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Liouville field theory

Liouville field theory was introduced by Polyakov (1981) in the context of

bosonic string theory and 2D quantum gravity.

It is a 2D conformal field theory whose classical equation of motion is a

generalization of Liouville’s equation, which is a PDE describing the

evolution of a Riemannian metric on R2.

Liouville field theory has found applications in various areas of theoretical

physics, including string theory, 3D general relativity, string theory in

anti-de Sitter space, and supersymmetric gauge theory.
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Liouville field theory in mathematics

Recent years have seen an explosion of activity in the mathematical

literature on proving the many tantalizing conjectures made by physicists

in the early years of Liouville field theory. Mathematicians call it Liouville

quantum gravity (LQG).

This includes

• the connection with Gaussian multiplicative chaos and the proof of

the KPZ formula by Duplantier and Sheffield (2011),

• the proof of the DOZZ formula by Kupiainen, Rhodes and Vargas

(2020),

• the connection with the Brownian map by Miller and Sheffield (2020),

• the existence and uniqueness of the Liouville metric, initiated by Ding,

Dubédat, Dunlap and Falconet (2020), and completed by Gwynne

and Miller (2021),

• and many other pathbreaking works.
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Timelike Liouville theory

Liouville field theory has a parameter b > 0 known as the Liouville

coupling constant.

When this parameter is replaced by ib, where i =
√
−1, we obtain timelike

or imaginary Liouville field theory (in contrast with the ordinary Liouville

field theory, which is sometimes called spacelike Liouville field theory).

Timelike Liouville theory has applications in quantum cosmology, tachyon

condensation, and other areas of theoretical physics.
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Timelike Liouville theory in mathematics

Timelike Liouville theory has deep and unexpected connections in

probability theory and statistical mechanics.

Delfino and Viti (2010) conjectured a formula for the 3-point connectivity

probabilities in 2D critical percolation in terms of the 3-point correlation

function of timelike Liouville theory.

Ikhlef, Jacobsen and Saleur (2016) conjectured a similar formula for the

nesting loops statistics of conformal loop ensembles (CLE).

Both conjectures were recently proved by Ang, Cai, Sun and Wu (2021).
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Wrong sign in the action

Replacing b by ib and replacing the Liouville field ϕ by iϕ have the

cumulative effect of reversing the sign in front of the kinetic term (i.e., the

gradient-square term) in the Liouville action.

The wrong sign in front of the kinetic term is a signature of models of

quantum gravity.

For this reason, timelike Liouville theory is closer to a theory of 2D

quantum gravity than ordinary (spacelike) Liouville theory.

One of the main results I will present shows how 2D gravity emerges from

this model in the semiclassical limit.
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Negative variance

From a mathematical perspective, the wrong sign presents the following

challenge.

While spacelike Liouville theory has been made rigorous using tools from

probability theory, converting those proofs to the timelike case (or indeed,

any ‘true’ model of quantum gravity) would require a theory of Gaussian

random variables with negative variance.

I will talk about the development of such a theory at the end of the talk.
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The action of timelike Liouville field theory

Let g(z)|dz |2 be the round metric on C, given by

g(z) =
4

(1 + |z |2)2
.

For a field ϕ : C → R, the timelike Liouville action is heuristically:

I (ϕ) =
1

4π

∫
C
(ϕ(z)∆gϕ(z) + 2Qϕ(z) + 4πµ :e2bϕ(z):)g(z)d2z .

b, µ are positive constants, and Q = b − 1
b .

∆g is the Laplacian operator for the metric g .

:e2bϕ(z): = e2bϕ(z)+2b2Gg (z,z), where Gg is the inverse of − 1
2π∆g on

functions that integrate to zero with respect to g(z)d2z .

:e2ϕ(z): is not well-defined because Gg (z , z) = ∞ for all z .
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Using the action to define the theory

Heuristically, timelike Liouville field theory defines a ‘measure’ on the

space of fields that has density e−I (ϕ) with respect to ‘Lebesgue measure’

on the space of fields.

We would like to compute expected values of various quantities under this

‘measure’.

Main question: Can we make sense of this measure?
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Unboundedness of the action

A major problem with making sense of the measure is that the action I is

unbounded below.

