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Curvature of 2-dimensional surfaces: Gauss

I Let (Σ, g) be a 2-dimensional Riemannian surface. Denote by
∇ the Levi-Civita connection on (Σ, g).

I Fix p ∈ Σ, and ~ex = ∂
∂x , ~ey = ∂

∂y coordinate basis of TpΣ.

I The Gaussian Curvature KG
Σ (p) of (Σ, g) at p is defined by

KG
Σ (p) :=

gp
(

(∇~ey∇~ex −∇~ex∇~ey )~ex , ~ey
)

det(gp)

I If (Σ, g) ⊂ R3 is isometrically immersed, then
KG

Σ (p) = product of the principal curvatures at p
(Gauss Theorema Egregium)

I Examples:
I 0 ≡ Gaussian curvature of the euclidean plane R2.
I 1

r2 ≡ Gaussian curvature of a 2-dimensional round sphere in R3

of radius r .
I −1 ≡ Gaussian curvature of the Hyperbolic plane.
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Curvature in higher dimensions: Riemann and Ricci

I Let (Mn, g) be an n-dimensional Riemannian manifold, n ≥ 3.

I Fix p ∈ M and span(~e1, ~e2) = Π ⊂ TpM a 2-dim subspace.
I Let ΣΠ = Expp(Π ∩ Bε(0))=surface obtained by considering

all the geodesics starting at p tangent to Π up to length ε.
For ε > 0 small enough ΣΠ ⊂ M is a smooth 2-dim surface.

I Define the Sectional Curvature of (M, g) at the 2-dim plane
span(~e1, ~e2) = Π ⊂ TpM as

Secp(~e1, ~e2) = KG
ΣΠ

(p) = Gaussian curvature of ΣΠ at p.

I Define the Ricci Curvature of (M, g) at the vector
~v ∈ TpM, ~v 6= ~0 as

Ricp(~v , ~v) = |~v |2
n−1∑
i=1

Secp(~v , ~ei )“ = trace of the curvature′′

where {~e1, . . . , ~en−1, ~v/|~v} is an orthonormal basis of
(TpM, gp). Set Ricp(~0,~0) = 0.
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Some notational remarks on the curvature bounds

I For K ∈ R, we write Sec ≥ K (resp. ≤ K ) if for every p ∈ M
and every 2-dim plane Π ⊂ TpM it holds
Secp(Π) ≥ K (resp. ≤ K ).

I Ricp : TpM × TpM → R is a quadratic form.

I We write Ric ≥ K (resp. ≤ K ) if the quadratic form
Ricp − Kgp is non-negative (resp. non-positive) definite at
every p ∈ M.

I Examples:
I n-dimensional Euclidean space: Sec ≡ 0, Ric ≡ 0.
I n-dimensional round sphere of radius 1: Sec ≡ 1, Ric ≡ n − 1.
I n-dimensional hyperbolic space: Sec ≡ −1, Ric ≡ −(n − 1).
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Some basics of comparison geometry

Question: (M, g) smooth Riemannian manifold.
If we assume some upper/lower bounds on the sectional or on the
Ricci curvature what can we say on the analysis / geometry /
topology of (M, g)?

I Upper/Lower bounds on the sectional curvature are strong
assumptions with strong implications. E.g., Cartan-Hadamard
Theorem (if Sec ≤ 0 then the universal cover of M is
diffeomorphic to RN),Toponogov triangle comparison
theorem( definition of Alexandrov spaces: non smooth
spaces with upper/lower bounds on the “sectional
curvature”), etc.

I Upper bounds on the Ricci curvature are very (too) weak
assumption for topological conclusions. E.g. Lokhamp
Theorem (Gao-Yau, Brooks in dim 3): any compact manifold
of dim≥ 3 carries a metric with negative Ricci curvature.
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Some basics of comparison geometry: lower Ricci bounds

Lower bounds on the Ricci curvature: natural framework for
comparison geometry

I Bishop-Gromov volume comparison: (not most general form)
If (Mn, g) has Ric ≥ 0 then

volg(BR(x)) ≤ ωnR
n, ∀R > 0, ∀x ∈ M,

I Lichnerowicz spectral gap: (not most general form)
If (Mn, g) has no boundary and Ric ≥ n − 1 then

λ1(∆(M,g)) ≥ λ1(∆Sn) =
n

n − 1
.

