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1 A quick summary of some parts of measure theory

. . . from the probabilist point of view. This section mostly follows Shiryaev [1]. The aim is to build up a
mathematical model of random experiments and measurements (random variables, that is) thereof. Probabilities
of these random outcomes are also to be constructed.

The power set P(Ω) of a set Ω is the set of all subsets of Ω, and Ac : = Ω−A denotes the complement of a
set A ⊆ Ω.

Definition 1.1. A family A ⊆ P(Ω) of sets is called an algebra, if

• Ω ∈ A,

• for every A, B ∈ A, A ∪B ∈ A,

• for every A ∈ A, Ac ∈ A.

This simple construction allows us to build a prototype of probabilities as follows.

Definition 1.2. Let A be an algebra. A set function µ : A → [0, ∞] is a finitely additive measure on A, if for
all disjoint A, B ∈ A,

µ(A ∪B) = µ(A) + µ(B).

As it turns out, the objects we defined so far are too general for our purposes, hence a refinement comes
next.

Definition 1.3. A family F ⊆ P(Ω) of sets is called a σ-algebra, if

• Ω ∈ F ,

• for every countably many sets A1, A2, · · · ∈ F ,
⋃

n An ∈ F ,

• for every A ∈ F , Ac ∈ F .

In this case the pair (Ω, F) is called a measurable space. Any set A ∈ F is said to be F-measurable, or just
measurable.

The novelty here is the requirement of F being closed for countably infinite unions, as opposed to finite unions
only for an algebra.

Example 1.4. Here are examples of σ-algebras (check!).

• F∗ = {∅, Ω} is called the trivial σ-algebra.

• If Ω is countable, very often F∗ = P(Ω) is considered, which is a σ-algebra in this case.

• For a set A ⊂ Ω, FA = {∅, A, Ac, Ω} is the σ-algebra generated by A.

Definition 1.5. A measure µ on an algebra A is a set function µ : A → [0, ∞] such that for any mutually
disjoint sets A1, A2, · · · ∈ A with

⋃
n An ∈ A,

(1.1) µ
( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

holds. If µ(Ω) = 1, then we call µ a probability measure, and often use P instead. In this case the triplet
(Ω, F , P) is called a probability space.

Notice that a σ-algebra is automatically an algebra, thus this definition applies for measures on σ-algebras.
Property (1.1) is referred to as σ-additivity.

When modeling a random experiment, the set Ω is called the sample space of the experiment, it contains all
elementary outcomes. Its measurable subsets A ∈ F are called events. These are exactly those sets of outcomes
which have a probability. The empty set ∅ is always an event, called the null event. The above definitions imply
that P(∅) = 0.

Here is a rather useful characterisation of probability measures.

Theorem 1.6. Let P be a finitely additive measure on an algebra A, and assume P(Ω) = 1. Then the following
are equivalent.

(a) P is a probability measure.
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(b) If (An)n≥1 is an increasing sequence of sets in A (that is, An ⊆ An+1 for n ≥ 1) and
⋃∞

n=1 An ∈ A, then
the limit below exists, and

lim
n→∞

P(An) = P
( ∞⋃
n=1

An

)
.

(c) If (An)n≥1 is a decreasing sequence of sets in A (that is, An ⊇ An+1 for n ≥ 1) and
⋂∞

n=1 An ∈ A, then
the limit below exists, and

lim
n→∞

P(An) = P
( ∞⋂
n=1

An

)
.

(d) If (An)n≥1 is a decreasing sequence of sets in A and
⋂∞

n=1 An = ∅, then the limit below exists, and

lim
n→∞

P(An) = 0.

Notice that the union of increasing sets, and the intersection of decreasing sets, are sometimes called the limit
of the sets.

Proof. We first show that (a) implies (b). Let B1 = A1, Bn = An\An−1 for all n ≥ 2. Then {Bn}∞n=1 satisfies⋃∞
n=1 Bn =

⋃∞
n=1 An and Bi ∩Bj = ∅ for all i ̸= j. So {Bn}∞n=1 forms a disjoint partition of

⋃∞
n=1 An. By the

σ-additivity assumption in (a) we have that

P(
∞⋃

n=1

An) = P(
∞⋃

n=1

Bn) =

∞∑
n=1

P(Bn) = lim
n→∞

n∑
k=1

P(Bk) = lim
n→∞

P(
n⋃

k=1

Bk) = lim
n→∞

P(An).

Now we show (b) implies (c). Since An is a decreasing sequence, Ω\An is an increasing sequence. Moreover,

P(
∞⋂

n=1

An) = 1− P(
∞⋃

n=1

Ω\An) = 1− lim
n→∞

P(Ω\An) = lim
n→∞

P(An).

(c) implies (d) trivially, it is simply a special case. It remains to show that (d) implies (a), i.e., that if An is a
decreasing sequence with

⋂∞
n=1 An = limn→∞ An = ∅ then limn→∞ P(An) = 0 implies P has the σ-additivity

property.
Take any disjoint family of sets {Ak}∞k=1. Then by finite additivity,

∞∑
k=1

P(Ak) = lim
n→∞

n∑
k=1

P(Ak) = lim
n→∞

P(
n⋃

k=1

Ak) = lim
n→∞

[P(
∞⋃
k=1

Ak)− P(
∞⋃

k=n+1

Ak)].

Now
⋃∞

k=n+1 Ak is a decreasing sequence in n where
⋂∞

n=1

⋃∞
k=n+1 Ak = ∅. This is because if ω ∈

⋃∞
k=n+1 Ak

then ω ∈ AN for unique N (by disjointness of the family). Hence ω is not in the intersection of all tail unions.
By (c), P(

⋃∞
k=n+1 Ak) → 0. Moreover, σ-additivity holds.

Remark 1.7. If An is an increasing sequence then P(An) is an increasing sequence. Indeed this is because
An ⊆ An+1 implies that An+1 = An+1\An∪An. By the σ-additivity of P we have that P(An+1) = P(An+1\An)+
P(An) ≥ P(An). Moreover P(An) ↗ P(limn→∞ An).

This applies similarly to decreasing sequences. If An is decreasing then P(An) is a decreasing sequence and
P(An) ↘ P(limn→∞ An).

We now proceed with a short summary on how some commonly used σ-algebras are constructed. Here is
the main tool for this:

Lemma 1.8. Let E ⊆ P(Ω). Then

• there is a smallest algebra α(E) that contains all sets from E;

• there is a smallest σ-algebra σ(E) that contains all sets from E.

Proof. The intersection of algebras is an algebra, and the intersection of σ-algebras is a σ-algebra. To find the
ones in the lemma, take the intersection of all algebras, respectively σ-algebras, that contain all sets in E .
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The above α(E) and σ(E) are said to be generated by E .
Let us now consider

(1.2)

A : =
{ n⋃

i=1

(ai, bi] : n < ∞, and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn in R ∪ {−∞};

n⋃
i=1

(ai, bi] ∪ (c, ∞) : n < ∞, and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ c in R ∪ {−∞}
}
.

This is an algebra (check!), but not a σ-algebra: each of
(
0, 1− 1

n

]
is in A, but the union of these sets for all n

is (0, 1), which is not in A. However, this algebra can be used to generate the following σ-algebra:

Definition 1.9. The Borel σ-algebra on R, denoted B(R), is the σ-algebra generated by (1.2). Sets in B(R)
are said to be Borel sets.

This σ-algebra contains all subsets of R that are ”of practical interest”. I.e., it is not easy to come up with
a non-Borel set in R. Those interested can look up the Vitali set for an example.

In a similar way, n-dimensional rectangles:{
(a1, b1]× (a2, b2]× · · · × (an, bn] : a1 < b1, a2 < b2, . . . , an < bn in R

}
,

rather than one-dimensional intervals, can be used to generate B(Rn), the Borel σ-algebra on Rn. This will
contain ”all n-dimensional sets of practical interest”.

One can then proceed to R∞, the set of real-valued sequences, by considering the σ-algebra B(R∞) generated
by rectangles of arbitrary finite dimension. Again, ”practical sets”, such as{

(xn) : lim
n→∞

xn exists and is finite
}
;
{
(xn) : sup

n
xn > 5

}
;
{
(xn) : lim inf

n→∞
xn > 5

}
all belong to B(R∞).

One can even define B(RT ) with an uncountable set T , for example σ-algebras on function spaces. This
usually requires some restrictions on the family of functions considered.

The next theorem, which we cover without proof, allows to construct measures on generated σ-algebras.

Theorem 1.10 (Carathéodory). Let A be an algebra on Ω. If µ0 is a σ-additive measure on (Ω, A), then there
exists a unique extension of it to

(
Ω, σ(A)

)
(the generated σ-algebra).

Definition 1.11. Let F : R → [0, 1] be a cumulative distribution function, and define the σ-additive measure
P on (1.2) by P(a, b] : = F (b)− F (a). This extends to the Lebesgue-Stieltjes measure on

(
R, B(R)

)
.

When F is the Uniform(0, 1) distribution, we obtain the Lebesgue measure on B([0, 1]) this way.
We briefly mention that P can be extended to Rn in a natural way, then Kolmogorov’s extension theorem

can be used, under certain circumstances, to extend further to R∞ or even RT .
The next task is to construct random variables on a probability space (Ω, F , P).

Definition 1.12. Let (Ω, F) be a measurable space. A function X : Ω → R is called measurable, if for any
B ∈ B(R), X−1(B) ∈ F . A (real-valued) random variable on a probability space (Ω, F , P) is a measurable
function from X : Ω → R.

It should now be clear how probabilities associated with random variables work. The above definition exactly
says that a random variable taking value in a Borel set B ∈ B(R) is an event in our probability space (i.e.,
belongs to F). As an example, let us consider the distribution function F of a random variable. When first
encountered, it is usually defined as F (x) = P{X ≤ x}. With the above construction, it should rather be
written as

F (x) = P{ω ∈ Ω : X(ω) ≤ x} = P
{
X−1(−∞, x]

}
.

which of course has the same meaning, we just understand properly now what is behind the notation. The set
(−∞, x] ∈ B(R) is a Borel set, X is a measurable function which implies that X−1(−∞, x] ∈ F , hence this is
an event and it makes sense to talk about its probability in the sample space Ω.

We remark that limits, sums, differences, products, ratios (where defined), Borel-measurable functions of
random variables are each random variables again, in other words these operations do not ruin measurability.

Next we briefly summarise without proofs how to construct expectations of random variables. (In measure
theory, this would be called integrals of measurable functions.) We sometimes omit mentioning the probability
space (Ω, F , P).
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Definition 1.13. A random variable X is called simple, if there exist n > 0, x1, x2, . . . , xn ∈ R, and
A1, A2, . . . , An ∈ F with which

X(ω) =

n∑
k=1

xk · 1Ak
(ω).

Here 1A stands for the indicator function:

1A(ω) =

{
1, if ω ∈ A,

0, if ω /∈ A.

The next theorem we borrow from measure theory without proof.

Theorem 1.14.

(a) For any random variable X there exists a sequence X1, X2, . . . of simple random variables such that
|Xn| ≤ |X| for all n, and Xn(ω) → X(ω) as n → ∞ for all ω ∈ Ω.

(b) Moreover, if X(ω) ≥ 0 for every ω ∈ Ω, then Xn can be chosen to be non-decreasing in n for every fixed
ω ∈ Ω (denoted Xn(ω) ↗ X(ω) as n → ∞ for all ω ∈ Ω).

Definition 1.15 (Expectations).

(a) If X is simple with X =
∑n

k=1 xk · 1Ak
, then EX : =

∑n
k=1 xk · P(Ak).

(b) If X ≥ 0 is a random variable, then EX : = limn→∞ EXn, where Xn ↗ X are simple random variables.
(Such sequence exists by the above, and it is a theorem that this limit does not depend on the choice of
the sequence.) Notice that EX = ∞ is possible.

(c) If X is a random variable, EX : = EX+ − EX−, unless both expectations on the right-hand side are
infinite, in which case EX is not defined.

Here the positive and negative parts are used:

(1.3) x+ = x · 1{x > 0}, x− = −x · 1{x < 0}, x = x+ − x− for any x ∈ R.

Notice that options for EX are ”not defined”, = ∞, = −∞, or ∈ R.

2 Conditional expectation and a toy example

We start this section without proof with Kolmogorov’s Theorem on conditional expectations from Williams [2].
Notation: E(· ; G) := E(·1G).

Theorem 2.1. Let X be a random variable on the probability space (Ω, F , P), with E |X| < ∞. Let G be a sub
σ-algebra. Then there exists a random variable V such that

(a) V is G-measurable,

(b) E |V | < ∞,

(c) E(V ; G) = E(X ; G) for any G ∈ G.

