T he four outfits and the fluctuations
of the simple exclusion process

4P i
Dy QA

_ Marton Balazs _
(University of Wisconsin - Madison)

Joint work with

Eric Cator
(Delft University of Technology)

and

~ Timo Seppalainen
(University of Wisconsin - Madison)

Ames, April 25

Outfit 1:Interacting particles
Outfit 2: Surface growth

Outfit 3: Equilibrium queues

Outfit 4: Last passage percolation

. Results

. Last passage equilibrium

. The competition interface
. Upper bound

. Lower bound

. Further directions

O OO0 ~NO O



Outfit 1: Interacting particles

Bernoulli(p) distribution



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

10



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

11



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

12



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

13



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

14



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

15



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

16



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

17



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

18



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

19



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

20



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

21



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

22



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

23



Outfit 1: Interacting particles

Bernoulli(p) distribution
(particle, hole) pairs become

(hole, particle) pairs with rate 1.
That is: waiting times © ~ Exponential(1).

24



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times © ~ Exponential(1).
~~ Markov process.

Particles try to jump to the right, but block
each other.

25



Outfit 1: Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times © ~ Exponential(1).
~~ Markov process.

Particles try to jump to the right, but block
each other.

The Bernoulli(p) distribution is time-stationary
for any ( ). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.
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Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T /e at position * = X/e. It
satisfies

8% + 8% [0(1 — p)] =0 (inviscid Burgers)
8% +[1—-20]- GiX = 0 (while smooth)

0 dX(7T) o d

. : = — o1, X(T))=0
o1 T Tar ax dT (T, X(T))
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Let 7" and X be some large-scale time and
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~» Set initially o = o(T"= 0, X) to be the den-
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Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T /e at position * = X/e. It
satisfies

0 0 N
o7 +8—X[ (1 —0)] =0 (inviscid Burgers)

g +[1 —20] - GiX = 0 (while smooth)

OT

o dX(T) o d

. . = — o(7T. X(T)) =20
oT T dT 90X dT (7, X))

~» The characteristic speed C(p) := 1 — 2p.
(o is constant along X(T) = C(p).)
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Bernoulli(p) distribution

hz(t) = height of the surface above .
hy(t) — hy(0) = number of particles passed
above x.
hy+(t) = number of particles passed through
the moving window at Vt (V e R).
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Growth fluctuations
h,t

hyi

Ferrari - Fontes 1994:
Var(hy+(t
im (hy+(1))

t—o0 t
~ Initial fluctuations are transported along the
characteristics.
~ How about V = C(p)~?

= const - |V — C(o)]

Conjecture:
: Var(hC(g)t(t)) L
tlrgo 273 = [sg. non trivial].
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Customers OH;
Servers [ (] (]
P P Py

~ P;’'s have equilibrium length
M/M/1 queues. Except for /7, which deter-
ministicly has Hg as its customer. (He has just
arrived there.)

~» Equilibrium system of queues as seen right
after Hp's jump.

~» Burke’s Theorem (Kesten 1970): Py and Hjg
jump as Poisson( ) and Poisson(p) pro-
cesses, respectively, and they are independent.
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Occupation of (7,5) = jump of P; over H;.
Occupation of (2,1) = jump of P; over Ho.
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Occupation of (7,5) = jump of P; over H;.
Occupation of (2,1) = jump of P; over Ho.
The time when this happens =: G,-j.

The characteristic speed V = (C(p) translates

to
m 1= (1—0)%t and n : = p°t.