I Laplacian comparison,
I Cheeger-Gromoll splitting,
I Li-Yau inequalities on heat flow,
I Lévy-Gromov isoperimetric inequality,
I . . .
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Origins of the (non-smooth) topic

Gromov in the ’80ies

I introduced a notion of convergence for Riemannian manifolds,
known as Gromov-Hausdorff convergence (for non-compact
manifolds, more convenient a pointed version, called pointed
Gromov-Hausdorff convergence  GH-convergence of metric
balls of every fixed radius)

I observed that a sequence of Riemannian n-dimensional
manifolds satisfying a uniform Ricci curvature lower bound is
precompact, i.e. it converges up to subsequences to a possibly
non-smooth limit space (called, from now on, Ricci limit
space)

• Natural question: what can we say about the compactification of
the space of Riemannian manifolds with Ricci curvature bounded
below (by, say, minus one)?
•Hope: useful also to establish new results for smooth manifolds.
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Semi-smooth setting

I Cheeger-Colding 1997-2000 three fundamental papers on JDG
on the structure of Ricci limit spaces.
I Collapsing: limk volgk (B1(x̄k)) = 0  loss of dimension in the

limit. More difficult, nevertheless they proved that the limit
space has a uniquely defined volume measure (up to scaling)
and a.e. point has a euclidean tangent space (the dimension
may vary from point to point). Such points are called regular
points, the complementary is called singular set.

I Non collapsing: lim infk volgk (B1(x̄k)) > 0. More results: the
Hausdorff dimension passes to the limit one can prove finer
estimates on the singular set, e.g. Haudorff codimension 2.

I Colding-Naber, Annals of Math. 2012: the dimension of the
tangent space does not change on the regular set, even in the
collapsed case.

I Cheeger-Jiang-Naber, Annals of Math 2020: in non-collapsed
case, the singular set is stratified into rectifiable strata.
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Question: Ricci curvature for non-smooth spaces?

I Gromov-Cheeger-Colding-Naber consider the non smooth
spaces arising as limits of smooth manifolds with lower Ricci
bounds. Very powerful for structural properties.

I Question: What does it mean for a non-smooth space to
satisfy a Ricci curvature lower bound, if we don’t have a
smooth approximation at disposal?

 weak version of a Riemannian manifold with Ric≥ K ;

Analogy with:

I Sobolev functions (non smooth functions, differentiable in a
weak sense, via integration by parts)

I Geometric Measure Theory (sets of finite perimeter, currents,
varifolds, which can be seen as generalized submanifolds,
extremely useful for studying the calculus of variations for the
area functional)
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Preliminary Observation

I Sectional curvature bounds for non smooth spaces make
perfect sense in metric spaces (X , d) (Alexandrov spaces):
sectional curvature is a property of lengths (comparison
triangles)

I Ricci curvature is a property of lenghts and volumes: needs
also a reference volume measure
 natural setting metric measure spaces (X , d,m).
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Non smooth setting 1: the Kantorovich-Wasserstein space

Notations:

I (X , d,m) compact metric space (for simplicity, but everything
holds for complete and separable, with appropriate changes)
with a finite non-negative Borel measure m (σ-finite would be
enough)

I Let

P(X ) := {µ : µ ≥ 0, µ(X ) = 1} = Probability measures.

I Given µ1, µ2 ∈ P(X ), define the (Kantorovich-Wasserstein)
quadratic transportation distance

W2(µ1, µ2) := inf

{√∫
X×X

d2(x , y) γ(dxdy)

}
where γ ∈ P(X × X ) with (πi )]γ = µi , i = 1, 2

I (P(X ),W2) is a metric space, geodesic if (X , d) is geodesic .
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Non smooth setting 2: Entropy functionals

I From now on, for simplicity of presentation, consider only
probability measures absolutely continuous w.r.t. m,
i.e. µ = ρm� m with ρ ≥ 0,

∫
X ρdm = 1;

I On the metric space (P(X ),W2) consider the Entropy
functionals

UN,m(ρm) := −N
∫
ρ1− 1

N dm if 1 < N <∞ Rényi Entropy

U∞,m(ρm) :=

∫
ρ log ρ dm Boltzmann-Shannon Entropy
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Non smooth setting: intrinsic-axiomatic definition

I THM (McCann, Otto-Villani, Cordero-Erausquin-McCann-
Schmuckenschläger, Sturm-von Renesse) If (X , d,m) is a
smooth Riemannian manifold (M, g), then Ric ≥ 0 iff the
entropy functional U∞,m is weakly convex along geodesics in
(P(X ),W2),

i.e. for all µ0, µ1 ∈ P(X ) there exists a
W2-geodesic (µt)t∈[0,1] s.t. for every t ∈ [0, 1] it holds

U∞,m(µt) ≤ (1− t)U∞,m(µ0) + tU∞,m(µ1)

I Key Remark: the notion of convexity of the Entropy is purely
of metric-measure nature, i.e. it makes sense in a general
metric measure space (X , d,m).

