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TASEP: Interacting particles

-
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Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

2



TASEP: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

3



TASEP: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

4



TASEP: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•

-3 -2 -1 0 1 2 3 4

i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

5



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ ◦•

-3 -2 -1 0 1 2 3 4

i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

6



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ ◦•

-3 -2 -1 0 1 2 3 4

i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

7



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ ◦•

-3 -2 -1 0 1 2 3 4

ii

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

8



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ • ◦

-3 -2 -1 0 1 2 3 4

i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

9



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

10



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

11



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

12



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

13



TASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

14



TASEP: Interacting particles

-
x

• ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

15



TASEP: Interacting particles

-
x

• ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

16



TASEP: Interacting particles

-
x

• ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

17



TASEP: Interacting particles

-
x

• ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

18



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

19



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

20



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

21



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

22



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

23



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

24



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

25



TASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

i i i

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

Ã Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

26



Hydrodynamics (briefly)

Let T and X be some large-scale time and

space parameters.

Ã Set initially ̺ = ̺(T = 0, X) to be the den-

sity at position x = X/ε. (Changes on the large

scale.)

Ã ̺(T , X) is the density of particles after a

long time t = T/ε at position x = X/ε. It

satisfies (asymptotically as ε → 0)

∂

∂T
̺ +

∂

∂X
[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + [1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

Ã The characteristic speed C(̺) := 1 − 2̺.

(̺ is constant along Ẋ(t) = C(̺).)
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to

m := (1 − ̺)2t and n := ̺2t.

Will present results on Gmn.
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Burke’s Theorem:

P0 jumps according to a Poisson(1−̺) process,

governed by the right orange part

H0 jumps according to a Poisson(̺) process,

governed by the left orange part

independently of the i’s.

Therefore:

i∼ Exponential(1 − ̺)

i ∼ Exponential(̺)

i∼ Exponential(1)















independently
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M. Prähofer and H. Spohn 2002

i∼ Exponential(1 − ̺)

i ∼ Exponential(̺)

i∼ Exponential(1)















independently

istarts ticking when its west neighbor becomes

occupied
i starts ticking when its south neighbor becomes

occupied
istarts ticking when both its west and south

neighbors become occupied

Gij = the occupation time of (i, j)

Gij = the maximum weight collected by a north

-east path from (0,0) to (i, j).
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Theorem:
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t2/3
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P. L. Ferrari and H. Spohn (2005) identify the limit-

ing distribution off the characteristics by t1/3. Their
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Zmn = 1

Zmn is the exit point of the longest path to

(m, n) = ((1 − ̺)2t, ̺2t).

Theorem:

For all large t and all a > 0,

P{Zmn ≥ at2/3} ≤ Ca−3.

Given ε > 0, there is a δ > 0 such that

P{1 ≤ Zmn ≤ δt2/3} ≤ ε

for all large t.
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Equilibrium:

i∼ Exponential(1 − ̺)

i ∼ Exponential(̺)

i∼ Exponential(1)















independently

G-increments:

Iij : = Gij − G{i−1}j for i ≥ 1, j ≥ 0, and

Jij : = Gij − Gi{j−1} for i ≥ 0, j ≥ 1.

Ã Any fixed southeast path meets independent

increments

Iij ∼ Exponential(1 − ̺) and

Jij ∼ Exponential(̺).

Of course, this doesn’t help directly with Gmn.
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(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m, n), then Gmn is not sensi-

tive to decreasing the i weights on the j-axis.

If it passes below (m, n), then Gmn is not sen-

sitive to decreasing the iweights on the i-axis.
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G̺: weight collected by the longest path.

Z̺: exit point of the longest path.

U
̺
z : weight collected on the axis until z.

Az: largest weight of a path from z to (m, n).

Step 1:

Uλ
z + Az ≤ Gλ

for any z, any 0 < λ < 1. Fix u ≥ 0 and λ ≥ ̺,

P{Z̺ > u} = P{∃z > u : U̺
z + Az(t) = G̺}

≤ P{∃z > u : U̺
z − Uλ

z + Gλ ≥ G̺}

= P{∃z > u : Uλ
z − U̺

z ≤ Gλ − G̺}

≤ P{Uλ
u − U̺

u ≤ Gλ − G̺}.
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P{Z̺ > u} ≤ P{Uλ
u − U̺

u ≤ Gλ − G̺}.

Step 2:

Optimize λ so that E(Uλ
u − Gλ) be maximal.

(The equilibrium makes it possible to compute the ex-

pectation.) This makes the estimate sharp.

Step 3:

Apply Chebyshev’s inequality on the right-hand

side. Var(Uu) is elementary.

Step 4:

Prove, by a perturbation argument, that

Var(G) is related to E(UZ+).

Step 5:

A large deviation estimate connects P{Z̺ > y}

and P{U
̺

Z̺+ > y}.

Ã P{U
̺
Z+ > y} ≤ C

(

t2

y4
· E(U

̺

Z̺+) +
t2

y3

)

Conclude

lim sup
t→∞

E(U
̺

Z̺+)

t2/3
< ∞, lim sup

t→∞

Var(G̺)

t2/3
< ∞.
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Time-reversal and the lower bound

(E. Cator and P. Groeneboom)
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Ã Z-probabilities are connected to competi-

tion interface-probabilities.

competition interface = longest path of the

reversed model.
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Further directions

We managed to drop the last passage pic-

ture and repeat these arguments directly in the

asymmetric simple exclusion process.

Thank you.
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