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The question that mathematicians failed to ask

What can be said about the statistical
properties of the eigenvalues of a large
randommatrix?

Do some universal patterns emerge?

Eugene Wigner (1954)

H =


h11 h12 . . . h1N
h21 h22 . . . h2N
...

...
...

hN1 hN2 . . . hNN

 =⇒ (λ1, λ2, . . . , λN) eigenvalues?

N = size of the matrix, will go to infinity.

WHY? Matrices are the Hamilton operators of quantum systems!

Wigner’s vision: energy levels of large quantum systems exhibit a universal behavior, i.e. all
the details are irrelevant, only basic physical symmetries matter. 4



Main questions we look at, first in a toy setup

Consider independent identically distributed (i.i.d.) random variables X1, . . . , XN, such that
EX1 = 0, EX21 = 1.

• Law of large numbers (LLN), ”Self-Averaging”:
X1 + · · ·+ XN

N
→ EX = 0, a.s.

• Central Limit Theorem (CLT), ”Fluctuation”:
X1 + · · ·+ XN√

N
⇒ N (0, 1), standard Gaussian.

• Law of Iterated Logarithm: “Extreme fluctuation”:

−1 = lim inf
N→∞

X1 + · · ·+ XN√
2N log log N

≤ lim sup
N→∞

X1 + · · ·+ XN√
2N log log N

= 1, a.s.

• Extremal statistics: There exist sequences aN, bN such that

bN
[
Max(X1, . . . , XN)− aN

]
⇒ G,

where G is a Gumbel random variable with distribution function FG(x) = e−e−x
.

For example, if Xi ∼ N (0, 1), then

aN =
√

2 log N −
log log N + log 4π

2
√
2 log N

, bN =
√

2 log N.

Nowwe look at these questions in the eigenvalues/vectors of randommatrices.
First, for the muchmore studied Hermitian case, then a bit non-Hermitian theory.
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A brief history of classical results

Definition [Wigner matrix]: N × N Hermitian randommatrix H = H∗

• Independent identically distributed (iid) entries up to Hermitian symmetry hab = hba
• normalization: E hab = 0, E |hab|2 = 1

N

Theorem [Wigner 1955]: Empirical density of eigenvalues (”density of states”) converges to
the semicircular law as N → ∞, irrespective of the distribution of hab.

−2 2

ρ(x) =
√

4−x2
2π

N−1

Semicircular density of states ρ; Bulk level spacing∼ N−1

”Law of Large Numbers”-type result on macro scale – insensitive to individual eigenvalues.
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Universality for eigenvalues (Hermitian case)

Wigner’s revolutionary observation: the eigenvalue gap statistics is very robust, it depends
only on the symmetry class (hermitian or symmetric), independent of the distribution of hab.

−2 2

ρ(x) =
√

4−x2
2π

N−1

semicircular density of states ρ; Bulk level spacing∼ N−1

1 2 3

Nρ(λi)
[
λi+1 − λi

]
32x2
π2 e−4x2/π

Histogram of rescaled bulk gaps and Wigner surmise

Formulated as the Wigner-Dyson-Mehta conjecture in 60’s, proven around 2010
[Erdős-Schlein-Yau, Tao-Vu].

At the edge universality of Tracy-Widom statistics for λmax was proven in 1999 [Soshnikov].

The distributions both in the bulk and at the edge are novel, the underlying point processes
are strongly correlated (but determinantal) [Dyson-Mehta, 1960’s] [Tracy-Widom, 1993]
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−2 2

−0.6 −0.58−0.56−0.54−0.52 −0.5
Wigner-Dyson-Mehta on scale N−1

1.85 1.9 1.95 2 2.05

Tracy-Widom on scale N−2/3

Third universal statistics: Pearcey-statistic at cubic cusp singularities of ρ(x) ∼ |x|1/3.
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Extensions beyondWigner

In the last decade WDM and TW universalities have been greatly extended well beyond
Wigner matrices to approachmore realistic physical models:

• Deformedmatrices (add nontrivial deterministic matrix: H + A)

• Structured matrices (variable variance, possible zero blocks)

• Correlated entries

• Sparse matrices (random graphs)

• Bandmatrices (towards random Schrödinger)

• Heavy tailed entry distributions, etc.

• Third (and last) universality class at the cusp (Pearcey-distribution)

General belief: universality of local eigenvalue statistics holds for ”any sufficiently random”
matrix (or even operator) in the delocalization regime in the sense of Anderson’s
metal-insulator transition. In particular, it holds in mean-field systems.

