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Model Stati.Distr. Mean field Fluid limit Questions

The model

Goats jump on R.

R

mxi m − xi

◮ n goats jump on R (state space is R
n).

◮ Given a configuration x1, x2, . . . , xn of goats the center of
mass is m = 1

n

∑n
i=1 xi .

◮ Goat i jumps with rate w(xi − m), where w is the jump rate
function: R → R

+, decreasing.
◮ Jumps are positive, random, independent of everything,

and are of density ϕ, mean one.
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Model Stati.Distr. Mean field Fluid limit Questions

The model

Stationary distribution

Mean field equation
Exponential jumps
Extreme value statistics
Fourier methods

Fluid limit
Where do we live?
Tightness
The limit solves the mean field eq.
Uniqueness

Questions
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The model
Can describe
◮ motion of flocks, herds (as you have seen...),
◮ competing prices of goods (gyros / falafel / shawarma),
◮ prices of stocks, etc.

Found results of the types:
◮ rat race model (D. ben-Avraham, S.N. Majumdar, S.

Redner 2007)
◮ interacting diffusions with linear drift (A. Greven et. al.),
◮ rank dependent drift of Brownian motions (S. Pal, J. Pitman

2008, S. Chatterjee, S. Pal 2009),
◮ relocation of random walking particles (A. Manita, V.

Shcherbakov 2005),
◮ interacting jump processes (A. Greenberg, V.A. Malyshev,

S.Yu. Popov 1995)
◮ multiplicative steps as well (I. Grigorescu, M. Kang 2010).
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Stationary distribution

First question: what is the stationary distribution? As seen
from the center of mass m(t), of course.

n = 2 particles: just an exercise. But I have never before seen
a density like cosh−2(z) appearing (case ϕ ∼Exp(1) jumps,
w(x) = e−2x jump rates).

n = 3 particles: already seems hopeless. The process is “very
irreversible”.
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n = 3 particles, jump lengths are deterministically 1
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Fluid limit: a mean field equation

Take n → ∞, do not rescale space, and first let us guess for a
limiting PDE for the density of particles.

jump rate at x density at x

∂̺(x , t)
∂t

= − w(x − m(t)) · ̺(x , t)

jump rate at y density at y prob to jump to x

+

∫ x

−∞

w(y − m(t)) · ̺(y , t) · ϕ(x − y) dy ,

and

m(t) =
∫ ∞

−∞

x̺(x , t) dx .

These equations conserve 1 =
∫
̺(x , t) dx and give

ṁ(t) =
∫

w(x − m(t)) · ̺(x , t) dx .
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Fluid limit: a mean field equation

We look for stationary solution of this equation as seen from the
center of mass.
Idea: as n → ∞, in a stationary distribution m(t) would
stabilize. So assume

m(t) = ct and

̺(x , t) = ̺(x − ct).
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We look for stationary solution of this equation as seen from the
center of mass.
Idea: as n → ∞, in a stationary distribution m(t) would
stabilize. So assume

m(t) = ct and

̺(x , t) = ̺(x − ct).

Plug this in to get

−c̺′(x) = −w(x)̺(x) +
∫ x

−∞

w(y)̺(y)ϕ(x − y) dy .
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becomes a linear second order ODE, easy to solve.
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β
(const · x),

G 1
β

is the generalized Gumbel density.
◮ When w is a (down-)step function, ̺ is the Laplace density.
◮ When w is a (down-)step function, but with a linear

decrease around 0, ̺ is Laplace with a normal segment in
the middle.
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◮ When w(x) = e−βx ,
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G 1
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Extreme value statistics (Attila Rákos)

When the jumps are Exp(1): ϕ(x) = e−x ,
jump rate is exponential: w(x) = e−x ,
 ̺(x) = G(const · x), standard Gumbel density. Why?
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When the jumps are Exp(1): ϕ(x) = e−x ,
jump rate is exponential: w(x) = e−x ,
 ̺(x) = G(const · x), standard Gumbel density. Why?

Fix a particle X (t). Probability it jumps between t and t + dt is
approx. ect−X(t) dt . And when it jumps, it jumps Exp(1).
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Take now more and more iid. Exp(1) variables. At time t , let we
have N(t) = ect/c of them. Define Y (t) as the maximum.
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Extreme value statistics (Attila Rákos)

When the jumps are Exp(1): ϕ(x) = e−x ,
jump rate is exponential: w(x) = e−x ,
 ̺(x) = G(const · x), standard Gumbel density. Why?

Fix a particle X (t). Probability it jumps between t and t + dt is
approx. ect−X(t) dt . And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time t , let we
have N(t) = ect/c of them. Define Y (t) as the maximum.

