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1 A quick summary of some parts of measure theory

...from the probabilist point of view. This section mostly follows Shiryaev [I]. The aim is to build up a
mathematical model of random experiments and measurements (random variables, that is) thereof. Probabilities
of these random outcomes are also to be constructed.

The power set P(2) of a set € is the set of all subsets of Q, and A°:=Q — A denotes the complement of a
set A C Q.

Definition 1.1. A family A C P(Q) of sets is called an algebra, if
e Qe A,
o forevery A, Be A, AUB € A,
e for every A € A, A° € A.
This simple construction allows us to build a prototype of probabilities as follows.

Definition 1.2. Let A be an algebra. A set function p : A — [0, 0o} is a finitely additive measure on A, if for
all disjoint A, B € A,
u(AU B) = p(A) + pu(B).

As it turns out, the objects we defined so far are too general for our purposes, hence a refinement comes
next.

Definition 1.3. A family 7 C P() of sets is called a o-algebra, if
e Qe F,
e for every countably many sets A, Az, --- € F, U,, 4n € F,
o for every A € F, A° € F.

In this case the pair (Q, F) is called a measurable space. Any set A € F is said to be F-measurable, or just
measurable.

The novelty here is the requirement of F being closed for countably infinite unions, as opposed to finite unions
only for an algebra.

Example 1.4. Here are examples of o-algebras (check!).
o 7. = {0, Q} is called the trivial o-algebra.
e If Q is countable, very often F* = P(Q) is considered, which is a o-algebra in this case.
e Foraset ACQ, Fa={0, A, A¢, Q} is the o-algebra generated by A.

Definition 1.5. A measure p on an algebra A is a set function p: A — [0, co] such that for any mutually
disjoint sets A1, Ag, --- € A with |J,, 4, € A,

(11) f(J 4) = 3 nldn)

holds. If u(Q2) = 1, then we call u a probability measure, and often use P instead. In this case the triplet
(Q, F, P) is called a probability space.

Notice that a o-algebra is automatically an algebra, thus this definition applies for measures on o-algebras.
Property () is referred to as o-additivity.

When modeling a random experiment, the set (2 is called the sample space of the experiment, it contains all
elementary outcomes. Its measurable subsets A € F are called events. These are exactly those sets of outcomes
which have a probability. The empty set () is always an event, called the null event. The above definitions imply
that P(0) = 0.

Here is a rather useful characterisation of probability measures.

Theorem 1.6. Let P be a finitely additive measure on an algebra A, and assume P(Q2) = 1. Then the following
are equivalent.

(a) P is a probability measure.



(b) If (An)n>1 is an increasing sequence of sets in A (that is, A, C Apy1 forn >1) and J;—; Ay € A, then
the limit below exists, and
Jim P = (1 )

(¢) If (An)n>1 is a decreasing sequence of sets in A (that is, A, D Apyq forn >1) and (), An € A, then

the limit below exists, and
i 24 =2(() 40).

(d) If (A,)n>1 is a decreasing sequence of sets in A and (,—; A, =0, then the limit below exists, and

lim P(A4,) =0.

n—oo

Notice that the union of increasing sets, and the intersection of decreasing sets, are sometimes called the limit
of the sets.

Proof. We first show that @implies @ Let By = Ay, By, = A,\A,—1 for all n > 2. Then {B, }22, satisfies
Uoo B =U,~, A, and B;N B;j = for all i # j. So {B,}72, forms a disjoint partition of | J)~; A,. By the

n=1

o-additivity assumption in @ we have that

B Ax) = B(| Ba) = Y P(B.) = lim S B(By) = lim B(|J Bi) = lim B(4,).
n=1 n=1 k=1 k=1

Now we show@ implies Since A,, is a decreasing sequence, 2\ 4,, is an increasing sequence. Moreover,
P(() An) =1-P(|J 04, =1- lim P(Q\A,) = lim P(A,).

implies @ trivially, it is simply a special case. It remains to show that @ implies @, i.e., that if A, is a
decreasing sequence with ﬂzozl Ay, = lim, o0 A, = 0 then lim,_, o P(A,) = 0 implies P has the o-additivity

property.
Take any disjoint family of sets {Ax}72 ;. Then by finite additivity,

_nh_>n;o UAk ( U Ak)]

k=n-+1

ZIP’ (Ar) = lim ZIP’ (Ar) = lim IP’(

HC:

Now ;.41 Ak is a decreasing sequence in n where ()2, U,—,, .y Ar = 0. This is because if w € (J;Z,, .1 Ak

then w € Ay for unique N (by disjointness of the family). Hence w is not in the intersection of all tail unions.
By P(Uz—,41 Ak) — 0. Moreover, o-additivity holds. O

Remark 1.7. If A,, is an increasing sequence then P(A,,) is an increasing sequence. Indeed this is because
A, C A1 tmplies that App1 = Any1\AnUA,,. By the o-additivity of P we have that P(Ap4+1) = P(An+1\A4n)+
P(A,) > P(A,). Moreover P(A,) / P(limy, o0 Ar).

This applies similarly to decreasing sequences. If A, is decreasing then P(A,) is a decreasing sequence and

P(Ay) N\ P(limp, o0 Ap).

We now proceed with a short summary on how some commonly used o-algebras are constructed. Here is
the main tool for this:

Lemma 1.8. Let £ C P(2). Then
e there is a smallest algebra a(E) that contains all sets from &;
e there is a smallest o-algebra o(&) that contains all sets from E.

Proof. The intersection of algebras is an algebra, and the intersection of o-algebras is a o-algebra. To find the
ones in the lemma, take the intersection of all algebras, respectively o-algebras, that contain all sets in £&. [



The above a(€) and o(&) are said to be generated by E.
Let us now consider

.

-

s
Il
—

(ai, b)) : n<oo,and a1 < by <az <by<---<a, <b, in RU{—00};

(1.2)

-

N
Il
-

(ai, b;] U (c, oo):n<oo,anda1<b1Sag<b2§---gan<bn§cinRU{—oo}}.

This is an algebra (check!), but not a o-algebra: each of (0, 1 — 1] is in A, but the union of these sets for all n
is (0, 1), which is not in A. However, this algebra can be used to generate the following o-algebra:

Definition 1.9. The Borel o-algebra on R, denoted B(R), is the o-algebra generated by (L2). Sets in B(R)
are said to be Borel sets.

This o-algebra contains all subsets of R that are ”of practical interest”. L.e., it is not easy to come up with
a non-Borel set in R. Those interested can look up the Vitali set for an example.
In a similar way, n-dimensional rectangles:

{(a1, b1] x (az, ba] X -+ X (an, by] : a1 < b1, az < ba,...,an < by in R},

rather than one-dimensional intervals, can be used to generate B(R™), the Borel o-algebra on R™. This will
contain ”all n-dimensional sets of practical interest”.

One can then proceed to R>, the set of real-valued sequences, by considering the o-algebra B(R*°) generated
by rectangles of arbitrary finite dimension. Again, ”practical sets”, such as

n—oo

{(mn) : lim x, exists and is ﬁnite}; {(mn) : sgpxn > 5}; {(:I:n) : linrgigfxn > 5}

all belong to B(R>).

One can even define B(R”) with an uncountable set T', for example o-algebras on function spaces. This
usually requires some restrictions on the family of functions considered.

The next theorem, which we cover without proof, allows to construct measures on generated o-algebras.

Theorem 1.10 (Carathéodory). Let A be an algebra on Q. If po is a o-additive measure on (92, A), then there
exists a unique extension of it to (2, o(A)) (the generated o-algebra).

Definition 1.11. Let F' : R — [0, 1] be a cumulative distribution function, and define the o-additive measure
P on ([2) by P(a, b] : = F(b) — F(a). This extends to the Lebesgue-Stieltjes measure on (R, B(R)).

When F is the Uniform(0, 1) distribution, we obtain the Lebesgue measure on B([0, 1]) this way.

We briefly mention that P can be extended to R™ in a natural way, then Kolmogorov’s extension theorem
can be used, under certain circumstances, to extend further to R> or even R”.

The next task is to construct random variables on a probability space (2, F, P).

Definition 1.12. Let (2, F) be a measurable space. A function X : Q — R is called measurable, if for any
B € B(R), X~%(B) € F. A (real-valued) random wvariable on a probability space (2, F, P) is a measurable
function from X : Q@ — R.

It should now be clear how probabilities associated with random variables work. The above definition exactly
says that a random variable taking value in a Borel set B € B(R) is an event in our probability space (i.e.,
belongs to F). As an example, let us consider the distribution function F' of a random variable. When first
encountered, it is usually defined as F(z) = P{X < z}. With the above construction, it should rather be
written as

F(z) =P{weQ: X(w) <z} =P{X ' (—o0, z]}.

which of course has the same meaning, we just understand properly now what is behind the notation. The set
(—o0, ] € B(R) is a Borel set, X is a measurable function which implies that X ~*(—o0, z] € F, hence this is
an event and it makes sense to talk about its probability in the sample space ).

We remark that limits, sums, differences, products, ratios (where defined), Borel-measurable functions of
random variables are each random variables again, in other words these operations do not ruin measurability.

Next we briefly summarise without proofs how to construct expectations of random variables. (In measure
theory, this would be called integrals of measurable functions.) We sometimes omit mentioning the probability
space (Q, F, P).



Definition 1.13. A random variable X is called simple, if there exist n > 0, xq, 2, ..., z, € R, and
Al, AQ, ey An € F with which

n
X(w) = 1a, ().
k=1
Here 14 stands for the indicator function:

14(w) 1, ifweA,
w) =

A 0, ifwd A

The next theorem we borrow from measure theory without proof.

Theorem 1.14.

(a) For any random variable X there exists a sequence X1, Xa, ... of simple random wvariables such that
| Xn| < |X] for all n, and X,,(w) = X(w) as n — oo for all w € .

(b) Moreover, if X (w) > 0 for every w € Q, then X,, can be chosen to be non-decreasing in n for every fized
w € Q (denoted X, (w) /' X (w) as n — oo for allw € Q).

Definition 1.15 (Expectations).
(a) If X is simple with X = >}, 2 - 14,, then EX : = >"7_ | ap - P(Ag).

(b) If X > 0 is a random variable, then E X : = lim,,_, E X,,, where X,, / X are simple random variables.
(Such sequence exists by the above, and it is a theorem that this limit does not depend on the choice of
the sequence.) Notice that E X = oo is possible.

(c) If X is a random variable, EX := E X' — E X, unless both expectations on the right-hand side are
infinite, in which case [E X is not defined.

Here the positive and negative parts are used:
(1.3) T =2 1{z > 0}, x” = —z-1{x < 0}, r=a" —a for any z € R.

Notice that options for E X are "not defined”, = oo, = —o0, or € R.