Such V is called a version of the conditional expectation E(X | G). Indeed, two random variables V and V ′ with
the above properties agree almost everywhere: P(V = V ′) = 1.

Our toy example will be the following. Let Ω = {1, 2, . . . , 12}, F = P(Ω), and P be the uniform measure
on the finite set Ω. Elementary outcomes in Ω will be denoted by ω. Define the random variables

Y : =
⌈ω
4

⌉
=


1, if ω = 1, 2, 3, 4,

2, if ω = 5, 6, 7, 8,

3, if ω = 9, 10, 11, 12,

X : =
⌈ω
2

⌉
=



1, if ω = 1, 2,

2, if ω = 3, 4,

3, if ω = 5, 6,

4, if ω = 7, 8,

5, if ω = 9, 10,

6, if ω = 11, 12.
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The σ-algebra generated by Y is

G : = σ(Y ) := σ
(
Y −1

(
B(R)

))
= σ

(
{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}

)
=

{
∅, {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12},

{1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 3, 4, 9, 10, 11, 12}, {5, 6, 7, 8, 9, 10, 11, 12}, Ω
}
.

Similarly, the σ-algebra generated by X is

H : = σ(X) := σ
(
X−1

(
B(R)

))
= σ

(
{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}

)
.

We see that G ⊂ H ⊂ F . The σ-algebra G is coarser (contains less information), while H is finer (more
information). We also see that

• Y is G-measurable (by definition).

• Y is H-measurable (due to G ⊂ H).

• X is H-measurable (by definition).

• X is not G-measurable (e.g., X−1{1} = {1, 2} /∈ G).

Next, we find the conditional expectation E(X | G) based on the definition above. As G = σ(Y ), an equivalent
notation for this is E(X | G) = E(X |Y ). Due to |Ω| = 12 < ∞, finite mean of V = E(X | G) is not an issue. We
look for a G-measurable random variable V with E(V ; G) = E(X ; G) for any G ∈ G. An efficient choice for G
is {1, 2, 3, 4}. As V is G-measurable, and G has no set that distinguishes between these four outcomes, we find
that V (ω) is the same for ω = 1, 2, 3, 4. The above expectations turn into

V (1)P{1}+ V (2)P{2}+ V (3)P{3}+ V (4)P{4} = X(1)P{1}+X(2)P{2}+X(3)P{3}+X(4)P{4}
V (1)P{1}+ V (1)P{2}+ V (1)P{3}+ V (1)P{4} = X(1)P{1}+X(2)P{2}+X(3)P{3}+X(4)P{4}

V (1) = V (2) = V (3) = V (4) =
1 · 1

12 + 1 · 1
12 + 2 · 1

12 + 2 · 1
12

1
12 + 1

12 + 1
12 + 1

12

= 1.5.

Similarly, with the respective choices G = {5, 6, 7, 8} and G = {9, 10, 11, 12},

V (5) = V (6) = V (7) = V (8) =
3 · 1

12 + 3 · 1
12 + 4 · 1

12 + 4 · 1
12

1
12 + 1

12 + 1
12 + 1

12

= 3.5,

V (9) = V (10) = V (11) = V (12) =
5 · 1

12 + 5 · 1
12 + 6 · 1

12 + 6 · 1
12

1
12 + 1

12 + 1
12 + 1

12

= 5.5.

Hence the conditional expectation is the random variable

E(X | G)(ω) = V (ω) =


1.5, if ω = 1, 2, 3, 4,

3.5, if ω = 5, 6, 7, 8,

5.5, if ω = 9, 10, 11, 12,

being just the average of X over the smallest nontrivial respective units in G.
In a similar way one can check

E(Y | G)(ω) =


1, if ω = 1, 2, 3, 4,

2, if ω = 5, 6, 7, 8,

3, if ω = 9, 10, 11, 12

 = Y (ω),

and indeed it is always the case that E(Y |Y ) = Y almost everywhere (a.e.).
Further examples are E

(
X | {∅, Ω}

)
, where the random variable V we are looking for is measurable w.r.t.

the trivial σ-algebra {∅, Ω}, in other words is a constant. Picking G = ∅ gives E(V ; ∅) = 0 = E(X ; ∅), which
is not very informative. The choice G = Ω on the other hand fixes the value of the constant V :

E(V ; Ω) = E(X ; Ω)

EV = EX

V = EX,

that is, E
(
X | {∅, Ω}

)
= EX. This is again true a.e. in general, conditioning on the trivial σ-algebra always

produces a full expectation.
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If, on the other hand, one conditions on the full σ-algebra F that has all information that can be available
in the probability space (Ω, F , P), then every event G ∈ F can be substituted, and the very detailed ones
completely fix the conditional expectation. In our example we can e.g., take {7} to obtain

E(V ; {7}) = E(X ; {7}),
V (7) · P{7} = X(7) · P{7},

V (7) = X(7) = 4.

Similarly, for any ω ∈ Ω one has V (ω) = X(ω), which leads us to E(X | F) = V = X. This is again a.e. true for
general probability spaces: conditioning on the full information does not do any averaging and gives back the
random variable instead.

Our final example is

I : = σ
(
{1, 5, 9}, {3, 7, 11}

)
=

{
∅, {1, 5, 9}, {3, 7, 11}, {2, 4, 6, 8, 10, 12}, {1, 3, 5, 7, 9, 11},

{1, 2, 4, 5, 6, 8, 9, 10, 12}, {2, 3, 4, 6, 7, 8, 10, 11, 12}, Ω
}
.

We compute V = E(Y | I) as before. This is I-measurable, hence constant on {1, 5, 9}, as well as on {3, 7, 11}
and on {2, 4, 6, 8, 10, 12}. Substituting these as G (the rest in I will not provide additional help) in E(V ; G) =
E(Y ; G) results in

V (1) = V (5) = V (9) =
Y (1)P{1}+ Y (5)P{5}+ Y (9)P{9}

P{1}+ P{5}+ P{9}
=

1 · 1
12 + 2 · 1

12 + 3 · 1
12

1
12 + 1

12 + 1
12

= 2,

V (3) = V (7) = V (11) =
Y (3)P{3}+ Y (7)P{7}+ Y (11)P{11}

P{3}+ P{7}+ P{11}
=

1 · 1
12 + 2 · 1

12 + 3 · 1
12

1
12 + 1

12 + 1
12

= 2,

V (2) = V (4) = V (6)

= V (8) = V (10) = V (12) = Y (2)P{2}+Y (4)P{4}+Y (6)P{6}+Y (8)P{8}+Y (10)P{10}+Y (12)P{12}
P{2}+P{4}+P{6}+P{8}+P{10}+P{12}

=
1 · 1

12 + 1 · 1
12 + 2 · 1

12 + 2 · 1
12 + 3 · 1

12 + 3 · 1
12

1
12 + 1

12 + 1
12 + 1

12 + 1
12 + 1

12

= 2.

We find that E(Y | I) is actually a constant, and in fact = EY .
We can repeat this calculation with any function f : R → R (in general this is chosen to be bounded and

measurable) to find E
(
f(Y ) | I

)
= E

(
f(Y )

)
, a constant. This is when we say that the random variable Y is

independent of the σ-algebra I. Knowing which of the events {1, 5, 9} and {3, 7, 11} did or did not happen
will not tell us any information about Y .

If I happens to be generated by yet another random variable Z, I = σ(Z), then the above is equivalent to
variables Y and Z being independent.

An important property and tool with conditional expectations is the following:

Theorem 2.2 (Tower rule). Let Z be a random variable on the probability space (Ω, F , P), with E |Z| < ∞.
Let G ⊆ H be sub σ-algebras (G is coarser and H is finer). Then

E
(
E(Z | G) |H

)
= E

(
E(Z |H) | G

)
= E(Z | G).

The proof follows from the definition of conditional expectations after a bit of manipulations, we leave this to
the reader. Some special cases of interest:

• If H = F , the full σ-algebra in the probability space (Ω, F , P), then E(Z |H) = E(Z | F) = Z for any
random variable. The above then reads E(Z | G) for all three terms.

• If G = {∅, Ω}, the trivial σ-algerba, then E(· | G) = E(·). The Tower rule then becomes

E
(
(EZ) |H

)
= E

(
E(Z |H)

)
= EZ.

The first of these terms is uninteresting, but the second equality is very useful and might be familiar from
earlier studies, especially when H = σ(V ), the σ-algebra generated by another random variable V . In this
case it reads E

(
E(Z|V )

)
= EZ.
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3 Probability toolbox

The following statements are widely used across probability, and will be built on in this unit. We always assume
the probability space (Ω, F , P) in the background.

We start with an important fact from calculus.

Lemma 3.1. Let ak ∈ (0, 1) with limk→∞ ak = 0. Then

∞∏
k=1

(1− ak) = 0 ⇔
∑
k

ak = ∞.

Proof. Convexity of the exponential function implies 1 − x ≤ e−x for any x ∈ R. As terms in the product are
non-negative,

0 ≤
∞∏
k=1

(1− ak) ≤
∞∏
k=1

e−ak = e−
∑∞

k=1 ak .

This proves ⇐.
The function e−2x is smooth with value 1 and derivative −2 at x = 0. Hence for all small enough x > 0,

1− x ≥ e−2x. There is an index K that makes ak small enough for this purpose for any k ≥ K. Therefore

∞∏
k=K

(1− ak) ≥
∞∏

k=K

e−2ak = e−2
∑∞

k=K ak .

If
∏∞

k=1(1− ak) = 0, then the left hand-side above is also zero, which proves ⇒.

Definition 3.2. Let A1, A2, . . . be events. Then

lim sup
n

An : =

∞⋂
n=1

∞⋃
k=n

Ak.

By decoding the union and the intersection it becomes clear that this event describes that infinitely many of
the An’s occur, in other words An’s occur infinitely often (i.o.).

Theorem 3.3 (Borel-Cantelli lemmas).

1. If A1, A2, . . . are any events with
∑

n P(An) < ∞, then P(lim supn An) = 0.

2. If A1, A2, . . . are independent events with
∑

n P(An) = ∞, then P(lim supn An) = 1.

Proof.

1. Notice that
⋃∞

k=n Ak is decreasing in n. Thus, by continuity of probability (Theorem 1.6) and Boole’s
inequality,

P
( ∞⋂
n=1

∞⋃
k=n

Ak

)
= lim

n→∞
P
( ∞⋃
k=n

Ak

)
≤ lim

n→∞

∞∑
k=n

P(Ak) = 0.

2. Notice that
⋂∞

k=n A
c
k is increasing in n. Thus,

P
( ∞⋂
n=1

∞⋃
k=n

Ak

)
= 1− P

( ∞⋃
n=1

∞⋂
k=n

Ac
k

)
= 1− lim

n→∞
P
( ∞⋂
k=n

Ac
k

)
= 1− lim

n→∞

∞∏
k=n

(
1− P(Ak)

)
.

The product is 0 for any n due to Lemma 3.1, which completes the proof.

We now turn to interchangeability of limits and expectations. The below are standard parts of measure
theory, where they are treated for more general integrals than just expectations and sums as here.

Theorem 3.4 (Monotone convergence). Let Y, X, X1, X2, X3, . . . be random variables.

(a) If Xn ≥ Y for each n, EY > −∞, and Xn ↗ X for every ω ∈ Ω, then EXn ↗ EX.

(b) If Xn ≤ Y for each n, EY < ∞, and Xn ↘ X for every ω ∈ Ω, then EXn ↘ EX.
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Proof. Proof of (a) only; (b) follows similarly.
Suppose Y ≡ 0, i.e., ∀ω ∈ Ω, Y (ω) = 0. Then as Xn ≥ 0 (seen in the measure theory section) for each Xk

there exists a sequence of simple (that is, constant on finitely many measurable sets) random variables X
(n)
k

such that X
(n)
k ↗ Xk as n → ∞.

X1 ≤ X2 ≤ X3 ≤ · · · ≤ X∨
|

∨
|

∨
|

...
...

...∨
|

∨
|

∨
|

X
(3)
1 X

(3)
2 X

(3)
3∨

|
∨
|

∨
|

X
(2)
1 X

(2)
2 X

(2)
3∨

|
∨
|

∨
|

X
(1)
1 X

(1)
2 X

(1)
3

Define Z(n) := max1≤j≤n X
(n)
j . That is, Z(n) is the maximum value of the first n terms in the nth row from

the bottom in the table above.
Properties of Z(n):

• For all 1 ≤ k ≤ n we have X
(n)
k ≤ Z(n) ≤ Xn. The first inequality follows immediately from the definition

of Z(n), it is simply the maximum of such values, and is hence an upper bound. The second inequality
follows from chasing the column up within which the maximum lies and then across to the value Xn.