Between t and t + dt , dN(t) = ect dt many new Exp(1) particles
try to break the record. So the probability that Y (t) jumps is

1 −
(
1 − e−Y (t))ect dt

≃ ect−Y (t) dt (for large Y (t)).

And when it jumps, it jumps Exp(1). But we know that
Y (t)− ct + log c converges to standard Gumbel.
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Fluid limit: a mean field equation

−c̺′(x) = −w(x)̺(x) +
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−∞

w(y)̺(y)ϕ(x − y) dy .
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Fluid limit: a mean field equation

−c̺′(x) = −w(x)̺(x) +
∫ x

−∞

w(y)̺(y)ϕ(x − y) dy .

Cases we can solve:
◮ Seen: when the jumps are Exp(1): ϕ(x) = e−x , the above

becomes a linear second order ODE, easy to solve.
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Fluid limit: a mean field equation

−c̺′(x) = −w(x)̺(x) +
∫ x

−∞

w(y)̺(y)ϕ(x − y) dy .

Cases we can solve:
◮ Seen: when the jumps are Exp(1): ϕ(x) = e−x , the above

becomes a linear second order ODE, easy to solve.
◮ When w(x) = e−βx is exponential: take Fourier transform

to get
ciτ ̺̂(τ) =

(
ϕ̂(τ)− 1

)
· ̺̂(τ + iβ).

Hope to solve the recurrence relation on the Im line, then
analytic continuation gives a hint on the form of ̺̂, to be
verified.
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Fluid limit: a mean field equation

−c̺′(x) = −w(x)̺(x) +
∫ x

−∞

w(y)̺(y)ϕ(x − y) dy .

Cases we can solve:
◮ Seen: when the jumps are Exp(1): ϕ(x) = e−x , the above

becomes a linear second order ODE, easy to solve.
◮ When w(x) = e−βx is exponential: take Fourier transform

to get
ciτ ̺̂(τ) =

(
ϕ̂(τ)− 1

)
· ̺̂(τ + iβ).

Hope to solve the recurrence relation on the Im line, then
analytic continuation gives a hint on the form of ̺̂, to be
verified.

◮ Method tested when ϕ(x) = e−x (also seen before), hope to
work with other ϕ’s too.
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Taking the fluid limit

Recall the original mean field equation:

∂̺(x , t)
∂t

= −w(x − m(t)) · ̺(x , t)

+

∫ x

−∞

w(y − m(t)) · ̺(y , t) · ϕ(x − y) dy ,

or, for all f test functions:

〈f , µ(t)〉 − 〈f , µ(0)〉

=

∫ t

0

〈{
E[f (x + Z )]− f (x)

}
w(x − m(s)), µ(s)

〉
ds,

m(s) = 〈x , µ(s)〉.

Here E refers to expectation of Z w.r.t. the jump length
distribution.
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Assumptions: the rate function w is bounded; third moment of
the jump distribution ϕ.
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Taking the fluid limit
The mean field equation:

〈f , µ(t)〉 − 〈f , µ(0)〉

=

∫ t

0

〈{
E[f (x + Z )]− f (x)

}
w(x − m(s)), µ(s)

〉
ds,

m(s) = 〈x , µ(s)〉 !!!

Define the n-particle empirical measure µn(t) = 1
n

∑n
i=1 δxi (t).

Goal:
1. Tightness of {µn(·)}n≥1 in some path space of measures.
2. Weak limits convergence to a solution µ(·) of the above

equation.
3. Uniqueness of solutions of the above equation.

Assumptions: the rate function w is bounded; third moment of
the jump distribution ϕ.
Problem: bounded functions and “just measures” are not
enough!
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Where do we live?
Probability measures on R with finite first moment: P1.

Wasserstein metric on P1:

d1(µ, ν) = inf
π: coupling meas.

∫

R×R

|x − y |π( dx , dy).

Test functions:

{f : cont’s; |f | ≤ 1} ∪ {Id}.

Convergence in d1 implies convergence of the integrals of such
test functions.

All these needed to be able to handle the center of mass

m(s) = 〈x , µ(s)〉.

Goal: convergence of the n-particle empirical measures µn(t) in
the Skohorod space D([0, ∞), P1).
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continuous. (Grigorescu-Kang 2010)
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C-relative compactness
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1. Tightness

◮ Step 1: Tightness of 〈f , µn(t)〉 in D([0, ∞], R); f bounded,
continuous. (Grigorescu-Kang 2010)

◮ Need uniform control of tails at time zero (just assume
those),

◮ uniform control of jumps (Billingsley’s book).
◮ Step 2: Any limit point is a.s. continuous.