2 Conditional expectation and a toy example

We start this section without proof with Kolmogorov’s Theorem on conditional expectations from Williams [2].
Notation: E(-; G) :=E(-1¢).

Theorem 2.1. Let X be a random variable on the probability space (2, F, P), with E|X| < co. Let G be a sub
o-algebra. Then there exists a random variable V' such that

(a) V is G-measurable,
(b)) E|V| < oo,
(c) E(V; G)=E(X; Q) for any G €G.

Such V is called a version of the conditional expectation E(X | G). Indeed, two random variables V and V' with
the above properties agree almost everywhere: P(V =V') = 1.

Our toy example will be the following. Let Q = {1, 2, ..., 12}, F = P(Q2), and P be the uniform measure
on the finite set 2. Elementary outcomes in §2 will be denoted by w. Define the random variables
1, ifw=1,2
2, ifw=3,4,
1, ifw=1,234, s o—r 6
Y::[f]: 2. fw=5 67,8, X::[f]: o ReEe D
4 . 2 4, ifw=T,S8,
3, ifw=09, 10,11, 12,
5 ifw=09, 10,
6, ifw=11,12.




The o-algebra generated by Y is

oY):=c(Y ' (B[R))) =0({1, 2 3,4}, {5, 6, 7, 8}, {9, 10, 11, 12})
{0, {1, 2,3, 4}, {5, 6, 7,8}, {9, 10, 11, 12},
{1,2,3,4,5,6,7,8},{1,2,3,4,9,10, 11, 12}, {5, 6, 7, 8, 9, 10, 11, 12}, Q}.

Similarly, the o-algebra generated by X is
H:=0(X):=0(X " (BR))) =c({1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}).

We see that G € H C F. The o-algebra G is coarser (contains less information), while H is finer (more
information). We also see that

e Y is G-measurable (by definition).

e Y is H-measurable (due to G C H).

e X is H-measurable (by definition).

e X is not G-measurable (e.g., X 1{1} = {1, 2} ¢ G).

Next, we find the conditional expectation E(X | G) based on the definition above. As G = o(Y'), an equivalent
notation for this is E(X |G) = E(X |Y). Due to || = 12 < oo, finite mean of V' = E(X | G) is not an issue. We
look for a G-measurable random variable V with E(V'; G) = E(X ; G) for any G € G. An efficient choice for G
is {1, 2, 3, 4}. As V is G-measurable, and G has no set that distinguishes between these four outcomes, we find
that V(w) is the same for w = 1, 2, 3, 4. The above expectations turn into

V(D)P{1} + V(2)P{2} + V(3)P{3} + V(4)P{4} = X (1)P{1} + X (2)P{2} + X (3)P{3} + X (4)P{4}
V(D)P{1} + V(1)P{2} + V(1)P{3} + V(1)P{4} = X (1)P{1} + X (2)P{2} + X (3)P{3} + X (4)P{4}
-5+l H5+2-5+2 35

12
= 1.5.
1 1 1 1
LTttt

Similarly, with the respective choices G = {5, 6, 7, 8} and G = {9, 10, 11, 12},

35 +3mtd 5t
mtutuT:
5-5+5-L46-5+6-5
mtntuT:

V(©9)=V(10)=V(11)=V(12) =

Hence the conditional expectation is the random variable
1.5, ifw=1,2, 3,4,
E(X|G)(w)=V(w)=135, ifw=5,6,7,8,
5.5, ifw=29, 10,11, 12,

being just the average of X over the smallest nontrivial respective units in G.
In a similar way one can check

—_

. ifw=1,23, 4,
EY|G)(w)=<2, ifw=56,7,38, =Y (w),
3, ifw=09,10, 11,12
and indeed it is always the case that E(Y |Y) =Y almost everywhere (a.e.).

Further examples are E(X [{0, Q}), where the random variable V we are looking for is measurable w.r.t.
the trivial g-algebra {0, Q}, in other words is a constant. Picking G = ) gives E(V'; §) = 0 = E(X ; 0), which
is not very informative. The choice G = Q) on the other hand fixes the value of the constant V:

E(V; Q) =E(X; Q)
EV=EX
V=EX,

that is, IE(X [{0, Q}) = E X. This is again true a.e. in general, conditioning on the trivial o-algebra always
produces a full expectation.



If, on the other hand, one conditions on the full o-algebra F that has all information that can be available
in the probability space (£, F, P), then every event G € F can be substituted, and the very detailed ones
completely fix the conditional expectation. In our example we can e.g., take {7} to obtain

E(V; {7} =E(X; {7}),
V(7)-P{7} = X(7) - P{T},
V(7)) =X(7)=4.
Similarly, for any w € © one has V(w) = X (w), which leads us to E(X | F) = V = X. This is again a.e. true for
general probability spaces: conditioning on the full information does not do any averaging and gives back the

random variable instead.
Our final example is

Z:=0({1,5,9}, {3, 7, 11})
= {@, {1, 5, 9}, {3, 7, 11}, {2, 4, 6, 8, 10, 12}, {1, 3, 5, 7, 9, 11},
{1,2,4,5,6,8,9, 10,12}, {2, 3, 4,6, 7, 8, 10, 11, 12}, Q}.

We compute V' = E(Y | Z) as before. This is Z-measurable, hence constant on {1, 5, 9}, as well as on {3, 7, 11}
and on {2, 4, 6, 8, 10, 12}. Substituting these as G (the rest in Z will not provide additional help) in E(V'; G) =
E(Y ; G) results in
_YOP{}+YOPEI+HY(OP{9} 1542 55+3- 55

P(1} + P{5} + P{0} I ’
_YEPE +Y(MP{TI+YADP{L}  1-5+2- 543 55

P{3} + P{7} + P{11} L+Li+L ’

V(2)=V(4) =V(6)
Y (2)P{2}+Y (4)P{4}+Y (6)P{6}+Y (8)P{8}+Y (10)P{10}+Y (12)P{12
= V(8) = V(10) = V(12) = X O POy oy !
_1~%+1~%+2~%+2~%+3~%+3~%_2
TtHthtn et

We find that E(Y |Z) is actually a constant, and in fact = EY.

We can repeat this calculation with any function f : R — R (in general this is chosen to be bounded and
measurable) to find E(f(Y)|Z) = E(f(Y)), a constant. This is when we say that the random variable Y is
independent of the o-algebra Z. Knowing which of the events {1, 5, 9} and {3, 7, 11} did or did not happen
will not tell us any information about Y.

If 7 happens to be generated by yet another random variable Z, Z = o(Z), then the above is equivalent to
variables Y and Z being independent.

An important property and tool with conditional expectations is the following:

Theorem 2.2 (Tower rule). Let Z be a random variable on the probability space (Q, F, P), with E|Z] < oc.
Let G C H be sub o-algebras (G is coarser and H is finer). Then

E(E(Z|G)|H) =E(E(Z|H)|G) =E(Z|0).

The proof follows from the definition of conditional expectations after a bit of manipulations, we leave this to
the reader. Some special cases of interest:

e If H = F, the full o-algebra in the probability space (2, F, P), then E(Z |H) = E(Z |F) = Z for any
random variable. The above then reads E(Z |G) for all three terms.

o If G = {0, Q}, the trivial o-algerba, then E(-|G) = E(-). The Tower rule then becomes
E((EZ)|H)=E(E(Z|H)) =EZ.

The first of these terms is uninteresting, but the second equality is very useful and might be familiar from
earlier studies, especially when H = o(V), the o-algebra generated by another random variable V. In this
case it reads E(E(Z|V)) =E Z.



3 Probability toolbox

The following statements are widely used across probability, and will be built on in this unit. We always assume
the probability space (2, F, P) in the background.
We start with an important fact from calculus.

Lemma 3.1. Leta; € (0,1), k=1,2,.... Then

ﬁ l—ap) =0 < Zak—

Proof. First, let us assume that the a do not converge to zero. That means that there is an € > 0 such that
infintely often ay > . Since for every other k, 1 — ax < 1, the product infinitely often gets a factor at most
1 — € while it can never increase. It follows that the product converges to zero. The sum can never decrease
due to ag > 0, and infinitely often increases its value by €. Hence it diverges to oo and the statement is true.

Now let us assume that limg_, o, ar = 0. Convexity of the exponential function implies 1 — x < e™* for any
x € R. As terms in the product are non-negative,

oo

OSH 1—ak ﬁ — Ak :e*Z?zlak_

k=1

This proves <.
The function e is smooth with value 1 and derivative —2 at x = 0. Hence for all small enough x > 0,
1 — 2 > e 2%, There is an index K that makes a; small enough for this purpose for any k > K. Therefore

oo o0
H (1—ag) H e — 72Xk O,
k=K k=K

If TTo2, (1 — ax) = 0, then the left hand-side above is also zero, which proves =. O

—2z

Definition 3.2. Let A, Ao, ... be events. Then
limsup 4, : = ﬂ U Ag.
n n=1k=n

By decoding the union and the intersection it becomes clear that this event describes that infinitely many of
the A,’s occur, in other words A, ’s occur infinitely often (i.o.).

Theorem 3.3 (Borel-Cantelli lemmas).

1. If Ay, Ao, ... are any events with ) P(Ay) < oo, then P(limsup, A,) = 0.

2. If Ay, Ag, ... are independent events with ), P(Ay) = oo, then P(limsup, A,) = 1.
Proof.

1. Notice that |J;—,, Ak is decreasing in n. Thus, by continuity of probability (Theorem [[.G) and Boole’s

inequality,
(ﬂ U A) = lim P(U ) <n1m;ozp (Ap) =

n=1k=n
2. Notice that (-, A is increasing in n. Thus,
P(ﬂ U Ak) - 1—IP’(U N A;) —1- lim P(ﬂ A;) =1- lim J](1-PB(4p).
n=1k=n n=1k=n nree k=n nee k=n
The product is 0 for any n due to Lemma B.1] which completes the proof.
O

We now turn to interchangeability of limits and expectations. The below are standard parts of measure
theory, where they are treated for more general integrals than just expectations and sums as here.

Theorem 3.4 (Monotone convergence). Let Y, X, X1, X5, X3, ... be random variables.



(a) If X,, > Y for eachn, BEY > —o0, and X,, /' X for everyw € Q, then EX,, /EX.
(b) If X,, <Y for eachn, EY < 0o, and X,, \y X for every w € Q, then EX,, \EX.

Proof. Proof of @ only; @ follows similarly.
Suppose Y =0, i.e., Vw € Q, Y(w) = 0. Then as X,, > 0 (seen in the measure theory section) for each X},

there exists a sequence of simple (that is, constant on finitely many measurable sets) random variables X ,g")

such that X,g") N X}, as n — 00.