To see this, observe that by integration by parts, the first term in the

action (called the kinetic term) is given by∫
C
ϕ(z)∆gϕ(z)g(z)d

2z = −
∫
C
|∇gϕ(z)|2g(z)d2z ,

where ∇gϕ is the gradient of ϕ in the metric g .

This means that we can make ϕ more and more wiggly to make this term

diverge to −∞, while preserving the remaining terms in the action within

finite bounds.

The appearance of the kinetic term with the ‘wrong’ (i.e., negative) sign in

the action is a common feature of models in quantum gravity. Its most

consequential appearance is in the Einstein–Hilbert action for Einstein

gravity, which is one of the roadblocks to quantizing Einstein gravity.
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What to compute after defining the measure

Once we have some kind of sense of a measure with density e−I (ϕ) on the

space of fields, we would then like to understand the behavior of a

‘random’ field ϕ ‘drawn’ from this measure, in the sense of drawing a

random field from a probability distribution.

The main role of such a random field ϕ is that it defines a random metric

:e2bϕ(z): g(z)|dz |2 on C.

Any theory of quantum gravity is a theory of a random metric that

fluctuates around the critical points of the action, where the critical points

give the classical equations of motion.

For example, the critical points of the Einstein–Hilbert action are the

metrics on R4 that satisfy Einstein’s equation of general relativity.
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Correlation functions

One way to understand the behavior of this random field is to take

expectations of observables like e2αϕ(z) for α, z ∈ C.

More generally, we can take expectations of products of such observables.

To get finite results, we must normalize e2αϕ(z) appropriately.

This normalization yields the so-called vertex operators.
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Vertex operators

Take any k ≥ 1, and let z1, . . . , zk be distinct points in C.

Let α1, . . . , αk be arbitrary complex numbers.

The k-point correlation function of timelike Liouville theory is heuristically

C (α1, . . . , αk ; z1, . . . , zk ; b;µ) =

∫ ( k∏
j=1

Vϕ(αj , zj)

)
e−I (ϕ)Dϕ.

Here
∫
. . .Dϕ denotes integration with respect to ‘Lebesgue measure’ on

the space of fields, I is the action, and Vϕ(α, z) is the vertex operator

Vϕ(α, z) = eχα(b−α)g(z)−∆α :e2αϕ(z):

where ∆α = α(Q − α) and χ := ln 4− 1. The number ∆α is called the

conformal weight of the vertex operator, for reasons related to conformal

field theory.
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Main result #1: A formula for k-point correlations

Theorem (C., 2025)

Suppose that k ≥ 3, Re(αj) > −1/2b for each j, and

w = (Q −
∑k

j=1 αj)/b is a positive integer. Let z1, . . . , zk be

distinct points in C. Then

C (α1, . . . , αk ; z1, . . . , zk ; b;µ)

=
e−iπwµw

w !
(4/e)1−1/b2 ∏

1≤j<j′≤k

|zj − zj′ |4αjαj′

·
∫
Cw

( k∏
j=1

w∏
l=1

|zj − tl |4bαj

)( ∏
1≤l<l′≤w

|tl − tl′ |4b
2

)
d2t1 · · · d2tw .
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Remarks

The condition that w is a positive integer is sometimes called the charge

neutrality condition. It appears frequently in conformal field theory.

Our formula is similar to the Coulomb gas expression for the 3-point

function of spacelike Liouville theory derived in physics by Goulian and Li

(1991) and for timelike Liouville theory by Kostov and Petkova (2006).

Interestingly, Guillarmou, Kupiainen and Rhodes (2023) obtain the same

expression for the k-point correlations in a compactified model they define

(where the field ϕ takes value in a compact interval). It is not clear why

the same formula arises.

Similarly, it is not clear why the same formula arises for the 3-point

connectivity probability of 2D critical percolation, as proved rigorously by

Ang, Cai, Sun and Wu (2021) using techniques from SLE and CLE.
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Main result #2: The timelike DOZZ formula

Our next main result is a rigorous statement of the timelike DOZZ formula.

It is proved using the formula from the previous theorem and a series of

calculations using the complex Selberg integral formula of Dotsenko and

Fateev (1985) and Aomoto (1987), following ideas from Giribet (2012).