Formally, for some 1 ≤ k ≤ n, Z(n) = X
(n)
k ≤ Xk ≤ Xn.

• Z(n−1) ≤ Z(n). Why? Z(n−1) = max1≤j≤n−1 X
(n−1)
j ≤ max1≤j≤n−1 X

(n)
j ≤ Z(n). The inequality follows

from the fact that for all j ∈ N we have X
(n−1)
j ≤ X

(n)
j , and then we maximise over a larger domain.

Define Z := limn→∞ Z(n), which exists because Z(n) is an increasing sequence (the limit may possibly be
infinite).

Since for all 1 ≤ k ≤ n we have X
(n)
k ≤ Z(n) ≤ Xn, taking n → ∞ we see that

lim
n→∞

X
(n)
k ≤ lim

n→∞
Z(n) ≤ lim

n→∞
Xn =⇒ Xk ≤ Z ≤ X =⇒︸ ︷︷ ︸

k→∞

Z = X.

Note that, since the Z(n)s are simple (indeed they are a maximum of simple random variables), by the definition
of expectation of a limit simple random variables,

EX = EZ = E lim
n→∞

Z(n) = lim
n→∞

EZ(n) ≤ lim
n→∞

EXn.

Thus it remains to show that EX ≥ limn→∞ EXn. Since Xn ↗ X we have that Xn ≤ X for all n, which
implies that EXn ≤ EX. Hence,

lim
n→∞

EXn ≤ EX.

In the case where Y ̸≡ 0 then we repeat the above analysis with Xn − Y which is a non-negative random
variable.

For the next statement, notice that every sequence has a liminf.

Theorem 3.5 (Fatou’s lemma). Let Y, X1, X2, X3, . . . be random variables with Xn ≥ Y for each n, EY >
−∞. Then lim infn EXn ≥ E lim infn Xn.

It is sometimes convenient to pick Y ≡ 0 in the above theorems.

Proof. Define Zn := infm≥n Xm. Then Zn is an increasing sequence; indeed infm≥n Xm ≤ infm≥n+1 Xm since
the infinum is over a larger domain. Furthermore, Zn ↗ Z := lim infn→∞ Xn; this follows from the fact that
Zn is increasing and by definition

lim inf
n→∞

Xn = lim
n→∞

( inf
m≥n

Xm) = lim
n→∞

Zn.

Now Zn = infm≥n Xm ≥ Y as Xm ≥ Y for all m ∈ N. Thus we are in good shape to apply the monotone
convergence theorem:

lim
n→∞

EZn = EZ = E lim inf
n→∞

Xn

But on the left-hand-side, as the limit exists it is equal to the lim inf. Now Zn = infm≥n Xm ≤ Xn and thus

E lim inf
n→∞

Xn = lim
n→∞

EZn = lim inf
n→∞

EZn ≤ lim inf
n→∞

EXn.
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Theorem 3.6 (Dominated convergence). Let Y, X, X1, X2, X3, . . . be random variables, and assume |Xn| ≤ Y
for each n, EY < ∞, and Xn → X almost surely (a.s., that is, P{Xn → X} = 1). Then E |X| < ∞,
EXn → EX, and E |X −Xn| → 0.

Proof. To prove finiteness of the expectation note that Xn
a.s.−−→ X as n → ∞ implies that |Xn|

a.s.−−→ |X| as
n → ∞ (mod is a continuous function). Furthermore, since |Xn| ≤ Y , we have that |X| = limn→∞ |Xn| ≤ Y
almost surely.

To prove convergence of the expectation we construct the following chain of inequalities

EX = E lim
n→∞

Xn = E lim inf
n→∞

Xn ≤
∗
lim inf
n→∞

EXn ≤ lim sup
n→∞

EXn ≤
∗∗

E lim sup
n→∞

Xn = E lim
n→∞

Xn = EX,

where ∗ follows from Fatou’s lemma and ∗∗ follows from Fatou’s lemma on −Xn; indeed we have the relation
lim infn→∞(−Xn) = − lim supn→∞ Xn. Thus equality holds throughout the chain and we conclude that

lim inf
n→∞

EXn = lim sup
n→∞

EXn︸ ︷︷ ︸
=⇒ =limn→∞ EXn

= EX.

Since the lim inf and lim sup agree, limn→∞ EXn exists and is equal to EX. Thus

lim
n→∞

EXn = EX(=
⋆
E lim

n→∞
Xn),

where ⋆ follows from the fact that E limn→∞ Xn is also an element in the chain.
Finally, to prove E |X −Xn| → 0 we note that |Xn −X| ≤ |Xn| + |X| ≤ 2Y . Then we repeat the analysis

above with |Xn −X| and bounding random variable Y ≡ 2Y .

Example 3.7. Let

Xn =


n2 − 1, with probability

1

n2
,

− 1, with probability 1− 1

n2
,

be independent. One easily checks EXn = 0 ∀n, hence limn→∞ EXn = 0. However, the probabilities in the
first line are summable, hence Borel-Cantelli implies that a.s. Xn ̸= −1 only happens for finitely many n. It
follows that Xn → −1 a.s., the limit does not swap with the expectation. Conditions of both Monotone and
Dominated convergence fail.

Two important corollaries concern swapping sum and expectation. There is no issue with finite sums, but
infinite sums require some thought. These will be important later on, hence the proof is provided.

Theorem 3.8 (Tonelli). Let Xn ≥ 0 be random variables. Then E
∑∞

k=1 Xk =
∑∞

k=1 EXk.

Proof. First notice that
∑n

k=1 Xk ≥ 0 and non-decreasing in n, hence the expectations and infinite sums are
well-defined. The statement follows from Monotone convergence on the sequence

∑n
k=1 Xk which converges

monotonically to the infinite sum:

E
∞∑
k=1

Xk = E lim
n→∞

n∑
k=1

Xk = lim
n→∞

E
n∑

k=1

Xk = lim
n→∞

n∑
k=1

EXk =

∞∑
k=1

EXk.

Theorem 3.9 (Fubini). Let Xn be random variables with E
∑∞

k=1 |Xk| < ∞. Then E
∑∞

k=1 Xk =
∑∞

k=1 EXk.

Proof. Recall (1.3), and notice |x| = x+ + x− for any real x. By positivity,

(3.1) ∞ > E
∞∑
k=1

|Xk| = E
∞∑
k=1

(
X+

k +X−
k

)
= E

( ∞∑
k=1

X+
k +

∞∑
k=1

X−
k

)
= E

∞∑
k=1

X+
k + E

∞∑
k=1

X−
k ,

which also implies that both sums on the right are a.s. finite. Therefore, a.s.,

∞∑
k=1

Xk = lim
n→∞

n∑
k=1

Xk = lim
n→∞

n∑
k=1

(
X+

k −X−
k

)
= lim

n→∞

( n∑
k=1

X+
k −

n∑
k=1

X−
k

)
= lim

n→∞

n∑
k=1

X+
k − lim

n→∞

n∑
k=1

X−
k =

∞∑
k=1

X+
k −

∞∑
k=1

X−
k .
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By (3.1), we can apply E separately on this difference. Both sums on the right-hand side are of non-negative
terms, hence Tonelli’s theorem applies separately:

E
∞∑
k=1

Xk = E
∞∑
k=1

X+
k − E

∞∑
k=1

X−
k =

∞∑
k=1

EX+
k −

∞∑
k=1

EX−
k

= lim
n→∞

n∑
k=1

EX+
k − lim

n→∞

n∑
k=1

EX−
k = lim

n→∞

( n∑
k=1

EX+
k −

n∑
k=1

EX−
k

)
= lim

n→∞

n∑
k=1

EXk =

∞∑
k=1

EXk.

When joining the two limits we used that, by (3.1) and the same application of Tonelli’s theorem, each of∑n
k=1 EX+

k and
∑n

k=1 EX−
k has a finite limit.

Here is a simple, but very useful theorem, the proof of which is again omitted.

Theorem 3.10 (Jensen’s inequality). Let X be a random variable with E |X| < ∞, and g a convex R → R
function. Then g(EX) ≤ E g(X).

Proof. Since g is convex, for all x0 ∈ R there exists λ such that g(x) ≥ g(x0) + λ(x− x0). (E.g., the tangent to
the curve at all points is a lower bound for the curve if it happens to be differentiable, but this is not needed.)
Hence g(X) ≥ g(x0) + λ(X − x0); in particular, for x0 = EX ∈ R,

g(X) ≥ g(EX) + λ(X − EX).

Note that λ is a constant which depends on the function g and the value of EX only (the slope of the bounding
line is dependent only on the position x0 on the curve) and thus it is not random. Therefore E

(
g(X)−

)
< ∞,

hence E g(X) exists, and

E g(X) ≥ E g(EX) + E[λ(X − EX)] = g(EX) + λ[EX − EX] = g(EX).

Next we turn to expectations of powers of random variables.

Definition 3.11. Given the probability space (Ω, F , P) and a p > 0 real, we denote by Lp(Ω, F , P) the set

of random variables with finite pth absolute moment. We also introduce the notation ||X||p : =
(
E |X|p

)1/p
,

with the convention that here the pth power is inside the expectation, while the 1/p power is outside. Hence
Lp(Ω, F , P) is exactly the set of those random variables with finite ||X||p.

As we will see, often cases where p ≥ 1 are relevant.
Next we explore useful properties of || · ||p.

Theorem 3.12 (Ljapunov’s inequality). For any real 0 < p < q and any random variable, ||X||p ≤ ||X||q.

Proof.

(E |X|s) 1
s = [(E |X|s) t

s ]
1
t ≤

⋆⋆
[E(|X|s) t

s ]
1
t = (E |X|t) 1

t ,

where ⋆⋆ follows from Jensen’s inequality on the function ( · ) t
s : R → R; which is convex since t > s and

therefore t
s > 1.

Theorem 3.13 (Hölder’s inequality). Let p, q > 1 that satisfy 1
p + 1

q = 1. If ||X||p < ∞ and ||Y ||q < ∞, then

E |XY | ≤ ||X||p · ||Y ||q.

The case p = q = 2 should be familiar under the name Cauchy-Schwarz inequality.

Proof. Since log : R → R is a concave function and x
p + y

q is a convex combination of x and y we have that

log

(
x

p
+

y

q

)
≥ log(x)

p
+

log(y)

q
=⇒ x

p
+

y

q
≥ x

1
p · y

1
q ,

since the exponential function is increasing. Let x = |X|p
E |X|p and y = |Y |q

E |Y |q . Then

1

p

|X|p

E |X|p
+

1

q

|Y |q

E |Y |q
≥ |X|

(E |X|p)
1
p

· |Y |
(E |Y |q)

1
q

.

Taking expectations of both sides,

1 ≥ E |XY |
(E |X|p)

1
p (E |Y |q)

1
q

.
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Notice that by |X|p ≥ 0, ||Xp|| = 0 implies that X = 0 a.s. Also, ||λX||p = |λ| · ||X||p for any λ ∈ R is
easily checked from the definition. This, together with the triangle inequality below, justifies the name p-norm
for || · ||p when p ≥ 1.

Theorem 3.14 (Minkowski’s inequality). Let p ≥ 1, and ||X||p < ∞, ||Y ||p < ∞. Then ||X + Y ||p ≤
||X||p + ||Y ||p.

Proof. If either (or both) ∥X∥p = ∞ or ∥Y ∥p = ∞ then the inequality holds trivially. Hence suppose that
∥X∥p < ∞ and ∥Y ∥p < ∞.

For the case p = 1 this is trivial and follows immediately from the triangle inequality of the mod.
Now consider the case p > 1. Define F (x) = (a+ x)p − 2p−1(ap + xp), x > 0; where a > 0 is some constant.

This has the derivative
F ′(x) = p(a+ x)p−1 − 2p−1pxp−1,

and so F is stationary at x = a. Furthermore,

F ′(x) > 0 ⇐⇒ p(a+ x)p−1 − 2p−1pxp−1 > 0 ⇐⇒
(
a+ x

2x

)p−1

> 1 ⇐⇒ x < a.

Similarly, F ′(x) = 0 if and only if x = a and F ′(x) < 0 if and only if x > a. Thus F is an increasing function
for x < a; reaching a global maximum at x = a and then decreasing for x > a. Therefore, F (x) ≤ F (a) = 0 for
all x ∈ R. We therefore have the inequality

(a+ x)p ≤ 2p−1(ap + xp)

for all a > 0, x > 0, p > 1. Applying this:

|X + Y |p ≤ (|X|+ |Y |)p ≤ 2p−1(|X|p + |Y |p).