Will present results on Gyn.
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Burke’'s Theorem:
Py jumps according to a Poisson(1—p) process,
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Burke’'s Theorem:
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independently of the ¢'s.
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Py jumps according to a Poisson(1—p) process,

Hp jumps according to a Poisson(p) process,
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The last passage model
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o starts ticking when both its west and south
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Gi; = the occupation time of (4,7)
G;; = the maximum weight collected by a north
-east path from (0,0) to (4,75).
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Gi; = the occupation time of (4,7)

G;; = the maximum weight collected by a north

-east path from (0,0) to (4,75).
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o starts ticking when both its west and south
neighbors become occupied

Gi; = the occupation time of (4,7)

G;; = the maximum weight collected by a north

-east path from (0,0) to (4,75).
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5. Results
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(m,n)
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\
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On the characteristics
m = (1—0)%t and n : = o°t,
T heorem:
.. _Var(Gmn) , Var(Gmn)
0O < liminf < limsu
t—o00 +2/3 o t—>oop +2/3

identifies the limiting distribution of
hy(t) /t/3 in terms of Tracy-Widom GUE distributions,

when © and © ~ Exponential(1l) ( ).
identify the limiting
distribution of hy(s) — E[hc(,:(t)] when = and s are off

characteristics by t2/3 and t1/3, respectively.
RSK correspondence, random matrices.
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Lmn = 1

Zmn 1S the exit point of the longest path to

(m, n) = ((1 — 0)°t, 0°t).

T heorem:
For all large t and all a > O,

P{Zmn > a,t2/3} < Ca 3.
Given € > 0, there is a § > 0 such that
P{1 < Zyn < 6t2/3} < ¢

for all large t.
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T heorem:
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Equilibrium:
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o~ Exponential(1)
Rarefaction fan:
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«~~ Exponential(1)

T heorem:
ForO<a<1andallt>1,

P{|Gn — t| > atl/3} < Ca™3%/2,

Also transversal t2/3-deviations of the longest path.
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~ Any fixed southeast path meets independent
increments
and
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Equilibrium:
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o~ Exponential(1) )
G-increments:
: :GZJ_G{Z—l}] for:>1, 7 >0, and
: :G’L]_Gz{]—l} for ZZO, ]Z 1.
~ Any fixed southeast path meets independent
increments

and

Of course, this doesn’t help directly with Go,.
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7. The competition interface
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Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via
(0,1)7

The competition interface follows the same
rules as the second class particle of simple ex-
clusion.
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7. The competition interface

K ° ° °
J
(m,n)
20 ° °
10 ° ° °
Oe e °

‘ .
0 1 2 1

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via
(0,1)7

The competition interface follows the same
rules as the second class particle of simple ex-
clusion.

If it passes left of (m,n), then Gy, is NOt sensi-
tive to decreasing the © weights on the j-axis.
If it passes below (m,n), then G,,, is not sen-
Sitive to decreasing the © weights on the z-axis.
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8. Upper bound (E. Cator and P. Groeneboom)
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8. Upper bound (E. Cator and P. Groeneboom)

G2
Z9:
. weight collected on the axis until z.
. largest weight of a path from z to (m, n).
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weight collected by the longest path.
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8. Upper bound (E. Cator and P. Groeneboom)

J
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CHINCIIING
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|
O TOTO
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G2 weight collected by the longest path.
/9. exit point of the longest path.

. weight collected on the axis until z.
A,: largest weight of a path from z to (m, n).

Step 1:

+ A, <G

for any z, any O < A < 1.
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J
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A,: largest weight of a path from z to (m, n).
Step 1:

+ A, <G?
for any z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A,: largest weight of a path from z to (m, n).
Step 1:

+ A, <G
for any z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G
<P{Iz>u: U= +G">G%
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A.: largest weight of a path from z to (m, n).
Step 1:

+ A, <G
for any z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G
<P{Iz>u: =1 +G">G%
=P{Iz>u:l —'<GM=G9%
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8. Upper bound (E. Cator and P. Groeneboom)
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A.: largest weight of a path from z to (m, n).
Step 1:

+ A, <G
for any z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G
<P{Iz>u: =1 +G">G%
=P{Iz>u:l —'<GM=G9%
<P{U) —U< G =GO

