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Billiards in Polygons

A polygonal billiard is the dynamical system given by the motion of

a light ray in a polygonal (planar, Euclidean) mirror chamber P:

Straight linear motion inside the polygon and reflection at the

boundary angle of incidence = angle of reflection.

Its (3-dimensional) phase space is P × S1/E with E expressing the

reflection equivalence relation at ∂P. The flow is defined almost

everywhere (on the complement of countably many hypersurfaces).



Mechanical systems

The motion of two points masses m1, m2 on the interval [0, 1] with

elastic collisions between them and at the endpoints is equivalent

to a billiard in a right triangle with angle arctan(
√
m1/m2).

The motion of three point masses m1, m2, m3 on a circle with

elastic collisions between them is equivalent to a billiard in an

acute triangle with angles arctan(mi

√
(m1 +m2 +m3)/m1m2m3).



Motivations

Semiclassical methods for weakly chaotic systems:

pseudo-integrable systems (Richens and Berry, 1981).

Dynamics of parabolic systems or elliptic with singularities (Fox

and Kershner, 1936; Zemlyakov and A. Katok, 1975,)

Billiards in planar domains provide examples of several important

classes of dynamical behavior:

Birkhoff smooth convex billiards, Sinai’s billiards, Bunimovich

stadium, polygonal billiards (see A. Katok, “Billiard table as a

playground ...” or R. Schwartz ICM Survey Lecture on Billiards)

More general problem: geodesic flow on a flat compact orientable

surface with conical singularities. (The double of the polygon is a

flat sphere).



Basic dichotomy between a rational / a non-rational polygon.

Rational: the group GP generated by reflection with respect to

edges is finite ⇒ the phase space is foliated by invariant surfaces.

The invariant surfaces can be constructed by considering branched

covers (Fox and Kershner, 1936) of the double of the polygon or

its unfolding (Zemlyakov and Katok, 1975). They are translation

surfaces and the flow on invariant surfaces is a translation flow.

For a polygon with angles πmi/ni (in lowest terms) the invariant

surfaces have genus

g = 1 +
l .c .m.(n1, . . . , nk)

2
(k − 2−

k∑
i=1

1

ni
)

Classification of completely integrable billiards (phase space

foliated by invariant tori).



Dynamical properties:

For all ALL Billiards in Polygons: Zero Entropy (A. Katok, CMP

1987) (Billiards in Polygons are not hyperbolic, rather they may be

classified as Parabolic/Elliptic with singularities)

Rational Case:

▶ Uniquely Ergodic on almost all invariant surfaces (Kerckhoff,

Masur and Smillie, Ann. Math. 1986)

(refined to results on HD, see Chaika-Masur, Inv. Math.

2020, speed of ergodicity, see Athreya-F., Duke M. J. 2008),

▶ Never mixing (A. Katok, Israel J. 1980)

The above results are proved for ALL translation surfaces.

▶ Weak mixing for almost all translation surfaces: with respect

to Masur-Veech measures, Avila-F, Ann. Math. 2007 (also for

almost all IET’s).



Weakly Mixing Rational Polygons ? (on almost all invariant

surfaces)

Theorem (F. Arana-Herrera, J. Chaika, G. F. 2024)

A billiard in a rational polygon is weakly mixing on almost all

invariant surfaces (in almost all directions), unless the polygon is

almost integrable (in the sense of E. Gutkin) or it is the rotation of

a polygon with only vertical and horizontal sides such that the

horizontal sides or the vertical sides have commensurable lengths.



Remarks

A. Katok, 1980: The flow of a rational polygonal billiard is never

mixing.

E. Gutkin, 1986: conjectured a weak (generic) form of the above

theorem.

A. Katok and E. Gutkin, 1988: Topological genericity of the weak

mixing property in a given direction for certain classes of polygons.

Avila and Delecroix, JAMS 2016: Any non-arithmetic Veech

translation surface, including Regular Polygons with at least 5

edges and other special examples

Aulicino, Avila and Delecroix (announced): Any translation surface

in a rank one suborbifold, including countably many L-shaped

billiards with a barrier (Aulicino, Avila and Delecroix);



For the more general class of translation surfaces:

Theorem (F. Arana-Herrera, J. Chaika, G. F. 2024)

Let (X , ω) be a translation surface. The following are equivalent:

1. The directional flow of (X , ω) is weakly mixing in almost all

directions;

2. The directional flow of (X , ω) is weakly mixing in some

direction;

3. The surface (X , ω) does not have an affine circle factor;

4. The plane T (ω) = RRe(ω) + RIm(ω) ⊂ H1(X ,R) has trivial
intersection with the lattice H1(X ,Z).

The core of the theorem is (4) ⇒ (1).



KAM stability

The (flat) billiard flow on a completely integrable polygon is a

completely integrable Hamiltonian flow.

By the KAM theorem, for Hamiltonian perturbations of the billiard

flow, sufficiently small in a smooth topology, a positive measure set

of invariant tori persist (in fact these are the tori with Diophantine

frequency vectors).

An example of a smooth Hamiltonian perturbation could be a

perturbation of the flat metric in the interior of the polygon, or of

an edge away from the corners.

Question Does KAM stability holds when the invariant surfaces

have higher genus (and the flat metric on them has conical

singularities) ?



Theorem (F. 2025 following T. Alazard and C. Shao)

The typical surface persists with finite codimension, in the

following sense. For any regularity class there is a local submanifold

of the space of Hamiltonians which coincide with the unperturbed

Hamiltonian near the corners, such that for Hamiltonians on such a

submanifold the Hamiltonian flow has an invariant surface in the

given regularity class (the codimension increases linearly with the

degree of smoothness) on which the flows is conjugated to the

unperturbed flow on the invariant surface.