Taking expectations,
E |X + Y |p ≤ 2p−1(E |X|p + E |Y |p) < ∞

since we assumed that both ∥X∥p < ∞ and ∥Y ∥p < ∞. This verifies that ∥X+Y ∥p < ∞, that is,X+Y ∈ LP (Ω).
Now we prove the Minkowski inequality.

E |X + Y |p = E(|X + Y ||X + Y |p−1) ≤
∗
E
[(
|X|+ |Y |

)
|X + Y |p−1

]
= E(|X||X + Y |p−1) + E(|Y ||X + Y |p−1).

Above, ∗ follows from the triangle inequality on R. Let q be such that 1
p + 1

q = 1; this implies q = p/(p − 1).
By Hölder’s inequality

E(|X||X + Y |p−1) ≤ (E |X|p)
1
p (E |X + Y |(p−1)q)

1
q = (E |X|p)

1
p (E |X + Y |p︸ ︷︷ ︸

<∞ by ∗

)
1
q = ∥X∥p∥X + Y ∥

p
q
p ,

E(|Y ||X + Y |p−1) ≤ (E |Y |p)
1
p (E |X + Y |(p−1)q)

1
q = (E |Y |p)

1
p (E |X + Y |p)

1
q = ∥Y ∥p∥X + Y ∥

p
q
p .

Plugging this into the above yields that,

E |X + Y |p︸ ︷︷ ︸
=∥X+Y ∥p

p

≤
(
∥X∥p + ∥Y ∥p

)
∥X + Y ∥

p
q
p .

Dividing through by ∥X + Y ∥
p
q
p (≥ 0) and noting that p− p/q = 1 by the definition of q (multiply by p), this is

precisely the Minkowski inequality.

4 Modes of convergence

There are several ways to state that a sequence of random variables converges to a limit. We define the most
commonly used modes and state some of their connections.

Definition 4.1.

• Random variables Xn converge weakly to X, denoted Xn
w−→ X, if for every bounded and continuous

f : R → R function, E f(Xn) → E f(X). This is equivalent to convergence of the distribution functions:
FXn

(x) → FX(x) at every x where the limit distribution function FX is continuous. (Those interested
can look up Portmanteau’s theorem.) Other commonly used notation for this is Xn ⇒ X.
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• Random variables Xn converge in probability to X, denoted Xn
P−→ X, if for any ε > 0, P{|X −Xn| ≥

ε} → 0.

• Random variables Xn converge strongly, or almost surely to X, if P{Xn → X} = 1.

• Fix a p > 0. Random variables Xn converge in Lp, denoted Xn
Lp

−→ X if ||X −Xn||p → 0.

Notice that for weak convergence one does not even need the random variables to be defined on the same
probability space. This mode only features the distributions, not the actual values of the random variables. The
other three modes compare values, hence require the random variables to be defined on a common probability
space.

Theorem 4.2.

(a) Xn
a.s.−−→ X if and only if for all ε > 0, P(supk≥n |Xk −X| ≥ ε) → 0 as n → ∞.

(b) Xn is Cauchy almost surely if and only if for all ε > 0, P(supk,ℓ≥n |Xk −Xℓ| ≥ ε) → 0 as n → ∞. This
is also equivalent to for all ε > 0, P(supk≥0 |Xn+k −Xn| ≥ ε) → 0.

Remark 4.3. Note that (a) is like a ‘boosted’ version of convergence in probability, where we require that all
points onwards from n are within ε of X.

Proof. (a) Define the events Am
k := {ω ∈ Ω : |Xk − X| ≥ 1

m} and Am :=
⋂∞

n=1

⋃∞
k=n A

m
k , which is the event

that |Xk −X| ≥ 1
m for infinitely many k.

Note thatXn ̸→ X if for somem ∈ N, Am occurs; that is, for somem > 0, |Xk−X| ≥ 1
m for infinitely many k.

The event that this happens for at least one m is
⋃∞

m=1 A
m. Thus Xn

a.s.−−→ X if and only if P(
⋃∞

m=1 A
m) = 0.

Since P(Am) ≤ P(
⋃∞

m=1 A
m) ≤

∑∞
m=1 P(Am), P(

⋃∞
m=1 A

m) = 0 if and only if P(Am) = 0 for all m ∈ N.
P(Am) = 0 if and only if

0 = P
( ∞⋂

n=1

∞⋃
k=n

Am
k︸ ︷︷ ︸

⋆

)
= lim

n→∞
P
( ∞⋃

k=n

Am
k︸ ︷︷ ︸

⋆⋆

)
= lim

n→∞
P(sup

k≥n
|Xk −X| ≥ 1/m).

⋆ defines a decreasing sequence. ⋆⋆ is the event that for some k ≥ n we have |Xk −X| ≥ 1
m , which occurs if

and only if the supremum, supk≥n |Xk −X| ≥ 1/m.
As the above m is arbitrarily large, the proof is complete.
To prove (b), we repeat exactly the same analysis with the event Bm

k,ℓ = {ω ∈ Ω : |Xk −Xℓ| ≥ 1
m}.

Theorem 4.4.

(a) Xn → X a.s. implies Xn
P−→ X.

(b) Fix any p > 0. Then Xn
Lp

−→ X implies Xn
P−→ X.

(c) Xn
P−→ X implies Xn

w−→ X.

Proof. To prove (a) we use the previous theorem, that is, that Xn
a.s.−−→ X if and only if for all ε > 0,

P(supk≥n |Xk − X| ≥ ε) → 0 as n → ∞. The event |Xn − X| ≥ ε implies that supk≥n |Xk − X| ≥ ε,
and thus

P(|Xn −X| ≥ ε) ≤ P(sup
k≥n

|Xk −X| ≥ ε) → 0,

which implies Xn
P−→ X.

To prove (b) we use Markov’s inequality, which says that for a non-negative random variable Z, P(Z ≥ c) ≤
EZ/c. Then for all p > 0,

P(|Xn −X| ≥ ε) = P(|Xn −X|p ≥ εp) ≤ E |Xn −X|p

εp
=

∥Xn −X∥pp
εp

→ 0

as n → ∞ since Xn
Lp

−→ if and only if ∥Xn −X∥p → 0.
Now we prove (c) which says that convergence in probability implies weak convergence (in distribution).

This is the most difficult to prove. Fix f bounded and continuous such that |f(x)| ≤ c (♠) for some c > 0. We
want to show that E f(Xn) → E f(X), or equivalently that |E f(Xn)− E f(X)| → 0. Fix ε > 0.

Assuming X has a proper distribution, i.e., that X is finite almost surely, there exists N > 0 such that

(⋆) P(|X| > N) ≤ ε

4c
.
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[−2N, 2N ] is compact, and thus f is uniformly continuous on [−2N, 2N ]. Hence there exists δ > 0 such that
for all x, y ∈ [−2N, 2N ] with |x− y| ≤ δ we have

(†) |f(x)− f(y)| ≤ ε

2
.

Define E(Z;A) = E(Z1A). Then for a disjoint partition of the sample space A1, A2, . . . , An, we may write EZ =
E(Z;A1)+E(Z;A2)+· · ·+E(Z;An). This is because E(Z;A1)+E(Z;A2)+· · ·+E(Z;An) = E[Z(1A1+· · ·+1An)]
by linearity of expectation and because (1A1+· · ·+1An)(ω) = 1 for all ω ∈ Ω by the disjointness of the partition.

|E f(Xn)− E f(X)| = |E[f(Xn)− f(X)]|
≤ E |f(Xn)− f(X)| Jensen’s inequality on | · |

= E
[
|f(Xn)− f(X)|︸ ︷︷ ︸

≤ ε
2 ⇐= †

; |Xn −X| ≤ δ; |X| ≤ N︸ ︷︷ ︸
=⇒ Xn,X∈[−2N,2N ],1≤1

]
+ E

[
|f(Xn)− f(X)|︸ ︷︷ ︸

♠ =⇒ ≤2c

; |Xn −X| ≤ δ︸ ︷︷ ︸
1≤1

; |X| > N
]

+ E
[
|f(Xn)− f(X)|︸ ︷︷ ︸

♠ =⇒ ≤2c

; |Xn −X| > δ
]

≤ ε

2
+ 2cP(|X| > N)︸ ︷︷ ︸

⋆ =⇒ ≤ ε
4c

+2cP(|Xn −X| > δ)

≤ ε+ 2cP(|Xn −X| > δ).

Since Xn
P−→ X, there exists N > 0 such that n ≥ N implies that P(|Xn −X| > δ) ≤ ε

2c . Thus n ≥ N implies
that

|E f(Xn)− E f(X)| ≤ ε+ 2cP(|Xn −X| > δ) ≤ 2ε.

We conclude this part with examples that show how reverse implications can fail in the above theorem.

Example 4.5. Let U ∼ Uniform(0, 1), and

X1 = 1[0, 1](U), X2 = 1[0, 1
2 ]
(U), X3 = 1[ 12 , 1]

(U), X4 = 1[0, 1
3 ]
(U), X5 = 1[ 13 ,

2
3 ]
(U), X6 = 1[ 23 , 1]

(U),

X7 = 1[0, 1
4 ]
(U), X8 = 1[ 14 ,

2
4 ]
(U), X9 = 1[ 24 ,

3
4 ]
(U), X10 = 1[ 34 , 1]

(U), X11 = 1[0, 1
5 ]
(U), . . .

This sequence converges to 0 in Lp, therefore in probability and weakly as well. (Just check the probability
that Xn ̸= 0.) However, there is always a later Xn with value 1, hence the sequence does not converge a.s.

Example 4.6. Let U ∼ Uniform(0, 1), and

• Xn : = Un. This converges to 0 in all senses.

• Xn : = nUn. This converges to 0 a.s., hence in probability and weakly as well. However,

E |Xn − 0| = nEUn = n · 1

n+ 1
→ 1 ̸= 0,

therefore L1 convergence does not hold. Notice how both Monotone and Dominated convergence fail for
Xn.

• We can take this to more extreme by Xn : = en1[0, 1
n ](U). Again, this converges to 0 a.s. However,

||0−Xn||p = 1
n1/p · en → ∞ for any p > 0.

Example 4.7. Given a sequence 0 ≤ pn ≤ 1, let Xn ∼ Bernoulli(pn) and independent. Then

• by the definitions, pn → 0 is equivalent to each of Lp and in probability convergence to 0,

• by the two Borel-Cantelli lemmas,
∑

n pn < ∞ is equivalent to a.s. convergence to 0.

The choice pn = 1
n therefore gives Lp but not a.s. convergence.

We close this section by noting that, with the assumptions as stated there, Monotone convergence, Fatou’s

lemma and Dominated convergence hold if we require Xn → X a.s., or Xn
P−→ X only, instead of convergence

for all ω ∈ Ω.
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5 Martingales, stopping times

Finally, all background is there to consider martingales. From here we mostly follow Williams [2]. Here are the
definitions required.

Definition 5.1. A filtered space is
(
Ω, F , (Fn)

∞
n=0, P

)
, where (Ω, F , P) is a probability space, and F0 ⊆ F1 ⊆

F2 ⊆ . . . ⊆ F are σ-algebras, jointly called a filtration. We also define F∞ : = σ
(⋃

n Fn

)
⊆ F .

Definition 5.2. A process (sequence of random variables, that is) Xn is adapted to the filtration (Fn)n≥0, if
for every n, the variable Xn is Fn-measurable.

This is to say that Fn contains all information about Xn, in other words given Fn, Xn is not random anymore.
An often used scenario is defining Fn = σ(X0, X1, . . . , Xn) from a process (Xn)n≥0. This is usually assumed
when a filtration is not explicitly given.

Definition 5.3. A process (Mn)n≥0 in a probability space (Ω, F , P) is a martingale with respect to a filtration
(Fn)n≥0, if

• it is adapted to (Fn)n≥0;

• E |Mn| < ∞ ∀n ≥ 0;

• E(Mn+1 | Fn) = Mn a.s., ∀n ≥ 0.

If instead, in the last equality, we have ≤, then we call M a supermartingale, while if it is ≥ then it is a
submartingale.

Notice that Mn is a (sub-, super-)martingale if and only if Mn−M0 is. Also, tower rule checks that EMn

=
≤
≥
EM0

for the respective cases.

Example 5.4. Let Xk be independent random variables with EXk = 0 for each k ≥ 1. Then
∑n

k=1 Xk is a
martingale. (For n = 0 we have an empty sum which we postulate to be zero.)