To state this result, we need some preparation.
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Preparation

The following special function was introduced by Dorn and Otto (1994):

Υb(z) = exp

(∫ ∞

0

1

τ

((
b

2
+

1

2b
− z

)2

e−τ

−
sinh2(( b2 + 1

2b − z) τ2 )

sinh( bτ2 ) sinh( τ2b )

)
dτ

)
on the strip {z ∈ C : 0 < Re(z) < b+ 1

b} and continued analytically

to the whole plane.

Let γ(z) = Γ(z)/Γ(1− z), where Γ is the classical Gamma function.
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The timelike DOZZ formula

Theorem (C., 2025)

Let α1, α2, α3 be complex numbers such that

w = (Q −
∑3

j=1 αj)/b is a positive integer less than 1 + (2b2)−1,

and Υb(2αj + 1/b) ̸= 0 for j = 1, 2, 3. Take any distinct

z1, z2, z3 ∈ C. For 1 ≤ j < k ≤ 3, define zjk := |zj − zk | and
∆jk := 2∆αj + 2∆αk

−
∑3

l=1 ∆αl
. Then

C (α1, α2, α3; z1, z2, z3; b;µ)

= e−iπw (−πµγ(−b2))w (4/e)1−1/b2

b2b
2w+2w

· Υb(bw + b)

Υb(b)

3∏
j=1

Υb(2αj + bw + 1/b)

Υb(2αj + 1/b)

∏
1≤j<k≤3

|zjk |2∆jk .

The formula also holds if w is any positive integer and α1, α2, α3

have real parts greater than −1/2b.
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Remarks

This formula is the same (up to notational changes) as the one given in

Harlow, Maltz and Witten (2011), as well the ones appearing in the

original proposals of Schomerus (2003), Zamolodchikov (2005), and

Kostov and Petkova (2006).

At this time, this seems to be the widely accepted formula for the 3-point

function of timelike Liouville field theory.

The formula is supposed to be valid for all α1, α2, α3.

It is unclear how to extend the arguments of my paper to the full

parameter space.
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Main result #3: Semiclassical limit

The semiclassical limit of timelike Liouville field theory under insertion of

heavy operators is obtained by taking b → 0, while simultaneously scaling

the αj ’s and µ as αj = α̃j/b and µ = µ̃/b2, where the α̃j ’s and µ̃ are

fixed real numbers as b → 0.

Semiclassical limits are important for the following reason. Suppose one is

able to construct a quantum theory of gravity. A valid theory should yield

the equations of general relativity in the semiclassical limit. A toy version

of this should hold for models of 2D gravity.

We need some preparation. First, for a function f : C → C, let Gg f

denote the function

Gg f (z) :=

∫
C
Gg (z , z

′)f (z ′)g(z ′)d2z ′.

This operator will appear several times in the following slide.
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Preparation

Let P be the set of probability density functions with respect to the

measure g(z)d2z .

Define the following three functionals on P:

H(ρ) :=

∫
C
ρ(z) ln ρ(z)g(z)d2z ,

R(ρ) :=

∫
C2

ρ(z)ρ(z ′)Gg (z , z
′)g(z)g(z ′)d2zd2z ′,

L(ρ) :=
k∑

j=1

4α̃j

∫
C
Gg (zj , z)ρ(z)g(z)d

2z .

Let P ′ be the subset of P consisting of all ρ such that H(ρ) is finite. It

turns out that for ρ ∈ P ′, the functionals R(ρ) and L(ρ) are also finite.

For ρ ∈ P ′, define S(ρ) := L(ρ) + 2βR(ρ) + H(ρ).
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The semiclassical limit

Theorem (C., 2025)

Suppose α̃j ∈ (−1/2,∞) for each j, and β = −1−
∑k

j=1 α̃j > 0.

For each n ≥ 1, let

bn :=

√
β

n − 1
.

Then

lim
n→∞

1

n
logC (α̃1/bn, . . . , α̃k/bn; z1, . . . , zk ; bn; µ̃/b

2
n)

= 1 + ln µ̃− lnβ − iπ + (1− ln 4)
k∑

j=1

α̃2
j

β2
+

k∑
j=1

α̃j(1 + α̃j)

β2
ln g(zj)

− 4

β

∑
1≤j<j′≤k

α̃j α̃j′Gg (zj , zj′)− inf
ρ∈P′

S(ρ).

Moreover, the infimum on the right is attained at a unique ρ̂ ∈ P ′.
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Remarks

The formula for the semiclassical limit seems not to have appeared

previously in the literature (physics or math).