I DEF of CD(K ,N) condition [Lott-Sturm-Villani ’06]: For
N ∈ [1,+∞], we say that (X , d,m) is a CD(0,N)-space if the
Entropy UN,m is convex along geodesics in (P(X ),W2).
For general K ∈ R, N ∈ [1,+∞], we say (X , d,m) is a
CD(K ,N)-space if the Entropy UN,m is ”(K ,N)-geod. conv.”
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Non smooth setting: intrinsic-axiomatic definition. 2

Keep in mind:
- CD(K ,N) definition Ricci curvature ≥ K and dimension ≤ N
for non-smooth metric measure spaces

- the more convex is UN,m along geodesics in (P(X ),W2), the
more the space is positively Ricci curved.

Good properties:

I CONSISTENT: (M, g) satisfies CD(K ,N) iff Ric ≥ K and
dim(M) ≤ N

I STABLE under measured-Gromov Hausdorff convergence
=⇒ all Ricci limit spaces are CD(K ,N) no matter if
collapsing or not.

I GEOMETRIC PROPERTIES: many of the classical
comparison results, e.g. Bishop-Gromov volume growth
estimate, holds for CD(K ,N) spaces.

I CD(K ,N) allows Finsler structures, e.g. (Rn, | · |, λn) is
CD(0, n) for any norm | · |.
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Cheeger energy and RCD(K ,N)-spaces

GOAL: give a “Riemannian” refinement of the “possibly
Finslerian” CD condition.

Given a m.m.s. (X , d,m) and f ∈ L2(X ,m), define the Cheeger
energy

Chm(f ) :=
1

2

∫
X
|∇f |2w dm = lim inf

u→f in L2

1

2

∫
X

(lipu)2dm

where |∇f |w is the minimal weak upper gradient.

Crucial observation: On a Finsler manifold M, the Cheeger energy
is quadratic (i.e. parallelogram identity holds) iff M is Riemannian.
Idea[Ambrosio-Gigli-Savaré 2011, Gigli 2012]: Reinforce the CD
condition by asking that the Cheeger energy is quadratic.
Definition Given K ∈ R and N ∈ [1,∞], (X , d,m) is an RCD(K ,N)
space if it is a CD(K ,N) space & the Cheeger energy is quadratic.



Cheeger energy and RCD(K ,N)-spaces

GOAL: give a “Riemannian” refinement of the “possibly
Finslerian” CD condition.
Given a m.m.s. (X , d,m) and f ∈ L2(X ,m), define the Cheeger
energy

Chm(f ) :=
1

2

∫
X
|∇f |2w dm = lim inf

u→f in L2

1

2

∫
X

(lipu)2dm

where |∇f |w is the minimal weak upper gradient.

Crucial observation: On a Finsler manifold M, the Cheeger energy
is quadratic (i.e. parallelogram identity holds) iff M is Riemannian.
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Good properties of RCD(K ,N)

I Stability under pmGH (Ambrosio-Gigli-Savaré, Gigli-M.-Savaré)

I Equivalent to EVI property (strong contractivity) for heat flow in W2

in case N =∞ (Ambrosio-Gigli-Savaré, Ambrosio-Gigli-M.-Rajala)

I Equivalent to Bochner inequality.
for N =∞: Ambrosio-Gigli-Savaré,
for N ∈ [1,∞): Erbar-Kuwada-Sturm, Ambrosio-M.-Savaré

I Implies Li-Yau inequalities on heat flow (Garofalo-M. and Jiang)

I RCD(0,N) implies Cheeger-Gromoll Splitting Theorem (Gigli)

I Local structure: a.e. Euclidean tangent cones (Gigli-M.-Rajala and
M.-Naber), rectifiability (M.-Naber), a.e. constant dimension of
tangent spaces (Brué-Semola)