Example 5.5. Let Xk be independent random variables with EXk = 1 for each k ≥ 1. Then
∏n

k=1 Xk is a
martingale. (For n = 0 we have an empty product which we postulate to be one.)

Example 5.6. Let ξ ∈ L1 and Fn be a filtration. Then Mn : = E(ξ | Fn) is a martingale due to the Tower rule.

The first applications come from stopping a martingale at a time when something particular happens to a
process. This is covered next.

Definition 5.7. A process (Cn)n≥1 is predictable (also said previsible), if for every n ≥ 1, Cn is Fn−1-
measurable.

Imagine a game in rounds that is based on random outcomes Xn. For example, Xn can be the share price of
a certain stock. If a player possesses Ck of these stocks in the kth round of the game, then their joint value
changes Ck · (Xk −Xk−1) in this round. The total change in wealth is given by

(5.1) (C •X)n : =

n∑
k=1

Ck · (Xk −Xk−1).

Definition 5.8. The process (C • X)n in (5.1) is called the martingale transform of X by C, or the discrete
stochastic integral of C by X.

In this setup the player can change the amount Ck they own of the stock. However, as players do not foresee
the future, it is natural to assume that C is predictable.

Theorem 5.9. Let C be a predictable process.

(a) If there is a bound K > 0: 0 ≤ Cn ≤ K (∀n, ω), and X is (super)martingale, then so is C •X.

(b) If |Cn| ≤ K (∀n, ω), and X is martingale, then so is C •X.

The bound on Cn can be relaxed to both Cn and Xn being in L2 for each n.

Proof. That C •X is adapted follows easily. Consider

E
(
(C •X)n+1 − (C •X)n | Fn

)
= E

(
Cn+1 · (Xn+1 −Xn) | Fn

)
= Cn+1 E

(
(Xn+1 −Xn) | Fn

)
.

The last step used predictability of C, and the bounds imposed on C or C and X. These latter are the
necessary conditions for C •X ∈ L1 and for pulling Cn+1 out of the expectation. The theorem follows from the
(super)martingale property of X in the respective cases.
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Definition 5.10. A random variable T = 0, 1, 2, . . . , ∞ is a stopping time, if ∀n ≤ ∞, the event {T ≤ n} ∈ Fn.
For a process Xn, we call XT

n : = XT∧n the stopped process.

Here i ∧ j means the smaller of the two numbers i or j. This definition expresses the property that we can
decide whether the stopping time has arrived or not at time n just by looking at the history of the process(es)
up to n. Notice that n = ∞ is included in the definition. As an elementary example, the time of the first Head
in a sequence of coinflips is a stopping time, while the time one before the first Head is not.

Theorem 5.11. Let T be a stopping time. If X is a (super)martingale, then so is XT .

Proof. Define
Cn : = 1{n ≤ T} = 1{n− 1 < T} = 1− 1{T ≤ n− 1},

which is Fn−1-measurable by the right-hand side. In other words, C is predictable, which implies that C •X is
a (super)martingale. On the other hand, the sum with this C is telescopic:

(C •X)n =

n∑
k=1

1{k ≤ T} · (Xk −Xk−1) =

T∧n∑
k=1

(Xk −Xk−1) = XT∧n −X0 = XT
n −X0.

Theorem 5.12 (Doob’s optional stopping theorem). Let T be a stopping time and X a supermartingale. If
either of the below holds:

(i) T is bounded,

(ii) X is bounded and T is a.s. finite,

(iii) X is of bounded increments: ∃K > 0: |Xn −Xn−1| ≤ K ∀n ≥ 1, and ET < ∞,

then EXT ≤ EX0. If M is a martingale and either of (i), (ii), (iii) holds, then EMT = EM0.

Notice that one of the homework sheets (will) contain(s) an improved version of this theorem.

Proof. In all cases T < ∞ a.s., hence XT∧n −→
n→∞

XT a.s. We also know by Theorem 5.11 that EXT∧n ≤ EX0.

The question is whether we can pass this limit through the expectation. In the respective cases:

(i) for any n larger than the bound on T , EX0 ≥ EXT∧n = EXT .

(ii) the bound on X allows to use Dominated convergence.

(iii) in this case we have, for every n,

|XT∧n −X0| =
∣∣∣T∧n∑
k=1

(Xk −Xk−1)
∣∣∣ ≤ T∧n∑

k=1

|Xk −Xk−1| ≤ K · (T ∧ n) ≤ KT.

As the right-hand side is independent of n and has finite mean, it can act as the bounding Y variable in
Dominated convergence, which then again allows to pass the limit through the expectation. The proof for
a martingale M is analogous.

Notice that we only used, hence it is sufficient to verify, the conditions on the stopped process XT .

Corollary 5.13. If M is a martingale of bounded increments, C is bounded and predictable, T ∈ L1 is a
stopping time, then E(C •M)T = 0.

When X ≥ 0, we can apply Fatou’s lemma instead of Dominated convergence to relax the conditions of optional
stopping:

Theorem 5.14. If X ≥ 0 is a supermartingale and T is an a.s. finite stopping time, then EXT ≤ EX0.

Proof. In this case XT∧n ≥ 0 and converges to XT a.s., hence by Fatou’s lemma,

EXT = E lim
n→∞

XT∧n = E lim inf
n

XT∧n ≤ lim inf
n

EXT∧n ≤ lim inf
n

EX0 = EX0.
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The next lemma is useful for checking if ET < ∞ holds. It is enough to check that, no matter the history,
stopping happens within a fix time interval with a probability bounded away from zero:

Lemma 5.15. Let T be a stopping time, and assume ∃N, ε > 0 : P{T ≤ n + N | Fn} ≥ ε a.s. for all n ≥ 0.
Then ET < ∞.

Proof. For k ≥ 1,

P{T > kN} = P
{
{T > kN} ∩ {T > (k − 1)N}

}
= P{T > kN |T > (k − 1)N}P{T > (k − 1)N}

≤ (1− ε)P{T > (k − 1)N}

by the assumption, which recursively gives P{T > kN} ≤ (1 − ε)k. The sequence P{T > ℓ} is non-increasing,
and its sum gives the expectation of T (check if you have not seen this before!). Hence

ET =

∞∑
ℓ=0

P{T > ℓ} ≤ N

∞∑
k=0

P{T > kN} ≤ N
1

1− (1− ε)
=

N

ε
< ∞.

We turn to a few applications.

Example 5.16. A monkey repeatedly types any of the 26 letters of the English alphabet independently with
equal chance. Let T be the number of letters that have been typed when the entire word “ABRACADABRA”
first appears. We are after ET .

First notice that this is a stopping time and is finite due to Lemma 5.15: no matter what happened before,
with probability ε = 26−11 the stopping occurs in at most N = 11 steps.

To proceed, we add a gambling process to this problem. Before each hit of a new letter, a new gambler
arrives and bets £1 on the letter “A”. If the new letter is something else, the gambler loses their bet and exits
the game. If the new letter is “A”, then the gambler receives £26, which they all bet on the next letter being
“B”. If this next letter is something else, all bet is lost and the gambler exits the game. If this next letter is
“B”, then the gambler receives £262, which they all bet on the third letter being “R”, and so on. If the gambler
wins all the way down to “ABRACADABRA”, the gambler exits the game with wealth £2611 and T becomes
the total number of letters typed at this point. Otherwise the gambler loses all their money and exits the game.
Also, new gamblers arrive at each step and start the same betting strategy. Denote by Xn the combined wealth
of all gamblers who are in play after the nth letter has been typed. We claim that Mn : = Xn−n is a martingale.

To check this, notice that Mn is adapted to the natural filtration generated by the monkey, and is bounded
for any given n, hence is in L1. The martingale property is checked by first observing that the expected wealth
of a gambler already in play does not change. That is because their bet is lost with probability 25

26 and multiplied
by 26 with probability 1

26 , hence the mean value stays. A gambler already out of play stays with their 0 wealth
so that doesn’t change either. However, a new gambler arrives and their expected wealth after a flip is 26· 1

26 = 1
which adds to the conditional expectation of Xn+1. Therefore,

E(Mn+1 | Fn) = E(Xn+1 | Fn)− (n+ 1) = Xn + 1− (n+ 1) = Mn.

Notice that EM1 = EX1 − 1 = 0, hence we can extend the definition by M0 = 0.
The stopped martingale MT is of bounded increments, and ET < ∞, hence Optional stopping applies and

gives
0 = M0 = EMT = EXT − ET.

It remains to calculate XT . At the time of stopping, there are only three gamblers in play. The one who came at
time T − 11 has wealth 2611. Less lucky is the gambler who arrived at T − 4; they successfully bet on “ABRA”
and have £264. Finally, the gambler who just arrived at T and bet on “A” has £26. Thus,

ET = EXT = XT = 2611 + 264 + 26 ≃ 3.7 · 1015.

Notice how repetitions in “ABRACADABRA” increase ET (why?).

Example 5.17. Let Xk be i.i.d. ±1-valued with equal chance. The sum Sn =
∑n

k=1 Xk is called simple
symmetric random walk (SSRW). Empty sums are zero, hence S0 = 0. Then Sn is a martingale, and

T : = inf{n : Sn = 1}

is a stopping time in the natural filtration of the walk. We will check in Example 5.18 that T is a.s. finite, and
ST = 1 a.s. Also, EST∧n = ES0 = 0 from the martingale property, as seen in Theorem 5.11. However, the
conditions of Optional stopping are not met, and

1 = EST ̸= ES0 = 0.

In particular this shows via case (iii) of Optional stopping that ET = ∞ since Sn is of bounded increment.
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Example 5.18. Consider the SSRW and the stopping time T as in Example 5.17. We show T < ∞ a.s., and
even calculate its moment generating function. Finiteness of T implies recurrence of SSRW.

For any θ > 0, the process

Mθ
n : =

eθSn

(cosh θ)n

is a martingale. It is clearly adapted and finite for each n, and the martingale property works out:

E
(
Mθ

n+1 | Fn

)
=

E
(
eθ(Sn+Xn+1) | Fn

)
(cosh θ)n+1

=
eθSn

(cosh θ)n+1
· e

θ + e−θ

2
=

eθSn

(cosh θ)n
= Mθ

n.

We cannot rule out T = ∞. However, in this case we know Sn ≤ 0 for each n, hence

0 ≤ Mθ
n ≤ eθ·0

(cosh θ)n
−→
n→∞

0

by cosh θ > 1. On the event {T = ∞} we therefore define Mθ
T = 0 and have Mθ

T∧n = Mθ
n −→

n→∞
Mθ

T . We also

have Mθ
T∧n −→

n→∞
Mθ

T on {T < ∞}.
By definition of T ,

Mθ
T∧n =

eθST∧n

(cosh θ)T∧n
≤ eθ

(cosh θ)T∧n
≤ eθ,

which is a bound independent of n, hence dominated convergence applies on the above limit:

1 = lim
n→∞

EMθ
T∧n = E lim

n→∞
Mθ

T∧n = EMθ
T = E(Mθ

T ; T < ∞) = E
( eθST

(cosh θ)T
; T < ∞

)
= E

( eθ

(cosh θ)T
; T < ∞

)
= E

( eθ

(cosh θ)T

)
,

where the martingale property EMθ
T∧n = Mθ

0 = 1, then Mθ
T = 0 on {T = ∞}, then ST = 1 on {T < ∞},

finally cosh θ > 1 were used. From this we conclude

(5.2) E
( 1

(cosh θ)T

)
= e−θ.

Next we take θ ↘ 0, which makes cosh θ ↘ 1. If T = ∞ then 1
(cosh θ)T

= 0 for any θ > 0, hence so is its

limit. However, if T < ∞ then the limit is 1. Together,

lim
θ↘0

1

(cosh θ)T
= 1{T < ∞}.

As the bound 0 ≤ 1
(cosh θ)T

≤ 1 holds no matter the value of T , we can apply dominated convergence on the

above limit:

1 = lim
θ↘0

e−θ = lim
θ↘0

E
( 1

(cosh θ)T

)
= E

(
lim
θ↘0

1

(cosh θ)T

)
= E1{T < ∞} = P{T < ∞},

which was our goal.
Substitute 0 < α = 1

cosh θ < 1 into (5.2) and solve this substitution for e−θ to obtain (check!) the generating
function for the random variable T

EαT =
1−

√
1− α2

α
.