Global density of eigenvalues is model specific, but cannot be “arbitrary”.
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Matrix Dyson Equation and universality of singularities of the density

Most general (Hermitian) randommatrix model: correlated (non-centred) entries.
Characterized by a data pair: expectation (matrix) A and correlation (tensor) S:

A := EH, S[R] := EHRH, ∀R ∈ CN×N

LLN for the eigenvalue density still holds, but semicircle law is replaced by:

ρ(x) := lim
η→0+0

1
π
=〈M(x + iη)〉, 〈·〉 :=

1
N
Tr

whereM : C+ → CN×N is the unique solution to theMatrix Dyson Equation (MDE)

−M(z)−1 = z − A+ S[M(z)], with =M > 0

Theorem (Ajanki, Alt, E., Krüger 2016–2018)
If c〈·〉 ≤ S ≤ C〈·〉 (”mean field”), then suppρ consists of finitely many intervals, ρ is real
analytic in its interior and ρ has either square root singularity at the edges or cubic cusp
singularity if two intervals touch. No other singularity can occur.

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4
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Eigenvectors? Quantum Unique Ergodicity (QUE)

Motto:

Eigenfunctions of the quantization of a chaotic classical dynamics are uniformly distributed.

Regular (integrable) billiard Chaotic billiard

Wavefunctions with symmetries Chaotic wavefunctions 11



Universality for eigenvectors (Hermitian case)

Let u1, u2, . . . uN be the orthonormal eigenbasis of H. We expect them to be ”as random as
possible”, i.e. (asymptotically) Haar distributed. (”Quantum chaos”)

Trivial if H has Gaussian entries [GOE/GUE] by invariance under any unitary conjugation.

It also holds quite nontrivially for any Wigner matrix (universality), in particular:

• Asymptotic Gaussianity of entries: Finitely many
√
Nui(ai) are jointly Gaussian;

[Bourgade-Yau-Yin, 2018], [Marcinek-Yau 2020]

• Eigenstate Thermalisation Hypothesis (ETH) = Quantum Unique Ergodicity (QUE):
For any deterministic Awe have

〈ui, Auj〉 = δij 〈A〉+
Rij√
N
, 〈A〉 :=

1
N
Tr A

where
Rij ∼ N (0, 2 〈̊A2〉), Å := A− 〈A〉 , rank(̊A) � 1

Randommatrix version of Snirelman’s theoremwith optimal fluctuation error.
ETH also proven for DeformedWigner and Wigner type matrices with a modified 〈A〉
[Deutsch 1991][Feingold-Perez 1986] [Cipolloni-E-Henheik-Kolupaiev-Schröder, 2020–2023],
[Benigni-Lopatto, 2021], [Benigni-Cipolloni, 2022], [E-Riabov, 2024]

• Extremal statistics: maxi〈ui, Aui〉 (after rescaling) has Gumbel distribution if
rank(A) � N1/2 [E-McKenna 2023]

12
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possible”, i.e. (asymptotically) Haar distributed. (”Quantum chaos”)

Trivial if H has Gaussian entries [GOE/GUE] by invariance under any unitary conjugation.

It also holds quite nontrivially for any Wigner matrix (universality), in particular:

• Asymptotic Gaussianity of entries: Finitely many
√
Nui(ai) are jointly Gaussian;

[Bourgade-Yau-Yin, 2018], [Marcinek-Yau 2020]

• Eigenstate Thermalisation Hypothesis (ETH) = Quantum Unique Ergodicity (QUE):
For any deterministic Awe have

〈ui, Auj〉 = δij 〈A〉+
Rij√
N
, 〈A〉 :=

1
N
Tr A

where
Rij ∼ N (0, 2 〈̊A2〉), Å := A− 〈A〉 , rank(̊A) � 1

Randommatrix version of Snirelman’s theoremwith optimal fluctuation error.
ETH also proven for DeformedWigner and Wigner type matrices with a modified 〈A〉
[Deutsch 1991][Feingold-Perez 1986] [Cipolloni-E-Henheik-Kolupaiev-Schröder, 2020–2023],
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Non-Hermitian case: i.i.d. randommatrices

X =


x11 . . . x1N
...