E
AN
3
IN
i
AN
IN
b

Vi Vi Vi

X1(3) X2(3) X§3)
VI VI VI
X1(2) X2(2) X§2)
VI VI VI
Xl(l) X2(1) Xél)
Define Z(™ .= maxi<;<n X](n). That is, Z™) is the maximum value of the first n terms in the nth row from

the bottom in the table above.
Properties of Z("):

e Foralll <k <n wehave X ,gn) < 7z < X,. The first inequality follows immediately from the definition
of Z(" it is simply the maximum of such values, and is hence an upper bound. The second inequality
follows from chasing the column up within which the maximum lies and then across to the value X,,.
Formally, for some 1 < k < n, Z(") = X,g") < X < X,

o Z(n=1) < Z(n) Why? VA maxi<;j<n—1 X](n_l) < maxi<j<n—1 Xj(-") < Z™_ The inequality follows

from the fact that for all j € N we have X J(n_l) <X J("), and then we maximise over a larger domain.

Define Z := lim,,_,o. Z("), which exists because Z(™ is an increasing sequence (the limit may possibly be
infinite).
Since for all 1 < k < n we have X,g") <z < X, taking n — oo we see that

lim X" < lim 2™ < lim X, = X, <Z<X = Z=X.
n—oo n—oo n—oo k\/-/
—00

Note that, since the Z(™)s are simple (indeed they are a maximum of simple random variables), by the definition
of expectation of a limit simple random variables,

EX=EZ=E lim Z™ = lim EZ™ < lim EX,,.
n—oo n—oo n—oo
Thus it remains to show that EX > lim, . EX,. Since X,, X we have that X,, < X for all n, which

implies that E X,, <E X. Hence,
lim EX,, <EX.

n—oo

In the case where Y # 0 then we repeat the above analysis with X,, — Y which is a non-negative random
variable. O

For the next statement, notice that every sequence has a liminf.

Theorem 3.5 (Fatou’s lemma). Let Y, X7, Xo, X3, ... be random variables with X,, >'Y for each n, EY >
—o00. Then liminf, E X, > Eliminf, X,.

It is sometimes convenient to pick Y = 0 in the above theorems.

Proof. Define Z,, := inf,,>, X,,. Then Z, is an increasing sequence; indeed inf,,>, X,, < inf,;,>, 1 X,, since
the infinum is over a larger domain. Furthermore, Z,,  Z := liminf,,_, o, X,,; this follows from the fact that
Z,, is increasing and by definition

liminf X,, = lim (inf X,,) = lim Z,.

n—00 n—o00 m>n n—o0



Now Z,, = inf;,>n X > Y as X, > Y for all m € N. Thus we are in good shape to apply the monotone
convergence theorem:

lim EZ, =EZ = Eliminf X,

n—oo n—oo

But on the left-hand-side, as the limit exists it is equal to the liminf. Now Z,, = inf,;,>,, X,, < X, and thus

Eliminf X,, = lim EZ,, =liminfE Z,, < liminfE X,,. O
n—oo n—oo n—oo n—oo
Theorem 3.6 (Dominated convergence). LetY, X, X1, Xo, X3, ... be random variables, and assume | X,,| <Y

for each n, EY < oo, and X,, — X almost surely (a.s., that is, P{X,, - X} = 1). Then E|X| < oo,
EX, »EX, and E|X — X,,| = 0.

Proof. To prove finiteness of the expectation note that X,, 2% X as n — oo implies that |X,| 22 |X| as
n — oo (mod is a continuous function). Furthermore, since | X,,| <Y, we have that |X| = lim,, o | X,| <Y
almost surely.

To prove convergence of the expectation we construct the following chain of inequalities

EX =E lim X,, =Eliminf X,, <liminf E X,, <limsupE X, <E11msupX —IEth =EX,

n—o0o n— o0 % TN—00 n—00 n—oo

where * follows from Fatou’s lemma and ** follows from Fatou’s lemma on —X,,; indeed we have the relation
liminf, o (—X,) = —limsup,,_,., X,. Thus equality holds throughout the chain and we conclude that

liminf EX,, =limsupE X,, = E X.

n—00 n—00

= =lim, 500 EX,,

Since the liminf and lim sup agree, lim,,_,, E X,, exists and is equal to E X. Thus

lim IEXn:IEX( E lim X,,),

n—oo n—o0

where * follows from the fact that Elim,,_,. X, is also an element in the chain.

Finally, to prove E|X — X,,| — 0 we note that |X,, — X| < |X,| 4+ |X| < 2Y. Then we repeat the analysis
above with |X,, — X| and bounding random variable Y = 2Y". O
Example 3.7. Let

1
n? — 1, with probability =,
n

X, =
-1, with probability 1 — —,

be independent. One easily checks E X,, = 0 Vn, hence lim,_,,, E X,, = 0. However, the probabilities in the
first line are summable, hence Borel-Cantelli implies that a.s. X,, # —1 only happens for finitely many n. It
follows that X,, — —1 a.s., the limit does not swap with the expectation. Conditions of both Monotone and
Dominated convergence fail.

Two important corollaries concern swapping sum and expectation. There is no issue with finite sums, but
infinite sums require some thought. These will be important later on, hence the proof is provided.

Theorem 3.8 (Tonelli). Let X, > 0 be random variables. Then EY 72 | X => 77 | EX}.

Proof. First notice that Y ;_; Xj > 0 and non-decreasing in n, hence the expectations and infinite sums are
well-defined. The statement follows from Monotone convergence on the sequence Y, _; X which converges
monotonically to the infinite sum:

EiXk =FE lim iXk = lim Ezn:Xk = lim zn:EXk = iEXk-
=1 [ Sagraet [ [ Sagrmrt k=1

Theorem 3.9 (Fubini). Let X,, be random variables with EY"" | | Xj| < oo. Then EY 2| Xp = 1o E Xk.

Proof. Recall (L3), and notice |z| = 2T + 2~ for any real z. By positivity,

(3.1) oo>1EZ|Xk|—EZ (X + X)) (ix +iX,;):]EiX,j+]EiX;,
k=1 k=1 k=1 k=1

k=1 k=1

10



which also implies that both sums on the right are a.s. finite. Therefore, a.s.,

ixk = lim ixk = lim i(x,j - X;)
1 n—oo 1 n—oo 1

= lim (zn:X,j =3 X)) = lim zn:X,j ~ lim zn:X_ - ix,j —ixk—.
T NA k=1 et et k=1 k=1

By (Bd)), we can apply E separately on this difference. Both sums on the right-hand side are of non-negative
terms, hence Tonelli’s theorem applies separately:

By Xe=EY X EY X =Y RN Y BN
k=1 k=1 k=1 k=1 k=1
. . —+ - . - _ . —+ - —_ . . o
= 1im > EX — lim S EX; = lim (YEX - Y EX;) = lim Y EX, =Y EX.
k=1 k=1 k=1 k=1 k=1 k=1
When joining the two limits we used that, by (B and the same application of Tonelli’s theorem, each of
Yro EXand Y7 EX, has a finite limit. O

Here is a simple, but very useful theorem, the proof of which is again omitted.

Theorem 3.10 (Jensen’s inequality). Let X be a random variable with E|X| < oo, and g a convex R — R
function. Then g(EX) < Eg(X).

Proof. Since g is convex, for all 2y € R there exists A such that g(z) > g(zo) + Mz — x¢). (E.g., the tangent to
the curve at all points is a lower bound for the curve if it happens to be differentiable, but this is not needed.)
Hence ¢g(X) > g(zo) + M(X — z¢); in particular, for zp = EX € R,

9(X) 2 g(EX) + M(X —EX).

Note that A is a constant which depends on the function g and the value of E X only (the slope of the bounding
line is dependent only on the position zy on the curve) and thus it is not random. Therefore E(g(X )’) < 00,
hence E ¢g(X) exists, and

EgX)>EgEX)+EMNX —EX)]|=¢g(EX)+ NEX —EX] =g(EX). O
Next we turn to expectations of powers of random variables.

Definition 3.11. Given the probability space (Q2, F, P) and a p > 0 real, we denote by LP(§2, F, P) the set
of random variables with finite p™* absolute moment. We also introduce the notation || X|[, := (E|X |p)1/ P
with the convention that here the p'" power is inside the expectation, while the 1/p power is outside. Hence

LP(), F, P) is exactly the set of those random variables with finite || X||,.

As we will see, often cases where p > 1 are relevant.
Next we explore useful properties of || - ||,.

Theorem 3.12 (Ljapunov’s inequality). For any real 0 < p < g and any random variable, || X|[, < [|X]lq-
Proof.

1 1
s t

(E1X]°)* = [(EIX])*]F < [BOXI9))F = EIX)1

where %% follows from Jensen’s inequality on the function ()5 : R — R; which is convex since ¢ > s and
therefore £ > 1. O

Theorem 3.13 (Holder’s inequality). Let p, ¢ > 1 that satisfy % + % =1. If || X||p < 00 and ||Y]|q < oo, then
EXY] < [IXT]p - [[Y]lg-

The case p = ¢ = 2 should be familiar under the name Cauchy-Schwarz inequality.
Proof. Since log : R — R is a concave function and % + % is a convex combination of z and y we have that

1 1
log (§+y) > log(x) | logly) _,
q

= 'y%a
p p q

o=

+y2x
q

TR

11



| X"

m and Yy = Y] . Then

E[Y]a

since the exponential function is increasing. Let x =

Lxp vy X Y]

pEIX|P  qE|Y]Y = (®|X|]P)r (E|Y|9)d

Taking expectations of both sides,

E|XY|
1>

> T T O
(E|X[P)r (E[Y]7)
Notice that by |X|P > 0, ||X,|| = 0 implies that X = 0 a.s. Also, |[AX][, = |A| - ||X||p for any A € R is
easily checked from the definition. This, together with the triangle inequality below, justifies the name p-norm
for || - ||, when p > 1.

Theorem 3.14 (Minkowski’s inequality). Let p > 1, and ||X||, < oo, |[[Y]l, < oo. Then || X + Y]], <
X1y + Y]]

Proof. If either (or both) || X||, = oo or |Y||, = oo then the inequality holds trivially. Hence suppose that
1X], < o0 and Y], < cc.
For the case p = 1 this is trivial and follows immediately from the triangle inequality of the mod.
Now consider the case p > 1. Define F(z) = (a + )P — 2P~ 1(aP + zP), z > 0; where a > 0 is some constant.
This has the derivative
F'(z) = plat z)~! — 2~ Lpar 1,

and so F' is stationary at x = a. Furthermore,

a+x

p—1
F'(z) >0 <= pla+z)P™t =207 1pgP™l > 0 «— ( ) >1 < z<a.

T

Similarly, F'(z) = 0 if and only if x = a and F’(z) < 0 if and only if > a. Thus F is an increasing function
for x < a; reaching a global maximum at = a and then decreasing for > a. Therefore, F(z) < F(a) = 0 for
all x € R. We therefore have the inequality

(a+ x)P < 2P~ 1(aP 4 2P)
for all a > 0, z > 0, p > 1. Applying this:
X+ Y < (1X]+ Y] <227 (X P+ Y P).