251



P{Z%>u} <P{l/ — /<G =G,
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P{Z%>u} <P{l/ — /<G =G,

Step 2:

Optimize )\ so that E(I/"' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) This makes the estimate sharp.
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Step 2:

Optimize X so that E(I/' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) This makes the estimate sharp.
Step 3:

Apply Chebyshev’s inequality on the right-hand
side. IS elementary.
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Prove, by a perturbation argument, that
Var(() is related to
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P{Z%>u} <P{l/ — /<G =G,

Step 2:

Optimize )\ so that E(I/"' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) T his makes the estimate sharp.
Step 3:

Apply Chebyshev’s inequality on the right-hand
side. IS elementary.

Step 4:

Prove, by a perturbation argument, that
Var(() is related to

Step 5:

A large deviation estimate connects P{Z¢ > y}
and P{ > y}.

~ P{ >y}§0(;—i- -I-é)
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P{Z%>u} <P{l/ — /<G =G,

Step 2:

Optimize )\ so that E(I/"' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) T his makes the estimate sharp.
Step 3:

Apply Chebyshev’s inequality on the right-hand
side. IS elementary.

Step 4:

Prove, by a perturbation argument, that
Var(() is related to

Step 5:

A large deviation estimate connects P{Z¢ > y}
and P{ > y}.

+2 +2
Conclude
lim su < lim su Vvar(Ge) <
o0, 0.
t—>oop £2/3 t—>oop £2/3
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

K ° ° °
J
(m,n)
20 ° ° °
10 ° ° °

~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

K ° ° °
J
(m,n)
20 ° ° °
10 ° ° °
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tion interface-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

'. o [} [}
J
20 S (mén) °
19 ® ° °

~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

[ ] ( ] [ ] [ ]

o | b |V .

[ ] [ ] [ ] [ ]
(0.0)

e— o ° °

~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

e | 4 M,

(0,0)

~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound
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~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

[ ] [ ] [ ] [ ]
o | 4| o [P
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~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

(m,n)

T

~ Z-probabilities are connected to competi-
tion interface-probabilities.
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9. Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

J
(m,n)
20 e 9
1@ ® °
0 | —
0 1 2

~ Z-probabilities are connected to competi-
tion interface-probabilities.

competition interface
reversed model.

longest path of the
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

(m,n)

~ Z-probabilities are connected to competi-
tion interface-probabilities.

competition interface = longest path of the
reversed model.

~ competition interface-probabilities are in
fact Z-probabilities.
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9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

(m,n)

~ Z-probabilities are connected to competi-
tion interface-probabilities.

competition interface = longest path of the
reversed model.

~ competition interface-probabilities are in
fact Z-probabilities.

Conclude
. .. . Var(G©9)
Iltrlggf /3 > 0, "{l!Qf /3 > 0.
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10. Further directions

— We only have deviation probability results
for the case of the rarefaction fan. How about

Var(G) in this case?
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— In the equilibrium case we have the scal-
ing of Var(G). Prove the same scaling for

Var(hc(g)t(t)) :
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— In the equilibrium case we have the scal-
ing of Var(G). Prove the same scaling for

Var(hc(g)t(t)) :

— Generalize. These methods are more gen-
eral than the RSK and random matrices argu-
ments. The last-passage picture is specific to
the totally asymmetric simple exclusion. Say
something about the general simple exclusion.

277



10. Further directions

— We only have deviation probability results
for the case of the rarefaction fan. How about
Var(G) in this case?

— In the equilibrium case we have the scal-
ing of Var(G). Prove the same scaling for

Var(hc(g)t(t)) :

— Generalize. These methods are more gen-
eral than the RSK and random matrices argu-
ments. The last-passage picture is specific to
the totally asymmetric simple exclusion. Say
something about the general simple exclusion.

— Generalize even more: drop the last-passage
picture. These methods have the potential to
extend to other particle systems directly (zero
range, bricklayers’, ...?).
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Thank you.
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