The proof goes by analyzing the explicit formula for the k-point function,

which is an n-fold Coulomb gas integral with n → ∞ as b → 0.

We will see shortly that the limit indeed yields the classical equations for

2D gravity.
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Preparation for main result #4

It turns out that as b → 0,

C̃ (α̃1/b, . . . , α̃k/b; z1, . . . , zk ; b; µ̃/b
2) =

∫
eJ(ψ)/b

2+O(1)Dψ,

where

J(ψ) = −χ
k∑

j=1

α̃j +
k∑

j=1

α̃j(1 + α̃j) ln g(zj)

+
k∑

j=1

(2α̃jψ(zj) + 2α̃2
j Gg (zj , zj))

+
1

2π

∫
C
ψ(z)g(z)d2z

− 1

4π

∫
C
(ψ(z)∆gψ(z) + 4πµ̃e2ψ(z))g(z)d2z .

24



Critical points of J

So, we may expect that as b → 0, C (α̃1/b, . . . , α̃k/b; z1, . . . , zk ; b; µ̃/b
2)

behaves like eJ(ψ̂)/b
2

for some critical point ψ̂ of J.

Formal computations show that a critical point ψ̂ must satisfy the

functional equation

2
k∑

j=1

α̃jg(z)
−1δzj (z) +

1

2π
− 1

2π
∆g ψ̂(z)− 2µ̃e2ψ̂(z) = 0.
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Equation of 2D gravity

Let ĝ(z) := e2ψ̂(z)g(z) be the metric induced by a critical point ψ̂.

A simple computation shows that the Ricci scalar curvature of ĝ is given by

Rĝ (z) = 2e−2ϕ̂(z)(1−∆g ϕ̂(z)).

Plugging this into the critical point equation, we get

Rĝ (z) = 8πµ̃+ 8π
k∑

j=1

α̃j ĝ(z)
−1δzj (z).

This is the equation of motion in 2D JT gravity upon insertion of charges

at z1, . . . , zk .

26



Equation of 2D gravity
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Rĝ (z) = 8πµ̃+ 8π
k∑

j=1

α̃j ĝ(z)
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Main result #4: Emergence of 2D gravity

Theorem (C., 2025)

The limit obtained in the previous theorem can be expressed as

J(ψ̂)/β for some critical point ψ̂ of J. Moreover, this critical point

is given by

ψ̂(z) = −2βGg ρ̂(z)−
λ

2
+

1

2
lnβ +

iπ

2
− 1

2
ln µ̃− 2

k∑
j=1

α̃jGg (z , zj),

where ρ̂ is the unique minimizer of the function S from before, and

λ = ln

∫
C
exp

(
−4βGg ρ̂(z)− 4

k∑
j=1

α̃jGg (zj , z)

)
g(z)d2z .
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Remarks

Again, this result does not seem to have appeared in the literature.

Note that ψ̂ has a constant imaginary component of 1
2 iπ. This has to be

the case, because J has no critical points among real-valued functions, as

already observed by Harlow, Maltz and Witten (2011).

But since the metric induced by ψ̂ is e2ψ̂(z)g(z), it is real-valued even

though ψ̂ is not.
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Gaussian random variables with negative variance

To deal with any realistic attempt at quantizing gravity, it seems that we

need to define path integrals where the kinetic term appears with the

wrong sign.

In probabilistic terms, we need a theory of Gaussian random variables with

negative variance.

We will now define a notion of a ‘wrong sign’ Gaussian distribution, where

the variance is allowed to be negative. More generally, we will define an

(m + n)-dimensional random vector Z = (X1, . . . ,Xm,Y1, . . . ,Yn) where

the coordinates are independent, X1, . . . ,Xm are N(0, 1) random variables,

and Y1, . . . ,Yn are N(0,−1) random variables.

To be precise, we will define E(f (Z )) for f belonging to a class of

complex-valued functions Fm,n on Rm × Rn.
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Requirements

From physical and mathematical considerations, we require the following.

1. Fm,n should include elementary functions such as polynomials and

exponentials. Moreover, for such functions, E(f (Z )) should be the

same as what we would obtain if we first compute the expectation

assuming that Y1, . . . ,Yn are i.i.d. N(0, v) for some v > 0, and

naively substitute v = −1 in the formula obtained from this

computation. For example, if X ∼ N(0,−1), then we should have

E(eaX ) = e−
1
2 a

2

, since E(eaY ) = e
1
2 va

2

when Y ∼ N(0, v) for v > 0.

