for all $\left.n \geq 0\right\}=1$ in the above decomposition.
$5.9{ }^{\bullet}$ Fix $\beta<\lambda$, and for the Poisson process of Problem 5.6 define $X_{n}:=\mathrm{e}^{\beta \Gamma_{n}}$.
(a) Find a predictable process $B_{n}>0$ for which $X_{n}=M_{n} \cdot B_{n}$ where M_{n} is a martingale. (Hint: while X_{n} does not have the bounds assumed in 5.8, the calculation still works. Check that the martingale is in \mathcal{L}^{1} separately.)
(b) Fix $t>0$ and $T:=\inf \left\{n: \Gamma_{n}>t\right\}$. Assume $\beta>0$ and use the memoryless property of the Exponential distribution to bound the stopped martingale M^{T} from above by a random variable of finite mean. Hence show that optional stopping applies.
(c) Show from the above that the number of marks before t is $\operatorname{Poisson}(\lambda \cdot t)$ distributed (just by assuming the i.i.d. Exponential (λ) interarrival times in the Poisson (λ) process). (Hint: use its generating function.)
5.10 Let $Y_{i}, i=1,2, \ldots$ be i.i.d. variables in \mathcal{L}^{2} with mean μ and variance σ^{2}. Define $X_{0}=0$, $X_{k}:=\frac{1}{k} \sum_{i=1}^{k} Y_{i}(k \geq 1)$.
(a) Perform Doob's decomposition on X.
(b) Show that the martingale M you found above is \mathcal{L}^{2}. Find its brackets process $\langle M\rangle$ and the Doob decomposition of M^{2}.
(c) Show that the martingale M converges a.s.