6 Martingale convergence

This section gives an introduction to yet another strength of the martingale property: convergence under rather
general assumptions. We start with examining upcrossings:

Definition 6.1. Fix a < b real numbers and let Xn be a process. The upcrossing number until N is defined as

UN [a, b] : = max{k : ∃0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ N with Xsi < a, Xti > b for all 1 ≤ i ≤ k}.
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This definition counts what the name suggests: how many times the process increases from below level a to
above level b before time N . To capture these increments, we also define

C0 : = 0, Cn : = 1{Cn−1 = 1}1{Xn−1 ≤ b}+ 1{Cn−1 = 0}1{Xn−1 < a} (n ≥ 1).

Think about Cn as an on-off switch: once it is on (Cn−1 = 1), it stays on unless X exceeds level b. Once it
is off (Cn−1 = 0), it stays off until X descends below level a. Notice that if Xn is adapted, then this Cn is
predictable. Let

Yn : = (C •X)n =

n∑
k=1

(Xk −Xk−1)Ck.

This captures the increments of X during the on periods of C. It then follows that

YN ≥ (b− a) · UN [a, b]− (XN − a)−.

To see this notice that any upcrossing is of increment at least b− a, all of which is captured by YN . However, if
X descends below a after the last upcrossing, that is also captured by YN and might contribute with a negative
sign. This is taken care of by the last term.

Lemma 6.2 (Doob’s upcrossing lemma). If Xn is a supermartingale, then (b− a)EUN [a, b] ≤ E(XN − a)−.

Proof. By Theorem 5.9, Yn is a supermartingale, hence EYN ≤ 0.

Corollary 6.3. Let a < b, and let Xn be a supermartingale that is bounded in L1. (That is, supn E |Xn| < ∞.)
Then

(b− a)EU∞[a, b] ≤ |a|+ sup
m

E |Xm| < ∞.

In particular, U∞[a, b] is a.s. finite.

Proof. As UN [a, b] ≥ 0 is monotone in N , we have

(b− a)EU∞[a, b] = (b− a)E lim
N

UN [a, b] = (b− a) lim
N

EUN [a, b] ≤ lim
N

E(XN − a)−

by monotone convergence. To finish the proof,

E(XN − a)− ≤ E |XN − a| ≤ E |XN |+ |a| ≤ |a|+ sup
m

E |Xm|,

and the right-hand side is independent of N .

Theorem 6.4 (Doob’s forward convergence theorem). Let Xn be a supermartingale that is bounded in L1.
Then X∞ : = limn Xn exists a.s. and is finite.

Proof.

{Xn does not converge} = {lim inf
n

Xn < lim sup
n

Xn} =
⋃
a<b
a,b∈Q

{lim inf
n

Xn < a < b < lim sup
n

Xn}

⊆
⋃
a<b
a,b∈Q

{U∞[a, b] = ∞}.

The right-hand side is a countable union of zero probability events, has zero probability itself.
To see that the limit is a.s. finite, use Fatou’s lemma:

E |X∞| = E lim inf
n

|Xn| ≤ lim inf
n

E |Xn| ≤ sup
n

E |Xn| < ∞,

which implies |X∞| < ∞ a.s.

Notice that if Xn ≥ 0 is a supermartingale, then L1-boundedness is automatic: E |Xn| = EXn ≤ EX0.
Finally, we have a bit to say about L2-martingales. The scalar product of L2-random variables X and Y is

defined by ⟨X, Y ⟩ : = E(XY ). Indeed check that this defines a scalar product. If Mn is an L2-martingale, and
k ≤ m < n, then Mn − Mm is orthogonal to Fk of the filtration. Namely, for any Y Fk-measurable random
variable

⟨Mn−Mm, Y ⟩ = E
(
(Mn−Mm)Y

)
= EE

(
(Mn−Mm)Y | Fk

)
= E

(
Y E(Mn−Mm | Fk)

)
= E

(
Y ·(Mk−Mk)

)
= 0.

In particular, increments of an L2-martingale in disjoint time intervals are orthogonal: for ℓ < k ≤ m < n,
⟨Mn −Mm, Mk −Mℓ⟩ = 0. Another way of stating this is that these increments are uncorrelated. This is the
main observation used in the next theorem.
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Theorem 6.5. An L2 martingale Mn is bounded in L2 if and only if
∑∞

k=1 E(Mk −Mk−1)
2 < ∞. In this case

Mn → M∞ a.s. and in L2.

Proof. Due to the orthogonal increments as above, all cross terms of the square below have zero mean, and the
following Pythagorean theorem holds:

EM2
n = E

(
M0 +

n∑
k=1

(Mk −Mk−1)
)2

= EM2
0 +

n∑
k=1

E(Mk −Mk−1)
2 ↗ EM2

0 +

∞∑
k=1

E(Mk −Mk−1)
2

as n → ∞. This proves the first statement: the left-hand side is bounded iff the infinite sum is finite.
If Mn is bounded in L2, then it is also bounded in L1 by Ljapunov’s inequality, and the forward convergence

theorem provides the a.s. limit. To see the L2 convergence, use Fatou’s lemma and the Pythagorean theorem
as

E(M∞ −Mn)
2 = E lim

r→∞
(Mn+r −Mn)

2 ≤ lim inf
r

E(Mn+r −Mn)
2 = lim inf

r

n+r∑
k=n+1

E(Mk −Mk−1)
2

=

∞∑
k=n+1

E(Mk −Mk−1)
2 −→

n→∞
0

due to finiteness of the infinite sum.

7 Doob decomposition

We briefly cover a very useful technique of separating a martingale from a stochastic process. This is called Doob
decomposition and its continuous-time analogue, called Doob-Meyer decomposition, is the basis of stochastic
integration.

Theorem 7.1 (Doob decomposition). Let (Xn)n≥0 be an adapted process in L1. Then

(a) there is

• a martingale (Mn)n≥0 with M0 = 0,

• a predictable process (An)n≥0 with A0 = 0

such that Xn = X0 +Mn +An. This decomposition is almost everywhere unique in the sense that for any
other pair (M̂n, Ân)n≥0 with the above properties we have P{Mn = M̂n and An = Ân for all n ≥ 0} = 1.

(b) (Xn)n≥0 is a submartingale if and only if P{An ≤ An+1 for all n ≥ 0} = 1 in the above decomposition.

Assuming this decomposition works, we can actually guess what A should be via a next step analysis:

(7.1)
E(Xk −Xk−1 | Fk−1) = E(Mk −Mk−1 | Fk−1) + E(Ak −Ak−1 | Fk−1)

= Mk−1 −Mk−1 + E(Ak −Ak−1 | Fk−1) = Ak −Ak−1.

We start the proof by summing this display for the definition of A.

Proof. Define A0 = 0 and for n ≥ 1

An : =

n∑
k=1

E(Xk −Xk−1 | Fk−1).

This is predictable due to k − 1 ≤ n − 1 in the above sum and the properties of the conditional expectation.
Then let

Mn : = Xn −X0 −An.

M0 = 0, Mn ∈ L1, and M being adapted are clear and, by separating the last term in the sum,

E(Mn | Fn−1) = E(Xn −X0 −An | Fn−1) = E(Xn | Fn−1)−X0 −
n∑

k=1

E(Xk −Xk−1 | Fk−1)

= Xn−1 −X0 −
n−1∑
k=1

E(Xk −Xk−1 | Fk−1) = Xn−1 −X0 −An−1 = Mn−1.
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Hence the above decomposition has the required properties. For a.e. uniqueness notice that any decomposition
has to satisfy (7.1), which leaves no other choice of A, hence no other choice of M (up to zero probability sets).
Part (b) is coming from An = Xn −X0 −Mn:

An+1 −An = E(An+1 | Fn)−An = E(Xn+1 | Fn)−X0 − E(Mn+1 | Fn)−Xn +X0 +Mn = E(Xn+1 | Fn)−Xn.

Definition 7.2. Let (Mn)n≥0 be an L2-martingale with M0 = 0. Then M2 has the a.e. unique Doob decom-
position into a martingale N and a predictable process A:

M2 = N +A.

The process A is often denoted as ⟨M⟩, and is called the brackets process of M .

It is easy to check, and we will see later, that (M2
n)n≥0 is a submartingale. It therefore follows that A is a.s.

non-decreasing, with an a.s. limit A∞ : = limn→∞ An. Since EM2
n = EAn, we have that M is bounded in L2

if and only if EA∞ < ∞.
We also note that

An −An−1 = E(M2
n −M2

n−1 | Fn−1) = E
(
(Mn −Mn−1)

2 | Fn−1

)
.

8 Uniform integrability

We have seen before that Lp convergence is stronger than convergence in probability. However, there is a
condition that allows to conclude Lp convergence from convergence in probability. This is explored below, and
will be used later for martingales.

Notice that by monotone convergence,

(8.1) lim
c→∞

E
(
|X|p ; |X| ≥ c

)
= 0 for any X ∈ Lp.

This helps understanding the following definition.

Definition 8.1. A sequence Xn of random variables is pth power uniformly integrable, if

lim
c→∞

sup
n

E
(
|Xn|p ; |Xn| ≥ c

)
= 0.

The following lemma will help exploiting uniform integrability.

Lemma 8.2. Let X ∈ L1. Then ∀ε > 0 ∃δ > 0 such that ∀F ∈ F event with P(F ) < δ, E
(
|X| ; F

)
< ε holds.

Proof. By contradiction, assume that there is an ε > 0 and a sequence Fn of events such that P(Fn) < 2−n,
but E

(
|X| ; Fn

)
≥ ε. Denote H : = lim supn Fn. Then, on one hand, Borel-Cantelli 1 implies that P(H) = 0.

On the other hand, an application of Fatou’s lemma on −|X| · 1Fn
gives

E
(
|X| ; H

)
= E

(
lim sup

n
|X| · 1Fn

)
≥ lim sup

n
E
(
|X| ; Fn

)
≥ ε,

which is a contradiction.

We can reprove (8.1) with this lemma. If X ∈ Lp, fix Y = |X|p ∈ L1, ε > 0, and δ for this Y as in Lemma 8.2.
For this δ, via Markov’s inequality, there is a large enough K, such that

P{|X| ≥ K} = P{|X|p ≥ Kp} ≤ E |X|p

Kp
< δ.

Then, with F = {|X| ≥ K}, the lemma says

E
(
|X|p ; |X| ≥ K

)
= E(Y ; F ) < ε.

That is, by picking large enough K, we could bring the expectation below ε. This is equivalent to (8.1).
With the help of the above, we can now go from in probability convergence and uniform integrability to Lp

convergence.

Theorem 8.3. Let p ≥ 1, suppose X, X1, X2, . . . ∈ Lp, and Xn
P−→ X. Then (iv) ⇒ (i) ⇔ (ii) ⇔ (iii) ⇐ (v),

where
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(i) Xn
Lp

−→ X;

(ii) Xn is pth power uniformly integrable;

(iii) E |Xn|p → E |X|p;

(iv) there exists a p < q < ∞, such that supn E |Xn|q < ∞;

(v) there exists a Y ∈ Lp, such that ∀n, |Xn| < Y .

Below partial proof is given to this statement.

Proof of (i) ⇒ (ii), for p = 1. Fix ε > 0, we seek K such that ∀n, E
(
|Xn| ; |Xn| ≥ K

)
≤ ε.

By the assumed L1-convergence, there is an N such that E |X − Xn| < ε
2 whenever n > N . Lemma 8.2

provides positive δ0, δ1, δ2, . . . , δN such that

∀F , if P(F ) < δ0, then E
(
|X| ; F

)
<

ε

2
, ∀F , if P(F ) < δn, then E

(
|Xn| ; F

)
< ε

for 1 ≤ n ≤ N . Set δ = min{δ0, δ1, . . . , δN} and notice that this is still positive.
When n ≤ N , define Fn = {|Xn| > K}, and pick K large enough that P(Fn) < δ for each 1 ≤ n ≤ N .

Notice that this is possible due to only finitely many of the Xn’s for this case. By the above, we then have
E
(
|Xn| ; |Xn| ≥ K

)
< ε.

When n > N , we argue as follows. The assumed L1 convergence implies boundedness in L1: supr E |Xr| < ∞.
By increasing K if necessary, we can achieve

(8.2)
supr E |Xr|

K
< δ.

A triangle inequality gives (with common factor 1{|Xn| ≥ K})

E
(
|Xn| ; |Xn| ≥ K

)
≤ E

(
|X| ; |Xn| ≥ K

)
+ E

(
|Xn −X| ; |Xn| ≥ K

)
≤ E

(
|X| ; |Xn| ≥ K

)
+ E |Xn −X|.