Taking expectations,
EIX+YP <2 YE|X|P+E|Y|]P) < 00

since we assumed that both || X ||, < oo and ||Y||, < oo. This verifies that || X +Y|, < oo, that is, X+Y € L¥(Q).
Now we prove the Minkowski inequality.

EIX+Y[P=E(X +Y[X+Y[™) <E[(IX]+ V)X +Y[~'] =E(X|IX + Y"1 + E(Y|IX +Y[*~).

Above, * follows from the triangle inequality on R. Let ¢ be such that % + % = 1; this implies ¢ = p/(p — 1).
By Holder’s inequality

E(IX||X + V[P < (E|X[?)7 (B|X +Y|P~D9)7 = (B|X[)7 (E|X +Y[P)7 = | X[, X + Y3,
N————
<oo by *
E(Y|IX +Y[PY) < E[YP)F(E|X + Y|P D)5 = (E[Y[P)5(E[X +Y[)s = Y], X + Y]
Plugging this into the above yields that,

EIX + Y < (X[ + [V IX + Y5 -
———

=X+Y|7

Dividing through by || X + Y||; (> 0) and noting that p — p/q = 1 by the definition of ¢ (multiply by p), this is
precisely the Minkowski inequality. (|
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4 Modes of convergence

There are several ways to state that a sequence of random variables converges to a limit. We define the most
commonly used modes and state some of their connections.

Definition 4.1.

e Random variables X,, converge weakly to X, denoted X,, — X, if for every bounded and continuous
f : R — R function, E f(X,,) — E f(X). This is equivalent to convergence of the distribution functions:
Fx, () — Fx(zx) at every & where the limit distribution function Fx is continuous. (Those interested
can look up Portmanteau’s theorem.) Other commonly used notation for this is X,, = X.

e Random variables X,, converge in probability to X, denoted X, AN X, if for any ¢ > 0, P{|X — X,,| >
e} — 0.

e Random variables X,, converge strongly, or almost surely to X, if P{X, — X} = 1.

e Fix a p > 0. Random variables X,, converge in L?, denoted X, Xt [|X — X,|lp = 0.

Notice that for weak convergence one does not even need the random variables to be defined on the same
probability space. This mode only features the distributions, not the actual values of the random variables. The
other three modes compare values, hence require the random variables to be defined on a common probability
space.

Theorem 4.2.
(a) X, 225 X if and only if for all € > 0, P(supy>,, [Xx — X[ >¢) = 0 as n — oo.

(b) Xn is Cauchy almost surely if and only if for all e > 0, P(supy, g, [Xx — X¢| > €) = 0 as n — co. This
is also equivalent to for all € > 0, P(supy>q | Xnir — Xn| >€) — 0.

Remark 4.3. Note that is like a ‘boosted’ version of convergence in probability, where we require that all
points onwards from n are within € of X.

Proof. [(a)] Define the events A" := {w € Q: | X} — X| > L} and A™ := 77, Use,, A7, which is the event
that [X; — X| > L for infinitely many k.

Note that X,, 4 X if for some m € N, A™ occurs; that is, for some m > 0, | Xy —X| > % for infinitely many k.
The event that this happens for at least one m is |JT_; A™. Thus X,, == X if and only if P(Jr_, A™) = 0.
Since P(A™) < P(Up_; A™) < S P(A™), P(U,-_; A™) = 0 if and only if P(A™) = 0 for all m € N.
P(A™) = 0 if and only if

0 :IP’( Ny AZ“‘) ZHILH;OP( U A;:) = nlergOP(ilip|Xk - X|>1/m).
n=1k=n k=n =n
N—— N——

* *k

* defines a decreasing sequence. xx is the event that for some k > n we have | X — X| > %, which occurs if
and only if the supremum, supys,, | Xx — X| > 1/m.

As the above m is arbitrarily large, the proof is complete.

To prove we repeat exactly the same analysis with the event By') = {w € Q1 [ X}, — X¢| > L1, O

Theorem 4.4.

(a) X, = X a.s. implies X, 5 x.

(b) Fiz any p > 0. Then X, 2ox implies X, X,

(¢c) Xn L X implies X, — X.
Proof. To prove @ we use the previous theorem, that is, that X, == X if and only if for all € > 0,
P(supy>,, [Xx — X| > €) = 0 as n — oo. The event |X,, — X| > ¢ implies that sup,, [Xx — X| > ¢,

and thus
P(|X, — X|>¢e) <P(sup | Xr — X| >¢) =0,
k>n

which implies X,, —= X.
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To prove@ we use Markov’s inequality, which says that for a non-negative random variable Z, P(Z > ¢) <
E Z/c. Then for all p > 0,

E|X, - X[P_ [|Xn = X[
< — 5

P(X, — X| > &) = P(|X, — X|P > &P) 0

ep ep
as n — 0o since X, — if and only if || X, — X]||, — 0.

Now we prove which says that convergence in probability implies weak convergence (in distribution).
This is the most difficult to prove. Fix f bounded and continuous such that |f(z)| < ¢ (#) for some ¢ > 0. We

want to show that E f(X,) — E f(X), or equivalently that |E f(X,,) —E f(X)| — 0. Fix ¢ > 0.
Assuming X has a proper distribution, i.e., that X is finite almost surely, there exists N > 0 such that

(%) P(IX| > N) < i

[-2N,2N] is compact, and thus f is uniformly continuous on [-2N,2N]. Hence there exists § > 0 such that
for all z,y € [-2N,2N] with |z — y| < § we have

() |f(z) = f(y)| <

Do | M

Define E(Z; A) = E(Z1A). Then for a disjoint partition of the sample space A;, Ao, ..., A, we may write EZ =
E(Z; A1)+E(Z; A2)+- - -+E(Z; A,,). This is because E(Z; A1)+E(Z; Ag)+- - -+E(Z; A,) = E[Z(1A1+---+14,)]
by linearity of expectation and because (1414 --+1A4,)(w) = 1 for all w € Q by the disjointness of the partition.

|E f(Xn) —Ef(X)| = [E[f(Xn) = F(X)]]

<E|f(Xn) — f(X)] Jensen’s inequality on | - |
=E[|f(Xa) = FOO); | X0 = X < 5[X| < N ]
<g =t = X,,X€[-2N,2N],1<1
+E [ [f(Xa) = F(X) [ X = X| 81X > N]
»— <2 1<1
+E[[f(Xn) = FOO) 1Xn — X > 9]
—_——
N — <2¢c
< S 4 2eP(|X| > N) +2¢P(| X, — X| > 0)
PN
* = <5

<e+2P(| X, — X| > 9).
Since X,, — X, there exists N > 0 such that n > N implies that P(|X, — X| > ) < 5. Thus n > N implies
that
|Ef(X,) —Ef(X)| <e+2P(|X, — X|>0) < 2e. O
We conclude this part with examples that show how reverse implications can fail in the above theorem.
Example 4.5. Let U ~ Uniform(0, 1), and
X1=1p(U), Xo=1,4U), Xs=1 yU), Xa=1p yU), Xs=13 5U), Xe=13z yU),

Xy =1 3(U), Xs=1p 5U), Xo=1pz 5(U), Xio =1z (), Xu1 =1 (V)

This sequence converges to 0 in LP, therefore in probability and weakly as well. (Just check the probability
that X, # 0.) However, there is always a later X,, with value 1, hence the sequence does not converge a.s.

Example 4.6. Let U ~ Uniform(0, 1), and
e X, :=U". This converges to 0 in all senses.

e X, :=nU". This converges to 0 a.s., hence in probability and weakly as well. However,
1
E|X,—-0=nEU"=n-—— — 1#0,
| |=n ne— #

therefore L' convergence does not hold. Notice how both Monotone and Dominated convergence fail for
Xn.
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e We can take this to more extreme by X, := e”1[07l](U). Again, this converges to 0 a.s. However,

110 — X,||, = = - €" — oo for any p > 0.

nl/p

Example 4.7. Given a sequence 0 < p,, < 1, let X,, ~ Bernoulli(p,,) and independent. Then
e by the definitions, p, — 0 is equivalent to each of LP and in probability convergence to 0,

e by the two Borel-Cantelli lemmas, ), p, < oo is equivalent to a.s. convergence to 0.

The choice p, = L therefore gives LP but not a.s. convergence.

—n
We close this section by noting that, with the assumptions as stated there, Monotone convergence, Fatou’s

lemma and Dominated convergence hold if we require X,, — X a.s., or X, Ix only, instead of convergence
for all w € €.

5 Martingales, stopping times

Finally, all background is there to consider martingales. From here we mostly follow Williams [2]. Here are the
definitions required.

Definition 5.1. A filtered space is (Q, Fo (Fu)oeos P), where (2, F, P) is a probability space, and Fo C F; C
Fo C ... C F are o-algebras, jointly called a filtration. We also define F, : = O‘(Un fn) C F.

Definition 5.2. A process (sequence of random variables, that is) X,, is adapted to the filtration (Fy,)n>0, if
for every n, the variable X,, is F,,-measurable.

This is to say that F,, contains all information about X,,, in other words given F,,, X,, is not random anymore.
An often used scenario is defining F,, = 0(Xo, X1, ..., Xp) from a process (X, )n>0. This is usually assumed
when a filtration is not explicitly given.

Definition 5.3. A process (My),>0 in a probability space (£, F, P) is a martingale with respect to a filtration
(]: n)nzo, if

e it is adapted to (F,,)n>0;
o E|M,| < oo Vn>0;
o E(M,y1|Fn) =M, as., Vn > 0.

If instead, in the last equality, we have <, then we call M a supermartingale, while if it is > then it is a
submartingale.

Notice that M, is a (sub-, super-)martingale if and only if M,, — My is. Also, tower rule checks that E M,, £ E My

IVIA

for the respective cases.

Example 5.4. Let X}, be independent random variables with E X;, = 0 for each k¥ > 1. Then > ;_, X} is a
martingale. (For n = 0 we have an empty sum which we postulate to be zero.)

Example 5.5. Let X be independent random variables with E X = 1 for each £k > 1. Then HZ:l X, is a
martingale. (For n = 0 we have an empty product which we postulate to be one.)

Example 5.6. Let ¢ € L! and F,, be a filtration. Then M,, : = E(¢|F,) is a martingale due to the Tower rule.

The first applications come from stopping a martingale at a time when something particular happens to a
process. This is covered next.

Definition 5.7. A process (Cyp)n>1 is predictable (also said previsible), if for every n > 1, C, is Fp_1-
measurable.

