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TASEP:

Interacting particles

Bernoulli(p) distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.

That is:

waiting times ©® ~ Exponential(1).

~~ Markov process.

Particles try to jump to the right, but block
each other.

The Bernoulli(p) distribution is time-stationary
for any ( ). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

26



Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

27



Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-

sity at position z = X /e. (Changes on the large

scale.)

28



Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T' /e at position x = X /e.

29



Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T' /e at position * = X/e. It
satisfies

0 0 N
o7 +8—X[ (1 —0)] =0 (inviscid Burgers)

30



Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T' /e at position * = X/e. It
satisfies

8% + 8%[ (1 —0)] =0 (inviscid Burgers)
8% +[1—-20]- 8% = 0 (while smooth)

31



Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T' /e at position * = X/e. It
satisfies

8% + 8%[ (1 —0)] =0 (inviscid Burgers)
(9% +[1—-20]- 8% = 0 (while smooth)

d
a7 (I, X(T)) =0

32



Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T' /e at position * = X/e. It
satisfies

8% + 8% [0(1 — p)] =0 (inviscid Burgers)
8% +[1—-20]- GiX = 0 (while smooth)

0 dX(7T) o d

. : = — o1, X(T))=0
o1 T Tar ax dT (T, X(T))
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Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T' /e at position * = X/e. It
satisfies

0 0 N
o7 +8—X[ (1 —0)] =0 (inviscid Burgers)

g +[1 —20] - GiX = 0 (while smooth)

OT

o dX(T) o d

. . = — o(7T. X(T)) =20
oT T dT 90X dT (7, X))
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Hydrodynamics (briefly)

Let 7" and X be some large-scale time and
Space parameters.

~» Set initially o = o(T"'= 0, X) to be the den-
sity at position z = X /e. (Changes on the large

scale.)

~ o(T, X) is the density of particles after a
long time ¢t = T' /e at position * = X/e. It
satisfies

0 0 N
o7 +8—X[ (1 —0)] =0 (inviscid Burgers)

g +[1 —20] - GiX = 0 (while smooth)

OT

o dX(T) o d

. . = — o(7T. X(T)) =20
oT T dT 90X dT (7, X))

~» The characteristic speed C(p) := 1 — 2p.
(o is constant along X(T) = C(p).)
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The characteristic speed V = (C(p) translates

to
m 1= (1—0)%t and n : = p°t.

Will present results on Gyn.
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m 1= (1 — p)?t and n : = p°t,
T heorem:
var(Gmn) _ .. Var(Gmn)
O <liminf < lim su
< t—o00 +2/3 o t—>oop +2/3

identifies the limiting distribution of
Gomn in terms of Tracy-Widom GUE distributions, when
and © ~ Exponential(1).
identify the limiting
distribution off the characteristics by t1/3.
RSK correspondence, random matrices.
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3100 Q@@
(m.n)
2 @ 1@ %9
|
1 ?*@*@
3 > 3

— =t

Lmn = 1
Zmn 1S the exit point of the longest path to

(m, n) = ((1 — 0)°t, 0°t).
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31 ® 1 ® | O
(m,n)
2 ® | ® %9
|
1o @00
BT
T
Lmn = 1

Zmn 1S the exit point of the longest path to

(m, n) = ((1 — 0)°t, 0°t).

T heorem:
For all large t and all a > O,

P{Zmn > a,t2/3} < Ca 3.
Given € > 0, there is a 6 > 0 such that
P{1 < Zyn < 6t2/3} < ¢

for all large t.
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LLast passage equilibrium
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o SRR
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Equilibrium:

> independently

o~ Exponential(1)

/
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LLast passage equilibrium

J

IR

Equilibrium:

> independently

/

o~ Exponential(1)
G-increments:
: :GZJ_G{Z—l}] for:>1, 7 >0, and
: :G’L]_Gz{]—l} for ’LZO, jZ 1.
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LLast passage equilibrium

J

3100 | O | ®
'
21 O A
'
Lo oo | o
0 . . I . >
RS 1 2 3 !

Equilibrium:

> independently

o~ Exponential(1)
G-increments:
: :GZJ_G{Z—l}] for:>1, 7 >0, and
: :G’L]_Gz{]—l} for ’LZO, jZ 1.

~ Any fixed southeast path meets independent
increments

/

and
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LLast passage equilibrium
J

3100 | O | O
'
21 O A
'
Lo oo | o
0 ; ; - ; >
RS 1 2 3 !

Equilibrium:

> independently

o~ Exponential(1)
G-increments:
.= GZ] — G{z—l}] for:>1, 7 >0, and
: :G’L]_Gz{]—l} for ZZO, ]Z 1.

~ Any fixed southeast path meets independent
increments

/

and

Of course, this doesn’t help directly with Go,.
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The competition interface

(m,n)

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via
(0,1)7
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The competition interface
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The competition interface
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The competition interface
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The competition interface
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The competition interface
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The competition interface
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The competition interface
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The competition interface
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The competition interface follows the same
rules as the second class particle of simple ex-
clusion.
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The competition interface

K ° ° °
J
(m,n)
20 ° °
1@ ° ° o
0 . .