. . .
...

xN1 . . . xNN


with independent identically distributed (i.i.d.) entries, E xab = 0, E |xab|2 = 1

N .

|z| = 1N = 50

Figure 4: Real entries

|z| = 1N = 50

Figure 5: Complex entries with E x2ab = 0
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Non-Hermitian case: i.i.d. randommatrices

|z| = 1n = 2000

Figure 6: Complex entries with E x2ab = 0

• Circular law: Convergence to the uniform distribution on the unit disk: non-Hermitian
analogue of Wigner’s semicircle law.

• Eigenvalue spacing∼ N−1/2.

• Accumulation of∼
√
N eigenvalues on the real axis for real matrices.

14



Spectral universality for i.i.d. matrices

Universal phenomena similar to Hermitian matrices. After rescaling:

Edge universality: [Cipolloni-E-Schröder (2019)] (complex and real)
Similar result for deformed iid, A+ X (even in the “cusp” case when two domains touch)
[Liu-Zhang], [Campbell, Cipolloni, E., Ji ] (2023-2024)

Bulk universality: [Maltsev-Osman, 2023] (complex), [Osman, 2023] (real)
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State of the art for Hermitian vs. non-Hermitian randommatrices

Hermitian prototype: GUE/GOE, more generally Wigner (hab are iid for a ≥ b, hba = h̄ab).

• Spectrum is real, density of states is given by the semicircle law (
√
);

• Wigner-Dyson (bulk) and Tracy-Widom (edge) universality for eigenvalues (
√
);

• Asymptotically Haar universality (QUE) for eigenvectors (
√
).

Non-Hermitian prototype: Ginibre matrix (Gaussian), more generally iid matrix
(non-Gaussian): hab are i.i.d., no symmetry.

• Spectrum is complex, density of states is given by the circular law (
√
);

• Universality of bulk and edge eigenvalue statistics (
√
);

• Ginibre eigenvectors are Haar distributed, universality for i.i.d. matrices is open (×)

Beyond i.i.d. the picture is much less complete, especially the non-Hermitian one.

General Pattern: Gaussian cases (GOE/GUE and Ginibre) are explicitly computable, then
sophisticated techniques needed to show that the answer does not change if we change the
distribution of hab. Well beyond any perturbation theory !! [Hermitian ev’s live on scale 1/N,
changing only one hab is already a change of order 1/

√
N and there are N2 of them!]
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Basic scales and tools

Mesoscopic scale: Cumulative effect of� 1 eigenvalues.

Resolvents G(z) = (H − z)−1 become deterministic if=z � 1/N (”Local law”). Used as

• A priori bounds for bulk universality proofs;

• Directly for edge universality proofs;

• Green function comparison theorems: two ensembles with sufficiently manymatching
moments have the same local ev. statistics (originally [Tao-Vu, 2009]).

Microscopic scale: Sensitive to individual eigenvalues

• Dyson Brownian motion (DBM): special SDE for eigenvalues [Dyson 1962, E-Yau-Schlein
2009], later also for eigenvectors [Bourgade-Yau, 2013]. Equilibrates fast.

• Supersymmetric formalism: Major reduction of variables
[Disertori-Pinson-Spencer 2002], [M. and T. Shcherbina 2011– ]

• Partial Schur decomposition : Explicit Haar/Gaussian calculations
[Edelman-Kostlan-Schub, 1994], [Fyodorov-Khoruzhenko, 2007], [Fyodorov, 2018]
[Maltsev-Osman, 2023], [Osman 2023]

This week: Multi-resolvent local laws with a new zigzag strategy. This will have several
applications beyond standard universality questions.
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Applications 1: ETH

Let H be a Wigner matrix, Hui = λiui and A be a deterministic matrix.

∣∣〈ui, Auj〉 − δij〈A〉
∣∣ ≤ Nξ

√
N

w.v.h.p. (1)

Set Å := A− 〈A〉I to be the traceless part of A, we need to show to

∣∣〈ui, Åuj〉∣∣2 ≤
Nξ

N
w.v.h.p. (2)

Look at

〈=G(z1 )̊A=G(z2 )̊A〉 =
1
N

N∑
a,b=1

∣∣〈ua, Åub〉∣∣2 η

(λa − γi)2 + η2
η

(λb − γj)2 + η2
, η ∼ N−1+ξ,

(3)
with z1 = γi + iη, z2 = γj + iη.