Imagine a game in rounds that is based on random outcomes X,. For example, X,, can be the share price of
a certain stock. If a player possesses Cj of these stocks in the k™" round of the game, then their joint value
changes C}, - (X — Xji—1) in this round. The total change in wealth is given by

(5.1) (CoX)p:=) Cr-(Xp— Xi1).
k=1
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Definition 5.8. The process (C' e X),, in (5.1 is called the martingale transform of X by C, or the discrete
stochastic integral of C' by X.

In this setup the player can change the amount C} they own of the stock. However, as players do not foresee
the future, it is natural to assume that C' is predictable.

Theorem 5.9. Let C' be a predictable process.
(a) If there is a bound K > 0: 0 < C,, < K (Vn, w), and X is (super)martingale, then so is C @ X.
(b) If |Cp] < K (Vn,w), and X is martingale, then so is C e X.

The bound on C,, can be relazed to both C,, and X,, being in L? for each n.

Proof. That C' e X is adapted follows easily. Consider

E((CoX)ns1— (CoX)n|Fn) =E(Crs1 - (Xnt1 — Xn) | Fn) = Cogt E((Xng1 — X)) | Fn).

The last step used predictability of C, and the bounds imposed on C' or C and X. These latter are the
necessary conditions for C'e X € L' and for pulling C, 1 out of the expectation. The theorem follows from the
(super)martingale property of X in the respective cases. O

Definition 5.10. A random variable T =0, 1, 2, ..., co is a stopping time, if Vn < oo, the event {T' < n} € F,.
For a process X, we call XI := X, the stopped process.

Here i A j means the smaller of the two numbers 7 or j. This definition expresses the property that we can
decide whether the stopping time has arrived or not at time n just by looking at the history of the process(es)
up to n. Notice that n = oo is included in the definition. As an elementary example, the time of the first Head
in a sequence of coinflips is a stopping time, while the time one before the first Head is not.

Theorem 5.11. Let T be a stopping time. If X is a (super)martingale, then so is XT.

Proof. Define
Cpn:=1{n<T}=1{n-1<T}=1-1{T <n-1},

which is F,,_i-measurable by the right-hand side. In other words, C is predictable, which implies that C e X is
a (super)martingale. On the other hand, the sum with this C' is telescopic:

n TAn
(CoX)y=> Wk <T} (X — Xp1) = Y (X — Xp—1) = Xran — Xo = X1 — Xo.
k=1 k=1

O

Theorem 5.12 (Doob’s optional stopping theorem). Let T' be a stopping time and X a supermartingale. If
either of the below holds:

(i) T is bounded,

(i) X is bounded and T is a.s. finite,
(ii) X is of bounded increments: IK > 0: |X,, — X,,—1| < K Vn>1, and ET < oo,
then EX1r <E Xq. If M is a martingale and either of holds, then E Mr = E M.
Notice that one of the homework sheets (will) contain(s) an improved version of this theorem.

Proof. In all cases T' < oo a.s., hence X7p, — X7 a.s. We also know by Theorem 511 that E X7, < E Xj.

n—oo
The question is whether we can pass this limit through the expectation. In the respective cases:

(i) for any n larger than the bound on T, E Xy > E Xpp,, = E X7
(ii) the bound on X allows to use Dominated convergence.

(iii) in this case we have, for every n,

TAn TAn
[Xran = Xol = |32 (Xe = Xem)| £ D7 Xk = Xioa| S K- (T An) < KT
k=1 k=1

As the right-hand side is independent of n and has finite mean, it can act as the bounding Y variable in
Dominated convergence, which then again allows to pass the limit through the expectation. The proof for
a martingale M is analogous.

16



Notice that we only used, hence it is sufficient to verify, the conditions on the stopped process X 7.

Corollary 5.13. If M is a martingale of bounded increments, C is bounded and predictable, T € L' is a
stopping time, then E(C e M)p = 0.

When X > 0, we can apply Fatou’s lemma instead of Dominated convergence to relax the conditions of optional
stopping:

Theorem 5.14. If X > 0 is a supermartingale and T is an a.s. finite stopping time, then E X7 < E Xj.

Proof. In this case X7, > 0 and converges to Xp a.s., hence by Fatou’s lemma,

EXy =E lim Xrp, = Eliminf X7p, <liminfE X7,, <liminfE Xy = E X,.

n—oo n n n

O

The next lemma is useful for checking if ET < oo holds. It is enough to check that, no matter the history,
stopping happens within a fix time interval with a probability bounded away from zero:

Lemma 5.15. Let T be a stopping time, and assume 3N, e >0 : P{T <n+ N|F,} > ¢ a.s. for alln > 0.
Then ET < o.

Proof. For k > 1,

P{T > kN} = P{{T > kN} N {T > (k — 1)N}} = P{T > kN | T > (k — )N}P{T > (k — 1)N}
<(1—e)P{T > (k—1)N}

by the assumption, which recursively gives P{T' > kN} < (1 — ¢)¥. The sequence P{T > (¢} is non-increasing,
and its sum gives the expectation of T' (check if you have not seen this before!). Hence

- > 1 N
ET:Z]P’{T>£}§NZ]P’{T>kN}§Nm: — <oo.
=0 k=0

We turn to a few applications.

Example 5.16. A monkey repeatedly types any of the 26 letters of the English alphabet independently with
equal chance. Let T be the number of letters that have been typed when the entire word “ABRACADABRA”
first appears. We are after ET.

First notice that this is a stopping time and is finite due to Lemma [E.I5 no matter what happened before,
with probability ¢ = 261! the stopping occurs in at most N = 11 steps.

To proceed, we add a gambling process to this problem. Before each hit of a new letter, a new gambler
arrives and bets £1 on the letter “A”. If the new letter is something else, the gambler loses their bet and exits
the game. If the new letter is “A”, then the gambler receives £26, which they all bet on the next letter being
“B”. If this next letter is something else, all bet is lost and the gambler exits the game. If this next letter is
“B”, then the gambler receives £262, which they all bet on the third letter being “R”, and so on. If the gambler
wins all the way down to “ABRACADABRA”, the gambler exits the game with wealth £26'1 and T' becomes
the total number of letters typed at this point. Otherwise the gambler loses all their money and exits the game.
Also, new gamblers arrive at each step and start the same betting strategy. Denote by X,, the combined wealth
of all gamblers who are in play after the n' letter has been typed. We claim that M,, : = X,, —n is a martingale.

To check this, notice that M, is adapted to the natural filtration generated by the monkey, and is bounded
for any given n, hence is in L'. The martingale property is checked by first observing that the expected wealth
of a gambler already in play does not change. That is because their bet is lost with probability % and multiplied
by 26 with probability %, hence the mean value stays. A gambler already out of play stays with their 0 wealth
so that doesn’t change either. However, a new gambler arrives and their expected wealth after a flip is 26- % =1
which adds to the conditional expectation of X, 1. Therefore,

E(Mpy1 | Fn) =E(Xpi1 [ Fn) —(n+ 1) =Xn + 1= (n+1) = M.

Notice that EM; = E X; — 1 =0, hence we can extend the definition by My = 0.
The stopped martingale M7 is of bounded increments, and ET < oo, hence Optional stopping applies and
gives
0=My=EMr=EX;—-ET.
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It remains to calculate Xp. At the time of stopping, there are only three gamblers in play. The one who came at
time T — 11 has wealth 26''. Less lucky is the gambler who arrived at T — 4; they successfully bet on “ABRA”
and have £26. Finally, the gambler who just arrived at 7" and bet on “A” has £26. Thus,

ET =EXr = X7 =26" + 26" +26 ~3.7-10".
Notice how repetitions in “ABRACADABRA” increase ET (why?).
Example 5.17. Let X be iid. +1-valued with equal chance. The sum S, = > ;_, Xj is called simple
symmetric random walk (SSRW). Empty sums are zero, hence Sy = 0. Then S, is a martingale, and

T:=inf{n: S, =1}

is a stopping time in the natural filtration of the walk. We will check in Example 518 that T is a.s. finite, and
St =1 as. Also, ESta, = ESy = 0 from the martingale property, as seen in Theorem .11l However, the
conditions of Optional stopping are not met, and

1=ESr #ES, =0.
In particular this shows via case of Optional stopping that ET = oo since S, is of bounded increment.

Example 5.18. Consider the SSRW and the stopping time T as in Example B.T71 We show T < oo a.s., and
even calculate its moment generating function. Finiteness of T implies recurrence of SSRW.
For any 6 > 0, the process

0 eGSn
M= ——
" (cosh @)
is a martingale. It is clearly adapted and finite for each n, and the martingale property works out:
E 0(Sn+Xnt1) ]:n 6S, 6 —0 0S5,
E(M?, | Fy) = (e | ): e e e _ M
(cosh @)n+1 (cosh @)n+1 2 (cosh @)™

We cannot rule out T' = 0o. However, in this case we know S,, < 0 for each n, hence

o<mf< 0 g
— "7 (cosh)" n—oo

by coshf > 1. On the event {T' = oo} we therefore define M¥ = 0 and have Mf, = M! — Mf. We also

n—oo

have M2, — M&% on {T < oc}.
n—oo

By definition of T,
, ofSTAn of ,
M = < <
A (cosh §)TAn = (cosh §)TAn = e

which is a bound independent of n, hence dominated convergence applies on the above limit:
Q08T

1= lim EM{,, =E lim M{,, =EM}=E(M; T < o) :E(W T < oo)

69 69
=E(W?T<°O) =E(W)’

where the martingale property E MY, = M§ = 1, then MY = 0 on {T = oo}, then Sy = 1 on {T' < oo},
finally cosh @ > 1 were used. From this we conclude

(5.2) E((COS%G)T) _

Next we take 6 \, 0, which makes coshf \ 1. If T' = oo then W = 0 for any 6 > 0, hence so is its
limit. However, if T' < oo then the limit is 1. Together,

lim ———= =1{T' < .

f0 (cosh )T { o}

As the bound 0 < W < 1 holds no matter the value of T', we can apply dominated convergence on the
above limit:

1 1
l=lime? =limE(———=) =E(lim ——— ) =E1{T =P{T
9{%6 9{% ((cosh 9)T) (el\n% (cosh H)T) {1 < oo} {T" < o0},

which was our goal.
Substitute 0 < o = —— < 1 into (5.2 and solve this substitution for e~ to obtain (check!) the generating

cosh 6
1—+v1-a?2

function for the random variable T'
«

EoT =
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6 Martingale convergence

This section gives an introduction to yet another strength of the martingale property: convergence under rather
general assumptions. We start with examining upcrossings:

Definition 6.1. Fix a < b real numbers and let X,, be a process. The upcrossing number until N is defined as
Unla, bl :=max{k : 30 < s1 <t1 <82 <ty < - - <sp <ty <N with X, <a, Xy, >bforall 1 <i<Ek}.