I Admits universal cover which is RCD(K ,N) (M.-Wei and Wang)

I Second order calculus, i.e. Hessian for W 2,2 functions (Gigli)

I Local-to-Global (Cavalletti-Milman)

I Implies sharp isoperimetric & Sobolev inequalities (Cavalletti-M.,
Balogh-Kristaly, Antonelli-Pasqualetto-Pozzetta-Semola)
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I Admits universal cover which is RCD(K ,N) (M.-Wei and Wang)

I Second order calculus, i.e. Hessian for W 2,2 functions (Gigli)

I Local-to-Global (Cavalletti-Milman)

I Implies sharp isoperimetric & Sobolev inequalities (Cavalletti-M.,
Balogh-Kristaly, Antonelli-Pasqualetto-Pozzetta-Semola)



Good properties of RCD(K ,N)

I Stability under pmGH (Ambrosio-Gigli-Savaré, Gigli-M.-Savaré)
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for N ∈ [1,∞): Erbar-Kuwada-Sturm, Ambrosio-M.-Savaré
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for N ∈ [1,∞): Erbar-Kuwada-Sturm, Ambrosio-M.-Savaré
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I Admits universal cover which is RCD(K ,N) (M.-Wei and Wang)

I Second order calculus, i.e. Hessian for W 2,2 functions (Gigli)

I Local-to-Global (Cavalletti-Milman)

I Implies sharp isoperimetric & Sobolev inequalities (Cavalletti-M.,
Balogh-Kristaly, Antonelli-Pasqualetto-Pozzetta-Semola)



Good properties of RCD(K ,N)

I Stability under pmGH (Ambrosio-Gigli-Savaré, Gigli-M.-Savaré)
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Examples of RCD-spaces

I Ricci limits, no matter if collapsed or not and no matter if the
dimension is bounded above or not (in the first case get
RCD(K ,N), in the latter get RCD(K ,∞))

I Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90’ies and Otsu-Shioya ’94: Ch is quadratic,
Petrunin ’09 and Zhang-Zhu ’10: CD is satisfied)

I Weighted Riemannian manifolds with Bakry-Émery
N-Ricci ≥ K (Sturm): i.e. (Mn, g) Riemannian manifold, let
m := Ψ volg for some smooth function Ψ ≥ 0, then

Ricg ,Ψ,N := Ricg − (N − n)∇
2Ψ1/N−n

Ψ1/N−n ≥ Kg
iff (M, dg ,m) is RCD(K ,N).

I Cones over RCD(N − 1,N) spaces (Ketterer)
I Quotients of manifolds (and orbifolds) with Ricci ≥ K

(GalazGarcia-Kell-M.-Sosa, Santos-Rodriguez)
I Stratified spaces with Ricci ≥ K (Bertrand-Ketterer-

Mondello-Richard)
I . . .
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N-Ricci ≥ K (Sturm): i.e. (Mn, g) Riemannian manifold, let
m := Ψ volg for some smooth function Ψ ≥ 0, then

Ricg ,Ψ,N := Ricg − (N − n)∇
2Ψ1/N−n

Ψ1/N−n ≥ Kg
iff (M, dg ,m) is RCD(K ,N).

I Cones over RCD(N − 1,N) spaces (Ketterer)

I Quotients of manifolds (and orbifolds) with Ricci ≥ K
(GalazGarcia-Kell-M.-Sosa, Santos-Rodriguez)

I Stratified spaces with Ricci ≥ K (Bertrand-Ketterer-
Mondello-Richard)

I . . .



Examples of RCD-spaces

I Ricci limits, no matter if collapsed or not and no matter if the
dimension is bounded above or not (in the first case get
RCD(K ,N), in the latter get RCD(K ,∞))

I Finite dimensional Alexandrov spaces with curvature bounded
below (Perelman 90’ies and Otsu-Shioya ’94: Ch is quadratic,
Petrunin ’09 and Zhang-Zhu ’10: CD is satisfied)

I Weighted Riemannian manifolds with Bakry-Émery
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Some recent applications and connections

I Ricci flow, via Perelman pseudo-locality Theorem and isoperimetric
inequalities (Cavalletti-M., Liu-Szekelyhidi)

I Proof of Hamilton’s conjecture (Deruelle-Schulze-Simon, Lee-
Topping, after Lott)

