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» n goats jump on R (state space is R").

» Given a configuration X3, Xo, ..., X, Of goats the center of
massism = 1> x;.

» Goat i jumps with rate w(x; —m), where w is the jump rate
function:

» Jumps are positive, random, independent of everything,
and are of density ¢, mean one.
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motion of flocks, herds (as you have seen...),
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» prices of stocks,

> etc.
Found results of the types:
interacting diffusions with linear drift ( ),
rank dependent drift of Brownian motions (

),
relocation of random walking particles (
),

reordering and steps by a joint Gaussian (

v

v

v

v

v

v

),

multiplicative steps as well ( ).
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Stationary distribution

First question: what is the stationary distribution? As seen
from the center of mass m(t), of course.

n = 2 particles: just an exercise. But | have never before seen
a density like cosh™2%(z) appearing (

).

n = 3 particles: already seems hopeless. The process is “very
irreversible”.
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n = 3 particles, jump Iengths are deterministically 1
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Fluid limit: a mean field equation

Take n — oo, , and first let us guess for a
limiting PDE for the density of particles.

density at x
aé’gf[’t): —w(x —m(t)) - o(x,t)
) density aty
+/_ wly —m(t)) - oly,t) - ex-y)  dy,
and 00
m(t)—/ Xo(X,t) dx.

These equations conserve 1 = [ o(x,t) dx and give
m(t) = [w(x —m(t)) - o(x,t) dx.
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We look for stationary solution of this equation as seen from the
center of mass.

Idea: as n — oo, in a stationary distribution m(t) would
stabilize. So assume

m(t) = ct and
o(X,t) = o(x — ct).
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We look for stationary solution of this equation as seen from the
center of mass.

Idea: as n — oo, in a stationary distribution m(t) would
stabilize. So assume

m(t) = ct and
o(X,t) = o(x — ct).
Plug this in to get
X

~ed () = ~w(e0) + [ wy)ewy)elx —y) .
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Fluid limit: a mean field equation

X

—cd(x) = ~W(x)o(x) + / W(y)a(y)e(x —y) dy.

—00

» When the jumps are Exp(1): ¢(x) = e *, the above
becomes a linear second order ODE, easy to solve.

» When w(x) = e

o(X) = G. , (const - X),

@[

G 1 is the generalized Gumbel density.
> When w is a (down-)step function, g is the Laplace density.
» When w is a (down-)step function, but with a linear
decrease around 0, o is Laplace with a normal segment in
the middle.
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When the jumps are Exp(1): ¢p(x) = e7*,
jump rate is exponential: w(x) = e,
~ o(x) = G(const - x), standard Gumbel density.

Fix a particle X (t). Probability it jumps betweent and t + dt is
approx. et=X(1) dt. And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time t, let we
have N(t) = €' /c of them. Define Y (t) as the maximum.

Betweent and t + dt, dN(t) = €' dt many new Exp(1) particles
try to break the record. So the probability that Y (t) jumps is

1-(1- e‘Y(t))ept Tt YOdt  (for large Y (t)).

And when it jumps, it jumps Exp(1). But we know that
Y (t) — ct + log ¢ converges to standard Gumbel.
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> when the jumps are Exp(1): ¢(x) = e %, the above
becomes a linear second order ODE, easy to solve.
» When w(x) = e ¥ is exponential: take Fourier transform
to get
cito(t) = (§(r) — 1) - o(7 +iB).
Hope to solve the recurrence relation on the Jm line, then

analytic continuation gives a hint on the form of o, to be
verified.
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Fluid limit: a mean field equation

X

~od () = ~w()et) + [ wly)ew)elx —y) .

—00

> when the jumps are Exp(1): ¢(x) = e %, the above
becomes a linear second order ODE, easy to solve.

» When w(x) = e ¥ is exponential: take Fourier transform
to get

cito(t) = (§(r) — 1) - o(7 +iB).

Hope to solve the recurrence relation on the Jm line, then
analytic continuation gives a hint on the form of o, to be
verified.

» Method tested when p(x) = e ( ), hope to
work with other ¢’s too.



Taking the fluid limit

do(x, t)
ot

= —w(x —m(t)) - o(X,1)

[l - m) o0 o -y) oy,

(. 10)) ~ {6,(0))
= [ Eteco 2 - 100} wix - me). ) o,
m(s) = . ps)).
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Taking the fluid limit

(f, u(t)) — (f, 1(0))
/ ({E[f(x +Z)] = f(x)} w(x —m(s)), pu(s)) ds,

m(s) = (x. u(s)) 1!

Define the n-particle empirical measure pun(t) = % S Ox,()-
Goal:

1. Tightness of {xn(-)}n>1 in some path space of measures.

2. Weak limits convergence to a solution p(-) of the above

equation.

3. Uniqueness of solutions of the above equation.
Assumptions: the rate function w is bounded; third moment of
the jump distribution .

Problem: bounded functions and “just measures” are not
enough!



Taking the fluid limit

(f, u(t)) — (f, 1(0))
/ ({E[f(x + Z)] = f(x)} w(x —m(s)), pu(s)) ds,
m(s) = (x, p(s)) M

Define the n-particle empirical measure pn(t) = % S Oy (t)-
Goal:

1. Tightness of {yun(-)}n>1 in Some path space of measures.

2. Weak limits convergence to a solution x(-) of the above

equation.

3. Uniqueness of solutions of the above equation.
Assumptions: the rate function w is bounded; third moment of
the jump distribution .

Dealing with the space of probability measures having first
moments, and the Wasserstein 1 metric seems to work.
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Questions

Questions

» Complete the fluid limit.
» Variance of the center of mass should scale:

t7
Var(mp(t)) ~ pr
Miklos did some (small) simulations. It seems that:
> vy~ a~l.

>
y~1,1/2<a<l
>
y~1 1/2<a<l.
» In general, limit distribution theorems?
» Can we really not find the stationary distribution for three
goats?
» And for the fluid limit, general rate functions / jump
distributions?

Thank you.
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