This definition counts what the name suggests: how many times the process increases from below level a to
above level b before time N. To capture these increments, we also define

Co:= 0, C,:= 1{Cn—1 = 1}1{Xn—1 < b} + 1{Cn—1 = 0}1{Xn—1 < a} (n > 1)

Think about C,, as an ON-OFF switch: once it is ON (C,,—1 = 1), it stays on unless X exceeds level b. Once it
is OFF (C,—1 = 0), it stays OFF until X descends below level a. Notice that if X,, is adapted, then this C,, is
predictable. Let

n

Y, = (CeX)y=> (X~ Xs1)Ch.
k=1

This captures the increments of X during the ON periods of C. It then follows that
YN Z (b—a) . UN[G, b] — (XN — a)_.

To see this notice that any upcrossing is of increment at least b — a, all of which is captured by Yy. However, if
X descends below a after the last upcrossing, that is also captured by Yy and might contribute with a negative
sign. This is taken care of by the last term.

Lemma 6.2 (Doob’s upcrossing lemma). If X, is a supermartingale, then (b —a)EUn]a, b <E(Xny —a)~.
Proof. By Theorem 5.9 Y, is a supermartingale, hence E Yy < 0. O

Corollary 6.3. Let a < b, and let X,, be a supermartingale that is bounded in L*. (That is, sup, E|X,| < cc.)
Then
(b—a)EUsla, b] <la| +supE|X,,| < oo.

In particular, Us|a, b] is a.s. finite.
Proof. As Unla, b] > 0 is monotone in N, we have

(b—a)EUx]a, b] = (b—a)Eli]{[nUN[a, b= (b— a)lij{[nEUN[a, b < liz{[nIE(XN —a)”

by monotone convergence. To finish the proof,

E(Xy —a)” <E|Xy —a| <E[Xn[+|a] < |a] + sup E [ Xy,

and the right-hand side is independent of N. (|

Theorem 6.4 (Doob’s forward convergence theorem). Let X,, be a supermartingale that is bounded in L'.
Then X : = lim, X,, exists a.s. and is finite.

Proof.

{X,, does not converge} = {liminf X,, < limsup X,,} = U {liminf X,, < a < b < limsup X, }
n a<h n n
a,b<€(@
C U {Ussla, b] = o0}.

a<b
a,beQ

The right-hand side is a countable union of zero probability events, has zero probability itself.
To see that the limit is a.s. finite, use Fatou’s lemma:

E|Xs| =Eliminf | X, | <liminf E|X,| < supE|X,| < oo,
which implies | X | < 00 a.s. O
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Notice that if X,, > 0 is a supermartingale, then L!-boundedness is automatic: E|X,| = E X,, <E Xj.

Finally, we have a bit to say about L?-martingales. The scalar product of L?-random variables X and Y is
defined by (X, Y) := E(XY). Indeed check that this defines a scalar product. If M, is an L2 -martingale, and
k < m < n, then M,, — M,, is orthogonal to Fj of the filtration. Namely, for any Y Fji-measurable random
variable

(Mp—M,,, Y) =E((M,—M,,)Y) =EE((M,—M,)Y | F) = E(Y E(M,,— M,, | Fi)) = E(Y-(My,—My)) = 0.

In particular, increments of an L2-martingale in disjoint time intervals are orthogonal: for £ < k < m < n,
(M, — M,,, My — M) = 0. Another way of stating this is that these increments are uncorrelated. This is the
main observation used in the next theorem.

Theorem 6.5. An L? martingale M, is bounded in L? if and only if Sore E(M), — My_1)? < co. In this case
M, — M, a.s. and in L?.

Proof. Due to the orthogonal increments as above, all cross terms of the square below have zero mean, and the
following Pythagorean theorem holds:

n 2
EMg:E(MO+Z(Mk—Mk_1)) _EM2+ZE My, — Mj_1)? /‘IEMQ—i—ZIE My, — My_1)?
k=1 k=1

as n — oo. This proves the first statement: the left-hand side is bounded iff the infinite sum is finite.

If M,, is bounded in L2, then it is also bounded in L' by Ljapunov’s inequality, and the forward convergence
theorem provides the a.s. limit. To see the L? convergence, use Fatou’s lemma and the Pythagorean theorem
as

n—+r
E(Ms — M,)? =E lim (M4, — M,)? < lim inf E(Mi 4 — M,)? = liminf Z E(M), — Mj,_1)?
r—00 r P
= Z E(Mkak,1)2 — 0
b1 n—o00
due to finiteness of the infinite sum. O

7 Doob decomposition

We briefly cover a very useful technique of separating a martingale from a stochastic process. This is called Doob
decomposition and its continuous-time analogue, called Doob-Meyer decomposition, is the basis of stochastic
integration.

Theorem 7.1 (Doob decomposition). Let (X,,)n>0 be an adapted process in L*. Then
(a) there is

o o martingale (My)n>0 with My =0,

o a predictable process (Ap)n>0 with Ag =0

such that X, = Xo+ M, + Apn. This decomposition is almost everywhere unique in the sense that for any
other pair (Mn, A n)n>0 With the above properties we have P{ M, = M, and A, = A, for alln >0} =1.

(b) (Xn)n>o0 is a submartingale if and only if P{A,, < Ap41 for alln > 0} =1 in the above decomposition.
Assuming this decomposition works, we can actually guess what A should be via a next step analysis:

E(Xy — Xp—1 | Fr—1) = E(My — My—1 | Fro—1) + E(Ar — A1 | Fr—1)

7.1
(7.1) =My_1 — My—1 +E(Ar — Ap—1 | Fr—1) = Ap — A1

We start the proof by summing this display for the definition of A.
Proof. Define Ag =0 and for n > 1

=Y E(Xg — Xe—1 | Fro1).
k=1
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This is predictable due to k — 1 < n — 1 in the above sum and the properties of the conditional expectation.
Then let
M, =X, — Xo— A,.

My =0, M, € L', and M being adapted are clear and, by separating the last term in the sum,

E(My, | Fr1) = B(Xp — Xo — An | Far1) = B(Xp | Fuor) = Xo — Y B(Xy — Xgo1 | Fron)

k=1
n—1
=Xn1—Xo— Y B(Xj — X1 | Fre1) = Xn1— Xo— Ap_1 = My_1.
k=1

Hence the above decomposition has the required properties. For a.e. uniqueness notice that any decomposition
has to satisfy (1), which leaves no other choice of A, hence no other choice of M (up to zero probability sets).
Part @ is coming from A, = X,, — Xo — M,,:

Api1 —Ap =E(Api1 | Frn) — An = E(Xpig1 | Fn) — Xo —E(Mpq1 | Fn) — X + Xo + My, = E(X g1 | Fn) — X
O

Definition 7.2. Let (M,),>0 be an L?>-martingale with My = 0. Then M? has the a.e. unique Doob decom-
position into a martingale N and a predictable process A:

M? =N + A.
The process A is often denoted as (M), and is called the brackets process of M.

It is easy to check, and we will see later, that (M2),,>0 is a submartingale. It therefore follows that A is a.s.
non-decreasing, with an a.s. limit A := lim, ., A,. Since EM,% = E A,,, we have that M is bounded in L?
if and only if E A, < oc.

We also note that

Ay —Ap1 =E(MZ = M}_ | Foo1) = E(My, — Myp—1)? | Foe).

8 Uniform integrability

We have seen before that LP convergence is stronger than convergence in probability. However, there is a
condition that allows to conclude LP convergence from convergence in probability. This is explored below, and
will be used later for martingales.

Notice that by monotone convergence,

(8.1) cli}lr{)loﬂi(|X|p; |X|>¢)=0  forany X € L.
This helps understanding the following definition.
Definition 8.1. A sequence X,, of random variables is p** power uniformly integrable, if
Clglgo stipE(|Xn|p; | Xn| > c) =0.
The following lemma will help exploiting uniform integrability.

Lemma 8.2. Let X € L*. Then Ve >0 36 > 0 such that VF € F event with P(F) < &, E(|X|; F) < e holds.

Proof. By contradiction, assume that there is an € > 0 and a sequence F,, of events such that P(F,,) < 27",
but E(|X|; F,) > . Denote H := limsup,, F,,. Then, on one hand, Borel-Cantelli 1 implies that P(H) = 0.
On the other hand, an application of Fatou’s lemma on —|X| - 15, gives

E(|X|; H) = E(limsup |X| - 1p,) > limsupE(|X|; F,) > ¢,

which is a contradiction. O
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We can reprove (81)) with this lemma. If X € LP, fix Y = |X|P € L', ¢ > 0, and § for this Y as in Lemma B2
For this 4, via Markov’s inequality, there is a large enough K, such that

E|X|P
B(1x|> K} =B{lxp > K7} < PO o5

Then, with F = {|X| > K}, the lemma says
E(X[P; |X|> K)=E(Y; F) <e.

That is, by picking large enough K, we could bring the expectation below e. This is equivalent to (8I).
With the help of the above, we can now go from in probability convergence and uniform integrability to L?
convergence.

Theorem 8.3. Let p > 1, suppose X, X1, Xa, ... € LP, and X, 2 x. Thené@@«i
where

(i) X, 25 X;

(ii) X, is p™ power uniformly integrable;

(iii) E|X,|P — E|X|P;

(iv) there exists a p < ¢ < 00, such that sup, E|X,|? < co;

(v) there exists a Y € LP, such that ¥n, |X,|<Y.

Below partial proof is given to this statement.

Proof ofé for p=1. Fix ¢ > 0, we seek K such that Vn, E(|Xn| D X > K) <e.
By the assumed L'-convergence, there is an N such that E|X — X,| < £ whenever n > N. Lemma
provides positive &g, d1, d2, ..., o such that

VF, if P(F) < &, then E(|X|; F) < % VF, if P(F) < 8, then E(|X,|; F) <

for 1 <n < N. Set § = min{dy, 01, ..., dn} and notice that this is still positive.

When n < N, define F,, = {|X,| > K}, and pick K large enough that P(F,) < § for each 1 < n < N.
Notice that this is possible due to only finitely many of the X,’s for this case. By the above, we then have
E(|Xn|; |Xn| > K) <e.

When n > N, we argue as follows. The assumed L' convergence implies boundedness in L': sup, E | X,.| < co.
By increasing K if necessary, we can achieve

Supr E |XT|
7[( <
A triangle inequality gives (with common factor 1{|X,,| > K})

E(|Xn|; |Xn| > K) <E(IX]; |Xa| > K) +E(|X, — X|; |Xa] > K) <E(IX]; [Xa| > K) +E|X, — X|.

(8.2) s.

For the first term, take F,, = {|X,| > K}, and notice P(F},,) < % < § due to ([82). The choice we made
with § < do then bounds this term by §. The second term is also bounded by 5 due to our initial choice of N
and n > N. O

Proof ofé for p=1. Define the cutoff function
K, ifx > K,
vr(z) =1 =, if —~K<z<K,
- K, ifz<-K.