I Proof of a conjecture by Perelman-Petrunin on existence of an
infinite geodesic on every Alexandrov space without boundary
(Brué-M.-Semola, after Kapovitch-Lytchak-Petrunin)

I Complex geometry: Kähler-Einstein singular projective varieties are
RCD spaces (Szekelyhidi);

I String theory: bounds on Kaluza-Klein spectrum of spin-2 fields for
space-times with localised sources (deLuca-dePonti-M.-Tomasiello)

I General relativity: an optimal transport formulation of Einstein’s
equations and Hawking singularity theorem in Lorentzian spaces of
low regularity (McCann, M.-Suhr, Cavalletti-M.)
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(Brué-M.-Semola, after Kapovitch-Lytchak-Petrunin)

I Complex geometry: Kähler-Einstein singular projective varieties are
RCD spaces (Szekelyhidi);

I String theory: bounds on Kaluza-Klein spectrum of spin-2 fields for
space-times with localised sources (deLuca-dePonti-M.-Tomasiello)

I General relativity: an optimal transport formulation of Einstein’s
equations and Hawking singularity theorem in Lorentzian spaces of
low regularity (McCann, M.-Suhr, Cavalletti-M.)

I . . . .



Some recent applications and connections

I Ricci flow, via Perelman pseudo-locality Theorem and isoperimetric
inequalities (Cavalletti-M., Liu-Szekelyhidi)

I Proof of Hamilton’s conjecture (Deruelle-Schulze-Simon, Lee-
Topping, after Lott)

I Proof of a conjecture by Perelman-Petrunin on existence of an
infinite geodesic on every Alexandrov space without boundary
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Conclusion

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
formation of singularities in geometric flows),

I when taking quotients (or cones, or suspensions, or foliations)
of Riemannian manifolds.

If the smooth spaces we started with have Ricci curvature bounded
below, then the non smooth spaces arising are RCD.
→ RCD spaces form a natural class of “weak Riemannian
manifolds with Ricci bounded below” which is closed under natural
geometric constructions which instead force to go out of the class
of smooth manifolds.



Conclusion

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
formation of singularities in geometric flows),

I when taking quotients (or cones, or suspensions, or foliations)
of Riemannian manifolds.

If the smooth spaces we started with have Ricci curvature bounded
below, then the non smooth spaces arising are RCD.
→ RCD spaces form a natural class of “weak Riemannian
manifolds with Ricci bounded below” which is closed under natural
geometric constructions which instead force to go out of the class
of smooth manifolds.



Conclusion

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
formation of singularities in geometric flows),

I when taking quotients (or cones, or suspensions, or foliations)
of Riemannian manifolds.

If the smooth spaces we started with have Ricci curvature bounded
below, then the non smooth spaces arising are RCD.
→ RCD spaces form a natural class of “weak Riemannian
manifolds with Ricci bounded below” which is closed under natural
geometric constructions which instead force to go out of the class
of smooth manifolds.



Conclusion

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
formation of singularities in geometric flows),

I when taking quotients (or cones, or suspensions, or foliations)
of Riemannian manifolds.

If the smooth spaces we started with have Ricci curvature bounded
below, then the non smooth spaces arising are RCD.

→ RCD spaces form a natural class of “weak Riemannian
manifolds with Ricci bounded below” which is closed under natural
geometric constructions which instead force to go out of the class
of smooth manifolds.



Conclusion

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
formation of singularities in geometric flows),

I when taking quotients (or cones, or suspensions, or foliations)
of Riemannian manifolds.

If the smooth spaces we started with have Ricci curvature bounded
below, then the non smooth spaces arising are RCD.
→ RCD spaces form a natural class of “weak Riemannian
manifolds with Ricci bounded below” which is closed under natural
geometric constructions which instead force to go out of the class
of smooth manifolds.



Conclusion

In doing Riemannian geometry one naturally encounters non
smooth spaces

I when taking limits of Riemannian manifolds (procedure used
often, e.g. contradiction arguments, blow up arguments,
formation of singularities in geometric flows),

I when taking quotients (or cones, or suspensions, or foliations)
of Riemannian manifolds.

If the smooth spaces we started with have Ricci curvature bounded
below, then the non smooth spaces arising are RCD.
→ RCD spaces form a natural class of “weak Riemannian
manifolds with Ricci bounded below” which is closed under natural
geometric constructions which instead force to go out of the class
of smooth manifolds.



!!THANKS FOR
YOUR ATTENTION!!