Two-resolvent local law (with the√η improvement due to the tracelessness of Å) proves that
〈=G(z1 )̊A=G(z2 )̊A〉 . 1 with very high probability, uniformly in z1, z2 with
=z1,=z2 ∼ N−1+ξ , then (2) follows from (3).
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∣∣〈ui, Åuj〉∣∣2 ≤
Nξ

N
w.v.h.p. (2)

Look at

〈=G(z1 )̊A=G(z2 )̊A〉 =
1
N

N∑
a,b=1

∣∣〈ua, Åub〉∣∣2 η
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Applications 2: Thermalisation

H is the Hamiltonian of a quantum system and A, B, . . . are deterministic observables. Let

A(t) = e−itHAeitH

be the Heisenberg (quantum) time evolution of A. Howmuch A(t) and B become orthogonal
(independent) at large time?

〈A(t)B〉 = 〈A〉〈B〉+ θ(t)2
〈̊AB̊〉
t3

+ O
( t2

N

)
w.v.h.p. (4)

where θ(t) := J1(2t)
√
t is an O(1) oscillatory function

Similar results can be derived for more than two observables, for example for three
observables and two different times t, swith t ≥ s � 1, t − s � 1 we have

〈A(t)B(s)C〉 = 〈A〉 〈B〉 〈C〉+ θ(s)2
〈A〉 〈̊BC̊〉

s3
+ θ(t)2

〈B〉 〈̊AC̊〉
t3

+ θ(t − s)2
〈C〉 〈̊AB̊〉
(t − s)3

+ θ(s)θ(t)θ(t − s)
〈̊AB̊C̊〉

s3/2t3/2(t − s)3/2
+ O

( t3

N

)
w.v.h.p.

(5)
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A related object is the out-of-time-ordered correlator (OTOC)

CA,B(t) :=
1
2
〈
∣∣[A(t), B]∣∣2〉

Similarly to 〈A(t)B〉, it also expresses howmuchmixing happens in the system.

In all these problems, we use contour integral

eitH =
1
2πi

∮
γ

eitz

H − z
dz =

1
2πi

∮
γ
eitzG(z)dz

where γ encircles the spectrum of H. For example

〈A(t)B〉 = −
1

4π2

∮
γ

∮
γ
eitz1e−itz2 〈G(z1)AG(z2)B〉dz1dz2.

If we find a deterministic approximationM = M(A, B, z1, z2) to G(z1)AG(z2)B, then we can
compute the leading term by explicit contour integration.

20



A related object is the out-of-time-ordered correlator (OTOC)

CA,B(t) :=
1
2
〈
∣∣[A(t), B]∣∣2〉

Similarly to 〈A(t)B〉, it also expresses howmuchmixing happens in the system.

In all these problems, we use contour integral

eitH =
1
2πi

∮
γ

eitz

H − z
dz =

1
2πi

∮
γ
eitzG(z)dz

where γ encircles the spectrum of H. For example

〈A(t)B〉 = −
1

4π2

∮
γ

∮
γ
eitz1e−itz2 〈G(z1)AG(z2)B〉dz1dz2.

If we find a deterministic approximationM = M(A, B, z1, z2) to G(z1)AG(z2)B, then we can
compute the leading term by explicit contour integration.

20



Applications 3: Eigenvector overlaps (Hermitian case)

Consider a Wigner matrixW with two different deformations

H1 = W + D1, H2 = W + D2

where D1,D2 are deterministic (hermitian) matrices, 〈Di〉 = 0. Let

H`u
(`)
i = λ

(`)
i u(`)i , ` = 1, 2.

If D1 = D2, then the eigenfunction overlap is trivial, 〈u(1)i , u(2)j 〉 = δij . For D1 6= D2 we have

∣∣〈u(1)i , u(2)j 〉
∣∣2 .

Nξ

N
1

〈(D1 − D2)2〉+ |λ(1)
i − λ

(2)
j |2 + . . .

w.v.h.p. (6)

This shows that eigenvectors can become decorrelated in two ways: either their energies are
at distance or the deformations are far away in Hilbert-Schmidt norm sense.

Similarly to ETH, a good upper bound on the overlap
∣∣〈u(1)i , u(2)j 〉

∣∣2 is accessible via a
two-resolvent local law of the form∣∣〈u(1)i , u(2)j 〉

∣∣2 ≤ η〈=G(1)(γ
(1)
i + iη)=G(2)(γ

(2)
j + iη)〉, η ∼ N−1+ξ,

where G(`) is the resolvent of H(`).