Question Does there exist Hamiltonian perturbations supported

away from corners with no invariant surfaces ? with ergodic flow ?



The linearized problem: the cohomological equation

Theorem (F97, Marmi, Moussa, Yoccoz MMY05)

There exists s0 > 0 such that, for all s > s0 and for almost all

ξ ∈ R2 the cohomological equation Xξu = f has a solution for all

f ∈ Hs(M) which belongs to the kernel Ker
(
Is
ξ (M)

)
of the space

of invariant distributions in H−s(M) and for all t < s − s0 there

exists a constant Cs,t(ξ) > 0 such that

∥u∥Ht(M) ≤ Cs,t(ξ)∥f ∥Hs(M) ;

The space Is
ξ (M) is finite dimensional but its dimension grows

linearly with respect to the regularity parameter s > 0 (and with

respect to the genus).



A model problem: smooth conjugacies

Theorem (Marmi, Moussa, Yoccoz, MMY12)

The typical translation flows is smoothy stable with finite

codimension, in the following sense. For any regularity class there

is a local submanifold of the space of flows which coincide with the

unperturbed flow near the cone points, such that flows on such a

submanifold are smoothly conjugate to the translation flow by a

conjugacy in the given regularity class (the codimension increases

linearly with the degree of smoothness).

No KAM (Nash-Moser) proof of this theorem is available.

MMY12 proof is based on M. Herman’s Schwartzian derivative

trick to compensate for the loss of regularity of the linearized

problem, and to reduce the conjugacy problem to a fixed point

problem in a Banach space (contraction mapping principle).

This method seems limited to the smooth conjugacy problem

one-dimensional maps (2-dimensional flows).



Para-differential linearization Para-differential calculus gives a

technique to reduce KAM type problems to fixed point problems in

Banach space.

Proposition (Continuity of para-product operators)

If a ∈ L∞(M), then the para-product Ta or Op(a) is a bounded

linear operator from Hs(M) to itself, and in fact there exists a

constant Cs > 0 such that

∥Ta∥L(Hs(M),Hs(M)) ≤ Cs∥a∥L∞(M) .

Proposition (Composition of para-product operators)

If a, b ∈ C r (M), then Tab − TaTb is a bounded linear operator

from Hs(M) to Hs+r (M) , and in fact there exists a constant

Cr ,s > 0 such that

∥Tab − TaTb∥L(Hs(M),Hs+r (M)) ≤ Cr ,s∥a∥C r ∥b∥C r .



Theorem (Para-linearization)

Let s > 1 and let Ns ∈ N denote the smallest integer such that

Ns > 2s − 1. For any functions u ∈ Hs(M,R2) and

F := F (x , u) ∈ CNs+3(M × R2), the following para-linearization

formula holds:

F (x , u)− F (x , 0) =Op(
∂F (x , u)

∂u
)u

+RPL(F (x , ), u)u ∈ Hs(M) + H2s−1(M) ,

where RPL(F (x , ·), u)u is a bounded linear operator from Hs(M)

to H2s−1(M) such that for a constant C ′
s > 0

∥RPL(F (x , ·), u)∥L(Hs(M),H2s−1(M)) ≤ C ′
s ∥F∥CNs+3(M×R2)(1+∥u∥Hs(M)) .

Moreover, the operators Op(∂F (x ,u)∂u ) ∈ L(Hs(M),Hs(M)) and

RPL(F (x , ·), u) ∈ L(Hs(M),H2s−1(M)) are continuously

differentiable in u ∈ Hs(M) with respect to the operator norms.



The simplest example: the conjugacy problem for circle

rotations (after T. Alazard and C. Shao)

Let Rα : T → T the rotation (translation) by α and let F = Rα + f

a small perturbation.

Problem: Find H = id + h and λ ∈ R such that

H ◦ Rα = F ◦ H − λ or

∆αh := h ◦ Rα − h = f ◦ H − λ .

Let u = (h, λ) and F(f , u) = ∆α(h)− f ◦ H + λ.

Find solutions of the equation F(f , u) = 0 for f small enough in a

smooth topology. By para-linearization of f ◦ H = f ◦ (Id + h)

F(f , u) = ∆αh − f − Tf ′◦H(h) + λ+R0(f , h)(h)

with remainder R0(f , h)(h) ∈ H2s−1/2(T) (for h ∈ Hs(T)).



By differentiating F(f , u):

f ′ ◦ H =
∆α(h

′)

1 + h′
− [F(f , h)]′

1 + h′
,

hence, by rewriting Tf ′◦H according to the above identity,

F(f , u) = ∆αh − f − OP
(∆α(h

′)

1 + h′

)
(h)

− OP
( [F(f , h)]′

1 + h′

)
(h) + λ+R1(f , h)(h)

= T1+h′◦Rα∆αT1/(1+h′)(h)− f

+T[F(f ,h)]′/(1+h′)(h) + λ+R2(f , h)(h)



The para-cohomological equation is obtained by dropping the term

T[F(f ,h)]′/(1+h′)(h) (linear in F(f , h)):

T1+h′◦Rα∆αT1/(1+h′)(h)− f + λ+R2(f , h)(h) = 0 .

Fixed point problem in Hs(R):

h = T−1
1/(1+h′)∆

−1
α T−1

1+h′◦Rα

[
f − λ−R2(f , h)(h)

]
.

(∆−1
α exists by Fourier series if α is Diophantine) to get

F(f , u) = T[F(f ,h)]′/(1+h′)(h)

which implies F(f , h) = 0 by a contraction argument.
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