For the first term, take Fn = {|Xn| ≥ K}, and notice P(Fn) ≤ E |Xn|
K < δ due to (8.2). The choice we made

with δ ≤ δ0 then bounds this term by ε
2 . The second term is also bounded by ε

2 due to our initial choice of N
and n > N .

Proof of (ii) ⇒ (i), for p = 1. Define the cutoff function

φK(x) =


K, if x > K,

x, if −K ≤ x ≤ K,

−K, if x < −K.

Fix ε > 0 and notice that by the assumed uniform integrability and by (8.1), there is a K for which

E
∣∣φK(Xn)−Xn

∣∣ < ε

3
, and E

∣∣φK(X)−X
∣∣ < ε

3
.

Also,
∣∣φK(x) − φK(y)

∣∣ ≤ |x − y| for any x, y ∈ R, hence φK(Xn)
P−→ φ(X) holds via Xn

P−→ X (check!). As

|φ(·)| ≤ K, Dominated convergence implies E
∣∣φK(Xn)− φ(X)

∣∣ → 0, in particular this can be brought below ε
3

for large n’s. Combining via triangle inequality,

E |Xn −X| ≤ E
∣∣Xn − φK(Xn)

∣∣+ E
∣∣φK(Xn)− φ(X)

∣∣+ E
∣∣φK(X)−X

∣∣ < ε.

Proof of (i) ⇒ (iii). This is just two triangle inequalities:

||Xn||p = ||Xn −X +X||p ≤ ||Xn −X||p + ||X||p
||X||p = ||X −Xn +Xn||p ≤ ||X −Xn||p + ||Xn||p, i.e.,
||Xn||p ≥ ||X||p − ||X −Xn||p.

As we assumed Lp convergence, ||X −Xn||p → 0. This results in

||X||p ≤ lim inf
n

||Xn||p ≤ lim sup
n

||Xn||p ≤ ||X||p,

that is liminf and limsup agree and ||Xn||p → ||X||p.
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(iii) ⇒ (i) is called Sceffé’s theorem, it will not be used later on and its proof is somewhat tedious, therefore it
is skipped. Those interested can ask me about it on drop-in sessions.

Proof of (iv) ⇒ (ii). Given p < q, we start with a little exercise in algebra. Set

pH =
q

p
> 1, qH =

q

q − p
> 1, and check

1

pH
+

1

qH
= 1.

Apply Hölder’s inequality on the variables |Xn|p and 1{Xn ≥ c}, with these pH and qH parameters:

E
(
|Xn|p ; Xn ≥ c

)
≤

(
E |Xn|q

) p
q ·

(
E1{Xn ≥ c}

q
q−p

) q−p
q =

(
E |Xn|q

) p
q ·

(
P{Xn ≥ c}

) q−p
q .

Here we also used that raising and indicator to a positive power does not change a thing. Markov’s inequality

gives P{Xn ≥ c} ≤ P{|Xn|q ≥ cq} ≤ E |Xn|q
cq , which further bounds the above by

(
E |Xn|q

) p
q ·

(
E |Xn|q

) q−p
q

cq−p
=

E |Xn|q

cq−p
.

Under the assumptions of (iv), taking limc→∞ supn brings this to 0.

Proof of (v) ⇒ (i). This is just an application of Dominated convergence.

9 Uniformly integrable martingales

Uniform integrability gives further powerful tools with martingales:

Theorem 9.1. Let Mn be a uniformly integrable martingale. Then M∞ = limn→∞ Mn exists a.s. and in L1,
and Mn = E(M∞ | Fn) a.s.

Proof. Due to uniform integrability, we can pick a c > 0 for which supn E(|Mn| ; |Mn| ≥ c) ≤ 1. Then,

E |Mn| = E(|Mn| ; |Mn| ≥ c) + E(|Mn| ; |Mn| < c) ≤ 1 + c,

where we used the simple algebraic fact that |x| · 1{|x| < c} ≤ c for any real x. As the right-hand side
is independent of n, it follows that Mn is bounded in L1, thus converges a.s. to a finite limit by Doob’s
forward convergence. That implies convergence in probability, which in turn gives L1 convergence when uniform
integrability is added (Theorem 8.3).

For the last bit, fix r > n > 0, F ∈ Fn:

|E(Mn ; F )−E(M∞ ; F )| = |E(Mr ; F )−E(M∞ ; F )| = |E(Mr−M∞ ; F )| ≤ E
(
|Mr−M∞| ; F

)
≤ E |Mr−M∞|

a.s., where first the martingale property (check how!), then Jensen’s inequality on the | · | function was used.
By the L1 convergence, the right-hand side goes to 0 as r → ∞. As the left-hand side has no r in it, it is
therefore zero: E(Mn ; F ) = E(M∞ ; F ). This proves Mn = E(M∞ | Fn) a.s. due to the Kolmogorov definition
of conditional expectations and Mn being Fn-measurable.

The next theorem is the reverse statement in some sense.

Theorem 9.2 (Lévy’s upwards theorem). Let ξ ∈ L1, (Fn)n be a filtration, and Mn : = E(ξ | Fn) (this is well
defined almost everywhere). Then Mn is a uniformly integrable martingale, Mn converges a.s. and in L1 to a
limit M∞, and M∞ = E(ξ | F∞) a.s.

Proof. The proof has three parts.
1. That Mn is a martingale is a simple application of the Tower rule.
2. Next we show that Mn is uniformly integrable. Fix ε > 0 and δ > 0 for ξ as in Lemma 8.2. Then pick

K > E |ξ|
δ . An application of Markov’s inequality, Jensen’s inequality on the conditional expectation, then the

Tower rule shows

P{|Mn| ≥ K} ≤ E |Mn|
K

=
E
∣∣E(ξ | Fn)

∣∣
K

≤
EE

(
|ξ|

∣∣Fn

)
K

=
E |ξ|
K

< δ,

making {|Mn| ≥ K} a suitable event for Lemma 8.2. We apply this lemma in the last step below, following
conditional Jensen again, the fact that {|Mn| ≥ K} ∈ Fn and the Tower rule:

E[|Mn| ; |Mn| ≥ K] = E
[∣∣E(ξ | Fn)

∣∣ ; |Mn| ≥ K
]

≤ E
[
E
(
|ξ|

∣∣Fn

)
; |Mn| ≥ K

]
= EE

(
|ξ| ; |Mn| ≥ K

∣∣Fn

)
= E

(
|ξ| ; |Mn| ≥ K

)
≤ ε.
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The right-hand side has no n, hence uniform integrability is proved. This implies existence of the limit M∞.
3. We need to show that this limit M∞ a.s. coincides with η : = E(ξ | F∞). We do this for the case ξ > 0,

otherwise the difference ξ = ξ+ − ξ− then provides the general proof. For any set F ∈ F∞, let

Q1(F ) := E(η ; F ) and Q2(F ) := E(M∞ ; F ),

these are measures on (Ω, F∞). If F ∈ Fn, then Tower rules, measurability (recall Fn ⊆ F∞), and Mn =
E(M∞ | Fn) from the previous theorem imply

Q1(F ) = E(η ; F ) = E
(
E(ξ | F∞) ; F

)
= EE(ξ ; F | F∞) = E(ξ ; F )

= EE(ξ ; F | Fn) = E
(
E(ξ | Fn) ; F

)
= E(Mn ; F )

= E
(
E(M∞ | Fn) ; F

)
= EE(M∞ ; F | Fn) = E(M∞ ; F ) = Q2(F ).

This shows that Q1 agrees with Q2 on
⋃

n Fn, hence also on F∞ = σ
(⋃

n Fn

)
. Since {η > M∞} ∈ F∞,

0 = Q1{η > M∞} −Q2{η > M∞} = E(η −M∞ ; η > M∞),

therefore P{η > M∞} = 0. In a similar way P{η < M∞} = 0, which completes the proof.

Next we prove an important theorem in probability using the machinery built up so far.

Definition 9.3. Let X1, X2, . . . be random variables, and Tn : = σ(Xn+1, Xn+2, . . . ). The tail σ-algebra is
T : =

⋂
n Tn.

An event in T is Tn-measurable for every n. In other words, it does not depend on any finite number of changes
in the sequence X1, X2, . . ..

Theorem 9.4 (Kolmogorov’s 0-1 law). The tail σ-algebra of independent variables is trivial. That is, with the
above definition, for any F ∈ T we have P(F ) = 0 or 1.

It is important here that the random variables are independent.

Proof. Let, as before, Fn = σ(X1, X2, . . . , Xn) and F ∈ T . Define η = 1F . As F ∈ T ⊆ F∞, η is F∞-
measurable, and is of course in L1. Add Lévy’s upwards theorem:

η = E(η | F∞) = lim
n→∞

E(η | Fn).

However, F ∈ T ⊆ Tn, which is independent of Fn, as these are generated by a disjoint set of independent
random variables. It follows that

1F = η = lim
n→∞

E(η | Fn) = lim
n→∞

E η = E η = P(F ),

which shows P(F ) is either 0 or 1.

Example 9.5. For a SSRW Sn =
∑n

k=1 Xk, let F : = {Sn

n → v} be the event that the walk has asymptotic

velocity v. Changing any finite number of the i.i.d. Xk’s does not influence the liminf, nor the limsup, of Sn

n ,
hence F is in the tail σ-algebra of the Xk’s. It follows that F is trivial, has either probability 0 or 1. Indeed,
the Strong law of large numbers states that P(F ) = 1 when v = 0, and zero in all other cases.

Recall that a filtration is an increasing system of σ-algebras and a natural interpretation is the expanding
information collected from observing a process starting at time zero. In what follows we still have a filtration,
but the σ-algebras are indexed up to time −1, rather than starting from time 0 as before. Accordingly, the limit
is taken as the σ-algebras decrease, rather than increase which is what has been done so far. An application
follows further down.

Theorem 9.6 (Lévy’s downward theorem). Let G−n, n ≥ 1, be σ-algebras with

G−n ⊆ G−n+1 ⊆ G−n+2 ⊆ . . . ⊆ G−1, and G−∞ : =

∞⋂
n=1

G−n.

Let γ ∈ L1, and M−n : = E(γ | G−n). Then M−∞ : = limn→∞ M−n exists a.s. and in L1, and M−∞ = E(γ | G−∞)
a.s.
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Proof. The martingale property E(M−n+1 | G−n) = M−n is checked the very same way as in Example 5.6, except
the time index is negative.

Uniform integrability works the same way as in Lévy’s upward theorem. This implies L1-boundedness, and
the upcrossing proof works as well to show a.s. convergence. Together with uniform integrability, L1 convergence
follows.

Finally, to show M−∞ = E(γ | G−∞) a.s., fix r > 0 and an event G ∈ G−∞ ⊆ G−r. Then

E(γ ; G) = EE(γ ; G | G−r) = E
(
E(γ | G−r) ; G

)
= E(M−r ; G).

Further, due to Jensen’s inequality and the L1 convergence,

|E(M−r ; G)− E(M−∞ ; G)| =
∣∣E(M−r −M−∞ ; G)

∣∣ ≤ E
(
|M−r −M−∞| ; G

)
≤ E |M−r −M−∞| −→

r→∞
0.

Hence E(γ ; G) = E(M−∞ ; G), and M−∞ = E(γ | G−∞) a.s. follows from M−∞ being G−∞-measurable and the
Kolmogorov definition of conditional expectations.

As an application, here is the proof of the Strong law of large numbers using martingales.

Theorem 9.7 (Strong law of large numbers). Let Xk be i.i.d. random variables in L1, and Sn =
∑n

k=1 Xk.
Then Sn

n → EX1 a.s. and in L1.

Proof. Let G−n = σ(Sn, Sn+1, . . . ), and notice that this system satisfies the conditions of the Downward
theorem. Notice also that due to independence and the structure of Sn,

G−n = σ
{
σ(Sn), σ(Xn+1, Xn+2, . . . )

}
,

where the σ-algebras σ(Sn), σ(Xn+1, Xn+2, . . . ) are independent. This is to say that the process of Sm’s,
m ≥ n from time n is determined by Sn and, independently, Xk’s for k > n. It follows by symmetry (check!)
that

M−n : = E(X1 | G−n) = E
(
X1 |σ(Sn)

)
=

Sn

n
.

Lévy’s downward theorem applies on this martingale, and gives the existence of the a.s. and L1 limit M−∞.
All that is left is to identify what this limit is. To this order notice that M−∞ = limn→∞ M−n = limn→∞

Sn

n
a.s. (one can instead use limsup here to make sure it is defined surely) does not depend on changes made on
any finitely many of the Xk’s. It is therefore in the tail σ-algebra of the i.i.d. sequence, which is trivial by
Kolmogorov’s 0-1 law. For any c ∈ R, P{M−∞ = c} is therefore 0 or 1. However, it cannot be 0 for every c,
there exists a non-random value which M−∞ takes a.s. and, due to EM−∞ = EM−1 = EX1, this value can
only be EX1.