The result (6) is essentially used in our papers on the decorrelation transition and the Law of
Fractional Logarithm in the Wigner minor process.
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i u(`)i , ` = 1, 2.

If D1 = D2, then the eigenfunction overlap is trivial, 〈u(1)i , u(2)j 〉 = δij . For D1 6= D2 we have

∣∣〈u(1)i , u(2)j 〉
∣∣2 .

Nξ

N
1

〈(D1 − D2)2〉+ |λ(1)
i − λ

(2)
j |2 + . . .

w.v.h.p. (6)

This shows that eigenvectors can become decorrelated in two ways: either their energies are
at distance or the deformations are far away in Hilbert-Schmidt norm sense.

Similarly to ETH, a good upper bound on the overlap
∣∣〈u(1)i , u(2)j 〉

∣∣2 is accessible via a
two-resolvent local law of the form∣∣〈u(1)i , u(2)j 〉

∣∣2 ≤ η〈=G(1)(γ
(1)
i + iη)=G(2)(γ

(2)
j + iη)〉, η ∼ N−1+ξ,

where G(`) is the resolvent of H(`).

The result (6) is essentially used in our papers on the decorrelation transition and the Law of
Fractional Logarithm in the Wigner minor process.
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Applications 4: Law of Fractional Logarithm

Let (xij)i,j∈N, be a double infinite array of i.i.d. random variables with xij = x̄ji , E xij = 0,
E |xij|2 = 1 (and E x2ij = 0 in the complex case).

Let X(N) be its N × N upper leftminor and define

W(N) :=
1

√
N
X(N)

which is a Wigner matrix. NoteW(N)’s are strongly correlated, they are minors of each other.

W(N) is called theWigner minor process.

Let λ(N)
1 be the largest eigenvalue ofW(N) and let

λ̃
(N)
1 := N2/3(λ(N)

1 − 2
)

Then, almost surely, we have

lim inf
N→∞

λ̃
(N)
1

(log N)1/3
= −

( 8
β

)1/3
, and lim sup

N→∞

λ̃
(N)
1

(log N)2/3
=

( 1
2β

)2/3
,

(previous partial results for GUE by Paquette and Zeitouni, and Baslingker et.al.)
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Applications 5: Gumbel distribution for the rightmost eigenvalue

Let X be an N × N complex i.i.d. randommatrix, E xij = 0, E |xij|2 = 1
N

Let σj , j = 1, 2, . . . ,N be the eigenvalues of X . We have the circular law:
1
N

∑
j

f (σj) =
1
π

∫
f (z)dz + O(Nξ/N)

for a smooth N-independent test function f (there are also local versions). Also

max |σj| ≤ 1+
Nξ

√
N
, w.v.h.p.

Goal: identify more precisely the behavior ofmaxj <σj .

One motivation for that is to study the standard ODE with random coefficients
d
dt
v(t) = −(I + gX)v(t), v(0) = v0

Theorem [Cipolloni-E-Xu] √
4γNN

[
max

j
<σj − 1−

√
γN

4N

]
=⇒ G

where G is standard Gumbel random variable, i.e. P(G ≤ x) = exp(−e−x) and

γN :=
1
2

[
log N − 5 log log N − log(2π4)

]
.
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There is a similar result (with slightly different γN) formax |σj|, i.e. the spectral radius of X .
We also have a statement that the few rightmost eigenvalues form a Poisson point process
(with correct rescalings).

How are these results related to local laws?

We look at linear statistics 1
N
∑

j f (σj)with a carefully chosen test function f

We use Girko’s formula

1
N

∑
j

f (σj) = −
1
4π

∫
C
∆f (z)

∫ ∞

0
〈=Gz(iη)〉dη

We need to compute, e.g. the secondmoment of this linear statistics, i.e.

E
∣∣∣ 1
N

∑
j

f (σj)
∣∣∣2 =

1
16π2

x

C

∆f (z1)∆f (z2)
∞x

0

E〈=Gz1 (iη1)〉〈=Gz2 (iη2)〉dη1dη2; dz1dz2.

So we need to study the correlation of 〈=Gz1 (iη1)〉 and 〈=Gz2 (iη2)〉 for all regimes of η and
this is given by a two resolvent local law 〈=Gz1 (iη1)=Gz2 (iη2)〉.

It is especially important to extract a decay in this correlation as z1 − z2 gets larger.
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