)

Fix € > 0 and notice that by the assumed uniform integrability and by (&I, there is a K for which

E}@K(Xn)an}<§, and ]E}gaK(X)fX|<§.

Also, |px () — px(y)| < |z —y| for any z, y € R, hence ¢ (X,) N ©(X) holds via X, X (check!). As
lp(-)| < K, Dominated convergence implies E|¢x (Xy) — ¢(X)| — 0, in particular this can be brought below £
for large n’s. Combining via triangle inequality,

IE|AXn 7X| < IE|AXn 790K(Xn)| +E‘50K(Xn) 750(X)‘ +E|50K(X) 7X‘ <é&.
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Proof of |(2)|= . This is just two triangle inequalities:

1 Xnllp = [[Xn = X + X|p < [ Xn — X|lp + [ X]]p
||X||p = ||X_Xn +Xn||p < ||X _Xn||p+ ||Xn||pa i.e.,
||Xn||p > ||X||p_ ||X _Xan-

As we assumed LP convergence, ||X — X,||, — 0. This results in

[1X1lp < Tim inf [ X[, < Timsup [ X5 ||, < [1X]],

that is liminf and limsup agree and || X,||, = || X||,- O

=|(z)|is called Sceffé’s theorem, it will not be used later on and its proof is somewhat tedious, therefore it
is skipped. Those interested can ask me about it on drop-in sessions.

Proof of [(iv)] = [(i2)] Given p < g, we start with a little exercise in algebra. Set

1 1
pH=g>1, qH:L>1, and check — + — =1.

p q—p PH qu
Apply Holder’s inequality on the variables | X, |? and 1{X,, > ¢}, with these py and ¢y parameters:

E(Xul7: X0 > ¢) < (B[X,|9)7 - (EL{X, > c}75) 7 = (B]X,[0)" - (B{X, > c}) 7 .

Here we also used that raising and indicator to a positive power does not change a thing. Markov’s inequality
q
gives P{X,, > ¢} < P{|X,|? > 1} < E‘CL;"', which further bounds the above by

a—p
q

» (E|X,|? E|X,|?
Elx )t X T Bl
cd—p cd—p
Under the assumptions of taking lim._, sup,, brings this to 0.

Proof of = . This is just an application of Dominated convergence. [l

9 Uniformly integrable martingales

Uniform integrability gives further powerful tools with martingales:

Theorem 9.1. Let M, be a uniformly integrable martingale. Then My = lim,_so0 M, exists a.s. and in L',
and M, = E(Mx | Fp) a.s.

Proof. Due to uniform integrability, we can pick a ¢ > 0 for which sup,, E(|M,|; |M,| > ¢) < 1. Then,
B[ M| = E(|Mn|; |Mn| = ¢) + E(|Mn|; [Mn| <c) <1+c,

where we used the simple algebraic fact that |z| - 1{|z| < ¢} < ¢ for any real . As the right-hand side
is independent of n, it follows that M,, is bounded in L!, thus converges a.s. to a finite limit by Doob’s
forward convergence. That implies convergence in probability, which in turn gives L' convergence when uniform
integrability is added (Theorem B.3]).

For the last bit, fix r >n > 0, F € F,:

|E(My 3 F)=E(Moo 5 F)| = [E(M; 3 F)=E(Moo 5 F)| = [E(M; — Moo ; F)| S E(IM, —Ms|; F) < E|M, — M|

a.s., where first the martingale property (check how!), then Jensen’s inequality on the | - | function was used.
By the L' convergence, the right-hand side goes to 0 as » — oco. As the left-hand side has no r in it, it is
therefore zero: E(M,, ; F) = E(M ; F'). This proves M,, = E(M | F) a.s. due to the Kolmogorov definition
of conditional expectations and M,, being JF,-measurable. [l

The next theorem is the reverse statement in some sense.

Theorem 9.2 (Lévy’s upwards theorem). Let & € LY, (F,), be a filtration, and M,, :=E(¢|F,) (this is well
defined almost everywhere). Then M, is a uniformly integrable martingale, M,, converges a.s. and in L* to a
limit M, and Mo = E(§| Fso) a.s.
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Proof. The proof has three parts.

1. That M, is a martingale is a simple application of the Tower rule.

2. Next we show that M,, is uniformly integrable. Fix e > 0 and § > 0 for £ as in Lemma Then pick
K > %. An application of Markov’s inequality, Jensen’s inequality on the conditional expectation, then the
Tower rule shows

E|Ma| _ E[E(|F)| _EBE(El| %) _Elel _,

> <
P{M| 2 K} < = K = K K =7

making {|M,| > K} a suitable event for Lemma We apply this lemma in the last step below, following
conditional Jensen again, the fact that {|M,| > K} € F,, and the Tower rule:

E[|M,|; |Mn| > K] = E[|E(& | Fo)|; [My| > K]
<E[E(|¢]| Fn); [Mn] > K]
—EE(¢]; Mo > K | Fo) =E(¢]; M| > K) <.

The right-hand side has no n, hence uniform integrability is proved. This implies existence of the limit M.
3. We need to show that this limit M, a.s. coincides with 7 : = E(§| F). We do this for the case & > 0,
otherwise the difference ¢ = ¢+ — €~ then provides the general proof. For any set F' € Foo, let

Q1(F):=E(n; F) and Q2(F):=E(My; F),

these are measures on (9, Foo). If FF € F,,, then Tower rules, measurability (recall F,, C Fu,), and M,, =
E(Mo | Fr) from the previous theorem imply

Qi(F) =E(n; F) =E(E({| Fwo); F) =EE(; F| Foo) = E(§; F)

This shows that Q; agrees with @, on |J,, F,, hence also on F = O'(Un fn). Since {n > Mo} € Foo,

0=Qi{n> M} - Q{n> M} =E(n - Mo n > M),
therefore P{n > My} = 0. In a similar way P{n < My} = 0, which completes the proof. O
Next we prove an important theorem in probability using the machinery built up so far.

Definition 9.3. Let X7, Xo, ... be random variables, and 7, : = 0(Xpn+1, Xnt2, ... ). The tail o-algebra is

An event in T is T,-measurable for every n. In other words, it does not depend on any finite number of changes
in the sequence X1, Xo, .. ..

Theorem 9.4 (Kolmogorov’s 0-1 law). The tail o-algebra of independent variables is trivial. That is, with the
above definition, for any F € T we have P(F) =0 or 1.

It is important here that the random variables are independent.

Proof. Let, as before, F,, = (X1, Xo, ..., X,) and F € T. Define n = 1p. As F € T C Foo, 0 18 Fo-
measurable, and is of course in L. Add Lévy’s upwards theorem:

n=E(|Fc) = lim E(n|F).

However, F' € T C T,, which is independent of F,,, as these are generated by a disjoint set of independent
random variables. It follows that

1p =n= lim E(n|F,) = lim En=En=P(F),

which shows P(F) is either 0 or 1. O

Example 9.5. For a SSRW S, = >} Xj, let F := {i—" — v} be the event that the walk has asymptotic
velocity v. Changing any finite number of the i.i.d. Xj’s does not influence the liminf, nor the limsup, of %,
hence F is in the tail o-algebra of the X’s. It follows that F' is trivial, has either probability 0 or 1. Indeed,
the Strong law of large numbers states that P(F) = 1 when v = 0, and zero in all other cases.
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Recall that a filtration is an increasing system of o-algebras and a natural interpretation is the expanding
information collected from observing a process starting at time zero. In what follows we still have a filtration,
but the o-algebras are indexed up to time —1, rather than starting from time 0 as before. Accordingly, the limit
is taken as the o-algebras decrease, rather than increase which is what has been done so far. An application
follows further down.

Theorem 9.6 (Lévy’s downward theorem). Let G_,,, n > 1, be o-algebras with
GnCGn1CGn2C...CG 1,  and  Goooi= ()G

Letye LY, and M_,, :=E(v|G_p). Then M_o :=lim,, oo M_,, erists a.s. and in L*, and M_ oo = E(vy|G_o)

a.s.

Proof. The martingale property E(M_,1|G_,) = M_, is checked the very same way as in Example 5.6 except
the time index is negative.

Uniform integrability works the same way as in Lévy’s upward theorem. This implies L!-boundedness, and
the upcrossing proof works as well to show a.s. convergence. Together with uniform integrability, L' convergence
follows.

Finally, to show M_., = E(v|G_) a.s., fix r > 0 and an event G € G_, € G_,.. Then

E(’y; G) = EE(’Y; G | g—r) = E(E(’y | g—r) ) G) = E(M—T ) G)
Further, due to Jensen’s inequality and the L' convergence,

[E(M_y; G) = E(M_—oo; G)| = [E(M_p = M_oo; G)| SE(IM_p — M_sc|; G) SE|M_p — M_oc| — 0.

Hence E(v; G) =E(M_w; G), and M_o, = E(v|G_) a.s. follows from M_., being G_-measurable and the
Kolmogorov definition of conditional expectations. (|

As an application, here is the proof of the Strong law of large numbers using martingales.

Theorem 9.7 (Strong law of large numbers). Let Xy be i.i.d. random variables in L', and S, = > j_; Xy.
Then % —E Xy a.s. and in L.

Proof. Let G_,, = o(Sn, Sn+1, ---), and notice that this system satisfies the conditions of the Downward
theorem. Notice also that due to independence and the structure of 5,

G = O‘{O’(Sn), o(Xn+1, Xnt2, )},

where the o-algebras o(Sy,), 0(Xn+1, Xnt2, ...) are independent. This is to say that the process of S,,’s,
m > n from time n is determined by S, and, independently, Xj’s for k > n. It follows by symmetry (check!)
that

M—n L= E(Xl | g_n) = E(Xl | O’(Sn)) = —.

Lévy’s downward theorem applies on this martingale, and gives the existence of the a.s. and L' limit M_.
All that is left is to identify what this limit is. To this order notice that M_,, = lim,, oo M_,, = lim, 00 3—7;
a.s. (one can instead use limsup here to make sure it is defined surely) does not depend on changes made on
any finitely many of the Xj’s. It is therefore in the tail o-algebra of the i.i.d. sequence, which is trivial by
Kolmogorov’s 0-1 law. For any ¢ € R, P{M_., = ¢} is therefore 0 or 1. However, it cannot be 0 for every c,
there exists a non-random value which M_., takes a.s. and, due to EM_., = EM_; = E X, this value can

only be E Xj;. O

10 Doob’s submartingale inequality

We continue with yet another important property of (sub)martingales. Compare the below with Markov’s
inequality.