10 Doob’s submartingale inequality

We continue with yet another important property of (sub)martingales. Compare the below with Markov’s
inequality.

Theorem 10.1 (Doob’s submartingale inequality). Let Zn ≥ 0 be a submartingale. Then for every c > 0 real
and n > 0 integer,

P
{
sup
k≤n

Zk ≥ c
}
≤

E
(
Zn ; supk≤n Zk ≥ c

)
c

≤ EZn

c
.

Since we are looking at a finite number of values, ‘max’ would be appropriate instead of ‘sup’. However, ‘sup’
is the usual formulation as it also works for the continuous time version of the theorem.

Proof. If the event F : =
{
supk≤n Zk ≥ c

}
occurs, then there must be a first instance of k where Zk ≥ c. This

is captured by the disjoint union

F =

n⋃
k=0

Fk, where

F0 : = {Z0 ≥ c},

Fk : =

k−1⋂
i=0

{Zi < c} ∩ {Zk ≥ c} (k > 0).

Notice that Fk ∈ Fk, hence the submartingale property gives, for k ≤ n,

E(Zn ; Fk) = EE
(
(Zn ; Fk) | Fk

)
= E

(
E(Zn | Fk) ; Fk

)
≥ E(Zk ; Fk).

The event Fk implies Zk ≥ c, hence we can proceed by

E(Zn ; Fk) ≥ E(Zk ; Fk) ≥ cP(Fk).

Summing this in k proves the theorem via the disjoint union above.
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Submartingales occur more often than one would first think. Let Mn be a martingale, g a convex function,
and assume E |g(Mn)| < ∞ for each n. Then by Jensen’s inequality,

E
(
g(Mn+1) | Fn

)
≥ g

(
E(Mn+1 | Fn)

)
= g(Mn),

hence g(Mn) is a submartingale.

Example 10.2. A total of n people queue up to buy one ticket each for a small performance with n seats in
the theatre. The price is one pound, and each person independently, with equal chance either has exact change,
or a two pound coin in which case a one pound coin change is needed from the cashier. The cashier starts the
service with m one pound coins. We seek an upper bound on the probability that the cashier runs out of one
pound coins at some point while serving this queue.

Set Xi to be 1 if person i has one pound, and −1 if they have a two pound coin. Then Sk : =
∑k

i=1 Xi is the
change in the number of one pound coins with the cashier due to serving the first k customers. It is a SSRW
hence a martingale, and the cashier runs out of one pound coins iff m+min1≤k≤n Sk < 0.

A non-negative submartingale is produced by taking square (a convex function) of Sk. Hence, the probability
of the cashier running out of change is bounded by

P
{

min
1≤k≤n

Sk < −m
}
≤ P

{
sup

1≤k≤n
S2
k ≥ (m+ 1)2

}
≤ ES2

n

(m+ 1)2
=

n

(m+ 1)2
.

As an example, n = 100 and m = 30 already gives a bound of cca 10%.

11 A discrete Black-Scholes option pricing formula

As an application, a very simple version of the option pricing formula is presented, still following Williams [2].
First, the probability space that will govern the stock market is assumed in this form:

(11.1) Ω = {ω1, ω2, . . . , ωN}, where ωn =

{
+ 1, with probability p,

− 1, with probability 1− p,

independently for different n’s. This generates the natural filtration Fn = σ{ω1, . . . , ωn}.
Stocks have value Sn, while bonds have value Bn per unit on day n, 0 ≤ n ≤ N . We have An stocks, and

Vn bonds in the morning of day n, so our total wealth is AnSn + VnBn. During the day, we are allowed to
exchange these, and by the evening of day n we might have An+1 stocks and Vn+1 bonds. However, the total
wealth during transactions must be conserved:

(11.2) Xn : = AnSn + VnBn = An+1Sn + Vn+1Bn.

Overnight, the values change from Sn to Sn+1 for stocks, and from Bn to Bn+1 for bonds. Bonds are not very
exciting, their value is deterministic, Bn = (1 + r)nB0 with a fixed −1 < r < ∞, which one can also write as

Bn −Bn−1 = rBn−1.

Stocks, on the other hand, will change randomly. With −1 < a < r < b < ∞ also fixed, the random rates are
governed by the probability space as

(11.3) Rn : =
a+ b

2
+

b− a

2
ωn =

{
b, if ωn = 1,

a, if ωn = −1,

and we have
Sn − Sn−1 = RnSn−1.

The European option is a contract made on day 0. It allows (but does not force) us to buy, at the end of
day N , a stock at striking price K. Its value on day N is therefore (SN −K)+ (when SN < K, we do not use
it). But how much does it worth on day 0?

Definition 11.1. A hedging strategy for the above option with initial value x is a predictable process (An, Vn)
such that for every ω ∈ Ω,

• X0 = x,

• Xn ≥ 0 for all 0 ≤ n ≤ N ,
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• XN = (SN −K)+.

(An and Vn can possibly go negative.)

If there exists a hedging strategy for exactly one value of x, then this should be the price of the European
option (for anything cheaper, everybody would buy it, and any more expensive, people would rather do the
hedging strategy). This is exactly the case:

Theorem 11.2. A hedging strategy as above exists if and only if

x = (r + 1)−N · E(SN −K)+

with respect to Ω (11.1) with p = r−a
b−a . This strategy is unique, and features An ≥ 0 for all 0 ≤ n ≤ N .

To prove this theorem, we need two lemmas. Define the martingale (with Z0 : = 0)

(11.4) Zn : =

n∑
k=1

(ωk − 2p+ 1).

The space Ω is simple enough to derive any other martingale from this one:

Lemma 11.3. Let Mn be any martingale in
(
Ω, (Fn)n≥0

)
. Then there is a unique predictable process Hn, such

that

Mn = M0 + (H • Z) = M0 +

n∑
k=1

Hk(Zk − Zk−1).

Proof. The proof is by brute force. We can write all random variables as functions of sequences of ωk’s. Those
Fn-measurable will be functions of ω1, ω2, . . . , ωn only. Now let us reverse-engineer what Hn needs to be:

Mn −Mn−1 =

n∑
k=1

Hk(Zk − Zk−1)−
n−1∑
k=1

Hk(Zk − Zk−1) = Hn(Zn − Zn−1) = Hn(ωn − 2p+ 1)

= Hn(2− 2p)1{ωn = 1} −Hn2p1{ωn = −1}.

From here, checking the two cases ωn = ±1,

(11.5)

Hn(ω1, . . . , ωn−1, 1) =
Mn(ω1, . . . , ωn−1, 1)−Mn−1(ω1, . . . , ωn−1)

2− 2p
,

Hn(ω1, . . . , ωn−1, −1) =
Mn−1(ω1, . . . , ωn−1)−Mn(ω1, . . . , ωn−1, −1)

2p
.

However, Hn needs to be predictable, it cannot depend on ωn. In other words, the two lines of this display
must agree. This is where the martingale property for Mn comes handy:

Mn−1 = E(Mn | Fn−1) = pMn(ω1, . . . , ωn−1, 1) + (1− p)Mn(ω1, . . . , ωn−1, −1)

Rearranging,

(1− p)
(
Mn−1 −Mn(ω1, . . . , ωn−1, −1)

)
= p

(
Mn(ω1, . . . , ωn−1, 1)−Mn−1

)
exactly saying that the two lines of (11.5) indeed agree, and Hn does not depend on ωn. The choice

Hn(ω1, . . . , ωn−1) =
Mn(ω1, . . . , ωn−1, 1)−Mn−1

2− 2p
=

Mn−1 −Mn(ω1, . . . , ωn−1, −1)

2p

will then work, and, following the proof, is also unique.

Definition 11.4. Following a hedging strategy (An, Vn), the discounted value of our wealth is

(11.6) Yn : = (1 + r)−n ·Xn = (1 + r)−n · (AnSn + VnBn) = (1 + r)−n · (An+1Sn + Vn+1Bn)

(recall (11.2)).

This is the amount of bonds we would need to buy at time zero if we were to achieve wealth Xn at time n
purely via the fixed bond interest rate r.
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Lemma 11.5. For any hedging strategy (An, Vn), the discounted wealth (11.6) is a martingale in the probability
space (11.1) with p : = r−a

b−a . It can be obtained by transforming the martingale (11.4) as Yn = Y0 + (H •Z)n by
the unique predictable process

(11.7) Hn =
b− a

2
(1 + r)−n ·AnSn−1.

Proof. Rewrite the definition (11.6) using Bn = (1 + r)nB0:

Yn = (1 + r)−n ·AnSn + VnB0 = (1 + r)−n ·An+1Sn + Vn+1B0.

Its increment can be written as (use the first expression for Yn and the second one for Yn−1)

Yn − Yn−1 = (1 + r)−n ·An

(
Sn − (1 + r)Sn−1

)
= (1 + r)−n ·An(Rn − r)Sn−1.

To proceed, assume p = r−a
b−a , that is

r = (b− a)p+ a =
a+ b

2
+

b− a

2
(2p− 1),

the mean of Rn (11.3). Hence

Yn − Yn−1 =
b− a

2
(1 + r)−n ·AnSn−1(ωn − 2p+ 1) = Hn · (ωn − 2p+ 1),

with the definition (11.7) of Hn. This is equivalent to Yn = Y0 + (H • Z)n with the martingale Zn from (11.4).
This implies that Y is a martingale, and the previous lemma then assures that no other predictable H can
provide Y = Y0 +H • Z.

Proof of Theorem 11.2. Define the martingale

Yn : = (r + 1)−N · E
[
(SN −K)+ | Fn

]
.

We construct the hedging strategy with this being its discounted wealth as in (11.6). To do that, use Lemma
11.3 to find the unique predictable process Hn for this martingale, from which the predictable strategy An can
be read off via (11.7). (Identity (11.2) then produces Vn as well.) The wealth process with this strategy is
Xn = (1+r)nYn, and we check X0 = (1+r)0Y0 = (r+1)−N ·E(SN −K)+ since F0 is trivial; Xn ≥ 0 is obvious,
and XN = (1 + r)N (1 + r)−N (SN −K)+ = (SN −K)+ since all random variables are FN -measurable. Hence
the (An, Vn) created this way is a hedging strategy for the European option with initial value as stated in the
theorem.

To see uniqueness of this strategy, assume there is another one (A′
n, V

′
n) hedging the same European option.

Its discounted wealth Y ′
n is a martingale that satisfies

Y ′
N = (1 + r)−NX ′

N = (r + 1)−N · (SN −K)+.

The martingale property then implies

Y ′
n = E(Y ′

N | Fn) = (r + 1)−N · E
[
(SN −K)+ | Fn

]
,

thus Y ′
n = Yn, which in turn implies that A′

n = An for each n. Uniqueness of the martingale in particular
implies uniqueness of the initial value x = X0 = Y0 = (r + 1)−N · E(SN −K)+ of the hedging strategy.

It remains to show that An ≥ 0 for each n under this strategy. This is equivalent to Hn ≥ 0, and from the
lemma we have

Hn =
Yn(ω1, . . . , ωn−1, 1)− Yn−1

2− 2p

=
(1 + r)−N

2− 2p

[
E
(
(SN −K)+ |ω1, . . . , ωn−1, 1

)
− E

(
(SN −K)+ |ω1, . . . , ωn−1

)]
.

Hence we need to prove

E
(
(SN −K)+ |ω1, . . . , ωn−1, 1

)
≥ E

(
(SN −K)+ |ω1, . . . , ωn−1

)
= pE

(
(SN −K)+ |ω1, . . . , ωn−1, 1

)
+ (1− p)E

(
(SN −K)+ |ω1, . . . , ωn−1, −1

)
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which happens if and only if

E
(
(SN −K)+ |ω1, . . . , ωn−1, 1

)
≥ E

(
(SN −K)+ |ω1, . . . , ωn−1, −1

)
.

To see this, first notice that the function (SN − K)+ is non-decreasing in each of the variables ω1, . . . , ωN .
Calculating the above conditional expectations involves summing over ωn+1, . . . , ωN each taking values ±1.
For every such outcome,

(SN −K)+(ω1, . . . , ωn−1, 1, ωn+1, . . . , ωN ) ≥ (SN −K)+(ω1, . . . , ωn−1, −1, ωn+1, . . . , ωN ),

and the inequality survives the summation for the conditional expectations.
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