. .
0 1 2 1

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via
(0,1)7

The competition interface follows the same
rules as the second class particle of simple ex-
clusion.

If it passes left of (m,n), then G, is Not sensi-
tive to decreasing the © weights on the j-axis.
If it passes below (m,n), then G,,, is not sen-
Sitive to decreasing the © weights on the z-axis.
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Upper bound (E. Cator and P. Groeneboom)
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G2 weight collected by the longest path.
/9. exit point of the longest path.
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Upper bound (E. Cator and P. Groeneboom)
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G2 weight collected by the longest path.
/9. exit point of the longest path.
. weight collected on the axis until z.
A,: largest weight of a path from z to (m, n).
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Upper bound (E. Cator and P. Groeneboom)

J
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|
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G2 weight collected by the longest path.
/9. exit point of the longest path.
. weight collected on the axis until z.
A,: largest weight of a path from z to (m, n).
Step 1:

+ A, <G
for any z, any O < A < 1.
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Upper bound (E. Cator and P. Groeneboom)
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A,: largest weight of a path from z to (m, n).
Step 1:

+ A, <G?
forany z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G
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Upper bound (E. Cator and P. Groeneboom)
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A,: largest weight of a path from z to (m, n).
Step 1:

+ A, <G?
forany z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G

<P{Iz>u: =1 +G">G%
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Upper bound (E. Cator and P. Groeneboom)
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A.: largest weight of a path from z to (m, n).
Step 1:

+ A, <G
forany z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G
<P{Iz>u: =1 +G">G%
=P{Iz>u:l —0'<GM=G9%
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Upper bound (E. Cator and P. Groeneboom)
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G2: weight collected by the longest path.
79 exit point of the longest path.
. weight collected on the axis until z.
A.: largest weight of a path from z to (m, n).
Step 1:

+ A, <G
forany z, any O < A< 1. Fixu >0 and X\ > p,
P{Z%>u} =P{3z>u : + A.(t) = G

<P{Iz>u: =1 +G">G%
=P{Iz>u:l —0'<GM=G9%
<P{U) —U<GN— GO
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P{Z%>u} <P{l/ —1!< G =G,
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P{Z%>u} <P{l/ —1!< G =G,

Step 2:

Optimize )\ so that E(I/"' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) This makes the estimate sharp.
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P{Z%>u} <P{l/ —1!< G =G,

Step 2:

Optimize X so that E(I/"' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) This makes the estimate sharp.
Step 3:

Apply Chebyshev’s inequality on the right-hand
side. IS elementary.
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Prove, by a perturbation argument, that
Var(() is related to
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P{Z%>u} <P{l/ —1!< G =G,

Step 2:

Optimize )\ so that E(I/"' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) T his makes the estimate sharp.
Step 3:

Apply Chebyshev’s inequality on the right-hand
side. IS elementary.

Step 4:

Prove, by a perturbation argument, that
Var(() is related to

Step 5:

A large deviation estimate connects P{Z¢ > y}
and P{ > y}.

~ P{ >y}§0(;—i- -I-é)
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P{Z%>u} <P{l/ —1!< G =G,

Step 2:

Optimize )\ so that E(I/"' — G*) be maximal.
(The equilibrium makes it possible to compute the ex-
pectation.) T his makes the estimate sharp.
Step 3:

Apply Chebyshev’s inequality on the right-hand
side. IS elementary.

Step 4:

Prove, by a perturbation argument, that
Var(() is related to

Step 5:

A large deviation estimate connects P{Z¢ > y}
and P{ > y}.

+2 +2
Conclude
lim su < lim su Vvar(Ge) <
o0, 0.
t—>oop £2/3 t—>oop £2/3
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

K ° ° °
J
(m,n)
20 ° ° °
10 ° ° °

~  Z-probabilities are connected to competi-
tion interface-probabilities.

207



Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

'. o [ ) o
J
20 s (mén) °
10 ¢ ° °

~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

( ] ( ] ( ] [ ]

o | b | .

( ] ® ( ] [ ]
(0.0)

—_ % ° °

~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

BRI W A 'O

(0,0)

~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboorr:)

~ Z-probabilities are connected to competi-
tion interface-probabilities.
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tion interface-probabilities.

215



Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)
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~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

(m,n)
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~  Z-probabilities are connected to competi-
tion interface-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

(m,n)

"% e

~  Z-probabilities are connected to competi-
tion interface-probabilities.

competition interface = longest path of the
reversed model.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

(m,n)

~  Z-probabilities are connected to competi-
tion interface-probabilities.

competition interface = l|longest path of the
reversed model.

~ competition interface-probabilities are in
fact Z-probabilities.
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Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

(m,n)

~  Z-probabilities are connected to competi-
tion interface-probabilities.

competition interface = l|longest path of the
reversed model.

~ competition interface-probabilities are in
fact Z-probabilities.

Conclude
o .. _Var(G©9)
"[E!Qf /3 > 0, "{léﬂf /3 > 0.
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Further directions

We managed to drop the last passage pic-
ture and repeat these arguments directly in the
asymmetric simple exclusion process.
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Further directions

We managed to drop the last passage pic-
ture and repeat these arguments directly in the
asymmetric simple exclusion process.

Thank you.
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