Theorem 10.1 (Doob’s submartingale inequality). Let Z, > 0 be a submartingale. Then for every ¢ > 0 real
and n > 0 integer,

(Zn; SUDj<p, L > c) < EZ,

E
]P’{:lgl;;Zk > c} < . .
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Since we are looking at a finite number of values, ‘max’ would be appropriate instead of ‘sup’. However, ‘sup’
is the usual formulation as it also works for the continuous time version of the theorem.

Proof. If the event F : = {supkgn Zy > c} occurs, then there must be a first instance of k where Z; > ¢. This
is captured by the disjoint union

" FO L= {ZO Z C},

F= Fy, where k1
kL:JO Fk::ﬂ{Zi<c}ﬂ{Zk2c} (k> 0).

i=0

Notice that F} € F, hence the submartingale property gives, for k < n,
E(Zn; Fr) =EE((Zn; F)| Fi) = E(E(Zy | Fi); Fr) > E(Zk; Fr).
The event F}, implies Zy > ¢, hence we can proceed by
E(Z,; Fx) > E(Zy; Fy) > P(Fy).
Summing this in k proves the theorem via the disjoint union above. O

Submartingales occur more often than one would first think. Let M,, be a martingale, g a convex function,
and assume E |g(M,,)| < oo for each n. Then by Jensen’s inequality,

E(Q(MnJrl) |]'—n) > Q(E(MnJrl |]'—n)) = g(My),
hence g(M,,) is a submartingale.

Example 10.2. A total of n people queue up to buy one ticket each for a small performance with n seats in
the theatre. The price is one pound, and each person independently, with equal chance either has exact change,
or a two pound coin in which case a one pound coin change is needed from the cashier. The cashier starts the
service with m one pound coins. We seek an upper bound on the probability that the cashier runs out of one
pound coins at some point while serving this queue.

Set X; to be 1 if person i has one pound, and —1 if they have a two pound coin. Then S : = Zle X is the
change in the number of one pound coins with the cashier due to serving the first k& customers. It is a SSRW
hence a martingale, and the cashier runs out of one pound coins iff m + mini<x<, Si < 0.

A non-negative submartingale is produced by taking square (a convex function) of S;,. Hence, the probability
of the cashier running out of change is bounded by

E S2 n

P{ mi —-ml <P 2> 12} < = )
fin, Si < —m}p <P{ sup S = (m 4 D) < 005 = G

As an example, n = 100 and m = 30 already gives a bound of cca 10%.

11 A discrete Black-Scholes option pricing formula

As an application, a very simple version of the option pricing formula is presented, still following Williams [2].
First, the probability space that will govern the stock market is assumed in this form:

+ 1, with probability p,
(11.1) Q ={w1, we, ..., wn}, where w, = ) P . yp

— 1, with probability 1 — p,
independently for different n’s. This generates the natural filtration F,, = o{w1, ..., wn}.

Stocks have value S,,, while bonds have value B,, per unit on day n, 0 < n < N. We have A,, stocks, and
V., bonds in the morning of day n, so our total wealth is A, S, + V,,B,. During the day, we are allowed to
exchange these, and by the evening of day n we might have A, 41 stocks and V), 11 bonds. However, the total
wealth during transactions must be conserved:

(11.2) X i= AnSn + VBy = Ans1Sn + Vi1 Ba.

Overnight, the values change from S,, to S, 41 for stocks, and from B,, to B,41 for bonds. Bonds are not very
exciting, their value is deterministic, B,, = (1 + )" By with a fixed —1 < r < co, which one can also write as

Bn — Bn,1 = Tanl.
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Stocks, on the other hand, will change randomly. With —1 < a < r < b < oo also fixed, the random rates are
governed by the probability space as

11.3 R, := b-a

a, ifw,=-1,

atb b-a _{b, if wy = 1,

and we have

Sn - Sn—l = RnSn—l-

The European option is a contract made on day 0. It allows (but does not force) us to buy, at the end of
day N, a stock at striking price K. Its value on day N is therefore (Sy — K)* (when Sy < K, we do not use
it). But how much does it worth on day 07

Definition 11.1. A hedging strategy for the above option with initial value z is a predictable process (A, V;,)
such that for every w € ),

o Xy=ux,
e X, >0forall0<n <N,
e Xy =(Sy—K)".
(A, and V,, can possibly go negative.)

If there exists a hedging strategy for exactly one value of z, then this should be the price of the European
option (for anything cheaper, everybody would buy it, and any more expensive, people would rather do the
hedging strategy). This is exactly the case:

Theorem 11.2. A hedging strategy as above exists if and only if

r=r+1)"" ESy - K)"

with respect to Q (L)) with p = 3==. This strategy is unique, and features A, >0 for all0 <n < N.

To prove this theorem, we need two lemmas. Define the martingale (with Z; : = 0)

n

(11.4) Zn =Y (wp—2p+1),
k=1

The space € is simple enough to derive any other martingale from this one:

Lemma 11.3. Let M,, be any martingale in (Q, (]:n)nZO)- Then there is a unique predictable process Hy,, such
that

M, = Mo+ (HeZ)=My+ Y Hp(Zk — Zr-1).
k=1

Proof. The proof is by brute force. We can write all random variables as functions of sequences of wy’s. Those

Fpn-measurable will be functions of wy, we, ..., w, only. Now let us reverse-engineer what H,, needs to be:
n n—1
My =My y =Y Hi(Zk— Zi1) = Y Hi(Zk — Zi-1) = Hy(Zn — Zn-1) = Hn(wn — 2p+ 1)
k=1 k=1

=H,(2 - 2p)1{w, =1} — H,2p1{w, = —1}.
From here, checking the two cases w,, = £1,

Mn(wla ceey Wn—1, 1) - Mn—l(wla ceey wn—l)

Hn(wla ceey Wn—1, 1) = 9 _ 2p )
(11.5)
Mn— ) ey WMn— _Mn ] n—a_l
Hn(wlv ceey Wn—1, 71) = 1(w1 - 1) 2p (wl = )

However, H, needs to be predictable, it cannot depend on w,. In other words, the two lines of this display
must agree. This is where the martingale property for M,, comes handy:

Mn,1 = E(Mn |‘Fn71) :pMn(wl, ey Wp—1, 1) + (1 fp)Mn(wl, ey Wn—1, 71)
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Rearranging,
(1 7p)(Mn71 - Mn(wla ceey Wn—1, 71)) = p(Mn(wla ceey Wn—1, 1) - Mnfl)
exactly saying that the two lines of (I1.3]) indeed agree, and H,, does not depend on w,. The choice

My (w1, ooy wp—1, 1) = M, _ My_1— M,(w1, .oy Wp—1, —1
Hy(wiy ooy Wpt) = (r 22;) ! _ ! (12p Eal)

will then work, and, following the proof, is also unique. [l

Definition 11.4. Following a hedging strategy (A, V4,), the discounted value of our wealth is
(11.6) Y, =Q+7r)™" Xo=04r)"" - (4pSn +VoBn) = (1+7)"" - (Aps15n + Vot1Bn)
(recall (IT.2))).

This is the amount of bonds we would need to buy at time zero if we were to achieve wealth X,, at time n
purely via the fixed bond interest rate 7.

Lemma 11.5. For any hedging strategy (An, Vi), the discounted wealth (TG is a martingale in the probability
space (ILT) with p : = $=%. It can be obtained by transforming the martingale (IL4) as Y, = Yo + (H ¢ Z),, by
the unique predictable process

(11.7) H, = 2=

(147" ApSp_1.
Proof. Rewrite the definition (IT.6) using B,, = (1 + )" By:
Yo=0+r)"" A5, +VoBy=(1+7)""" A1 + Vat1Bo.
Its increment can be written as (use the first expression for Y;, and the second one for Y;,_1)
Yo —Yoo1=0Q+r)" A4, (Sn -1+ T)Sn_l) =(1+4+7r)"" Ay(Ry —7)Sn-1.

To proceed, assume p = =2, that is

b—a
r=b-ap+ta= a;Lberia(prl),
the mean of R,, (IL3). Hence
Y,-Y, 1= IFTa(l +7r) " ApSn—1(wn —2p+1) = Hy, - (w, —2p+ 1),

with the definition (IT.T) of H,,. This is equivalent to Y,, = Yy + (H e Z),, with the martingale Z,, from (IT.4).
This implies that Y is a martingale, and the previous lemma then assures that no other predictable H can
provide Y =Yy, + He Z. (|

Proof of Theorem[I1.2. Define the martingale
Y, :=(r+1)""-E[(Sy — K)" | F,].

We construct the hedging strategy with this being its discounted wealth as in (ITG). To do that, use Lemma
T3l to find the unique predictable process H,, for this martingale, from which the predictable strategy A, can
be read off via (IL7). (Identity (IT2) then produces V,, as well.) The wealth process with this strategy is
X, = (14+7)"Y,, and we check Xo = (1+7)°Yy = (r+1)"" -E(Sy — K)* since Fy is trivial; X,, > 0 is obvious,
and Xy = (1+7r)¥N(1+7)"N(Sy — K)* = (Sy — K)* since all random variables are Fy-measurable. Hence
the (A, V;,) created this way is a hedging strategy for the European option with initial value as stated in the
theorem.

To see uniqueness of this strategy, assume there is another one (A4/,, V;) hedging the same European option.
Its discounted wealth Y, is a martingale that satisfies

Yi=QQ+r)""Xy=0+1)""N (Sv - K)* .
The martingale property then implies

Y, =E(Y} [ F) = (r+1)™V - E[(Sy — K)*| Fal,
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thus Y, =Y, which in turn implies that A}, = A, for each n. Uniqueness of the martingale in particular
implies uniqueness of the initial value z = X = Yy = (r + 1)~ . E(Sy — K)* of the hedging strategy.

It remains to show that A,, > 0 for each n under this strategy. This is equivalent to H,, > 0, and from the
lemma we have

Yn(wla ceey Wn—1, 1) - Yn—l
2—2p
(1+7r)=N

= gy [E(Sy — K wr, s o, 1) = B((Sx = K)F fwr, o wn)]-

H, =

Hence we need to prove

E((SN—K)+|W1, ey Wp—1, 1)
ZE((SN—K)+|LU1, ...,wn_l)
:pE((SNiK)+|w17 sy Wn—1, 1) +(1*]))]E((SN*K)+|&11, ceey Wn—1, 71)
which happens if and only if
E((SN 7K)+ |CLJ1, ceey Wn—1, 1) Z E((SN 7K)+ |w1, ey Wn—1, 71)

To see this, first notice that the function (Sy — K)* is non-decreasing in each of the variables wy, ..., wy.
Calculating the above conditional expectations involves summing over wy41, ..., wy each taking values +1.
For every such outcome,

Sy — K) (w1, ooy w1, 1, wngy ooy wi) > (S — K) (Wi, ooy i1, =1, oty oy WN),
and the inequality survives the summation for the conditional expectations. O
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