◮ Further conditions on jumps (Ethier and Tom’s book).
}

C-relative compactness

Method for these bounds: introduce ghost goats: they jump with
rate supx w(x), they have the same jump length distribution as
their planetary counterparts. Couple such that ghost goati can
jump without goati , but not vice-versa.  increments of ghosts
dominate increments of the planetary goats.
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1. Tightness

◮ Step 3: C-relative compactness of µn(t) in D([0, ∞], P1).
◮ Check compactness-type conditions for µn(t), uniformly in n

and t ,
◮ C-relative compactness of 〈f , µn(t)〉 in D([0, ∞], R) from

previous slide.
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1. Tightness

◮ Step 3: C-relative compactness of µn(t) in D([0, ∞], P1).
◮ Check compactness-type conditions for µn(t), uniformly in n

and t ,
◮ C-relative compactness of 〈f , µn(t)〉 in D([0, ∞], R) from

previous slide.
◮ Generalize Perkins’ theorem (Perkins, St.-Flour notes,

1999).

For the compactness-type conditions, use again the ghost
goats.

Perkins’ theorem originally was about checking C-relative
compactness in D([0, ∞], M) by checking that of appropriate
integrals 〈f , µn(t)〉 in D([0, ∞], R). Our job here was to slightly
generalize from finite measures M to measures with finite first
moment P1.
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2. The limit solves the mean field eq.

Let

At ,f (µ) : = 〈f , µ(t)〉 − 〈f , µ(0)〉

−

∫ t

0

〈{
E[f (x + Z )]− f (x)

}
w(x − m(s)), µ(s)

〉
ds

= 〈f , µ(t)〉 − 〈f , µ(0)〉 −
∫ t

0
L〈f , µ(s)〉 ds,

m(s) = 〈x , µ(s)〉.

Recall that the mean field equation was

At ,f (µ) = 0.
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2. The limit solves the mean field eq.

◮ Step 1:

sup
0≤s≤t

|As,f (µn)|
P

−−−→
n→∞

0

in probability.
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sup
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|As,f (µn)|
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−−−→
n→∞

0

in probability.
◮ Step 2: If µn ⇒ µ in D([0, ∞], P1), then

As,f (µn) ⇒ As,f (µ)

in R.
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in R.

For the first, notice As,f (µn) is a martingale in s. Use L2 Doob
inequality and show that the L2 norm goes to zero as n → ∞.
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2. The limit solves the mean field eq.

◮ Step 1:

sup
0≤s≤t

|As,f (µn)|
P

−−−→
n→∞

0

in probability.
◮ Step 2: If µn ⇒ µ in D([0, ∞], P1), then

As,f (µn) ⇒ As,f (µ)

in R.

For the first, notice As,f (µn) is a martingale in s. Use L2 Doob
inequality and show that the L2 norm goes to zero as n → ∞.

For the second, convergence in D([0, ∞], P1) with the
Wasserstein metric d1 is just right for our test functions
(including the center of mass!).
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◮ Step 1: Look at the distance
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f
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◮ Step 1: Look at the distance

dH(µ, ν) : = sup
f

|〈f , µ〉 − 〈f , ν〉|,

sup is over our test functions.
◮ Step 2: Apply to solutions µ(t) and ν(t) of the mean field

equation:

〈f , µ(t)〉 = 〈f , µ(0)〉

+

∫ t

0

〈{
E[f (x + Z )]− f (x)

}
w(x − m(s)), µ(s)

〉
ds.

Terms in the difference of integrals can be bounded in
terms of dH(µ(s), ν(s)).
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3. Uniqueness of solutions of the mean field eq.
◮ Step 1: Look at the distance

dH(µ, ν) : = sup
f

|〈f , µ〉 − 〈f , ν〉|,

sup is over our test functions.
◮ Step 2: Apply to solutions µ(t) and ν(t) of the mean field

equation:

〈f , µ(t)〉 = 〈f , µ(0)〉

+

∫ t

0

〈{
E[f (x + Z )]− f (x)

}
w(x − m(s)), µ(s)

〉
ds.

Terms in the difference of integrals can be bounded in
terms of dH(µ(s), ν(s)).

 dH(µ(t), ν(t)) ≤ dH(µ(0), ν(0)) + c
∫ t

0 dH(µ(s), ν(s)) ds,
apply Grönwall’s inequality.
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Questions
◮ Variance of the center of mass should scale:

Var(mn(t)) ∼
tγ

nα
.

Miklós did some (small) simulations. It seems that:
◮ Exponential jump rates, exponential jumps: γ ≃ α ≃ 1.
◮ Stepfunction jump rates, exponential jumps:

γ ≃ 1, 1/2 ≤ α ≤ 1.
◮ Stepfunction with linear segment jump rates, exponential

jumps: γ ≃ 1, 1/2 ≤ α ≤ 1.
◮ In general, limit distribution theorems?
◮ Can we really not find the stationary distribution for three

goats?
◮ And for the fluid limit, general rate functions / jump

distributions?

Thank you.
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