2. Since expectation must be linear, Fm,n should be a vector space over

C and f 7→ E(f (Z )) should be linear. Moreover, if f is identically

equal to a constant c , then E(f (Z )) should be equal to c .

3. If f is real-valued, then E(f (Z )) should be real. This comes from

physical considerations, because the expected value of a real-valued

observable should not have a nonzero imaginary component.
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Ideas that do not work

One can show that E(f (Z )) cannot be defined as the integration of f with

respect to a measure on Rm+n, if the three conditions have to be satisfied.

Nor can it be defined as an integration with respect to a signed measure.

And lastly, it cannot be defined as an integration with respect to a

complex measure.

The arguments are given in the preprint.
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The incorrect way to do analytic continuation

Physicists define wrong sign integration via analytic continuation. One

approach goes as follows.

Suppose we want to evaluate E(f (X )) for some function f , where

X ∼ N(0,−1).

We define h(s) := E(f (sY )), where Y ∼ N(0, 1) and s > 0; then, we

analytically continue h to the imaginary axis; finally, we define

E(f (X )) := h(i), with the idea that iY mimics a N(0,−1) random

variable.

This works well in many situations, for example when f is polynomial or

exponential. However, there is no mathematical theory around this, and

therefore we do not know precise conditions under which this approach

does not lead to contradictions or violations of the conditions listed before.
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Failure of this approach for timelike Liouville theory

This approach corresponds to the following method of going from spacelike

to timelike Liouville theory:

Compute the correlations functions for

spacelike Liouville theory, and then analytically continue in the parameter

b to replace it by ib.

It was shown by Zamolodchikov (2005) that this fails ‘rather dramatically’,

to quote from Harlow, Maltz and Witten (2011).

The example in the next slide illustrates the kind of problem that leads to

this failure.
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A counterexample

Let f (x) = exp(−ex − e−x) for x ∈ R.

Let h(s) = E(f (sY )) for s > 0, where Y ∼ N(0, 1). Then

h(s) =
1√
2πs

∫ ∞

0

1

u
exp

(
−u − 1

u
− 1

2s2
(ln u)2

)
du.

This function continues analytically to C \ {0} by the same formula.

Thus, we should define, for X ∼ N(0,−1),

E(f (X )) = h(i) =
1√
2πi

∫ ∞

0

1

u
exp

(
−u − 1

u
+

1

2
(ln u)2

)
du.

But this is not a real number, thus violating our condition that the

expected value of a real-valued function should be real.
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The right way to do analytic continuation

Suppose we want to calculate E(f (X )) where X ∼ N(0,−1).

The correct approach is to first analytically continue the function f , and

define E(f (X )) to be E(f (iY )), where Y ∼ N(0, 1).

This small adjustment guarantees that expected values of real-valued

functions are real.

Fundamentally, this is a consequence of the Schwarz reflection principle.
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General definition

Take any m ≥ 0 and n > 0. We define Fm,n to be the class of functions

f : Rm+n → C such that f has an analytic continuation in the last n

coordinates to a function f̃ : Rm × Ω → C, where Ω is an open subset of

Cn that contains (R ∪ iR)n, such that

E|f̃ (W1, . . . ,Wm, iWm+1, . . . , iWm+n)| <∞,

where W1, . . . ,Wm+n are i.i.d. N(0, 1) random variables.

If such an f̃ exists, we define

E(f (Z )) = E(f̃ (W1, . . . ,Wm, iWm+1, . . . , iWm+n)),

for a vector Z = (X1, . . . ,Xm,Y1, . . . ,Yn) has independent coordinates,

X1, . . . ,Xm are N(0, 1) random variables, and Y1, . . . ,Yn are N(0,−1)

random variables. Let us denote this by Z ∼ Nm,n.

In the preprint, it is shown that this is well-defined.
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Validity of the revised approach

Theorem (C., 2025)

Suppose that f ∈ Fm,n is real-valued and Z ∼ Nm,n. Then

E(f (Z )) is real.
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Sketch of the proof

Consider the simplest case, where f : R → R has an analytic continuation

to the whole of C, and E|f (iZ )| <∞ for Z ∼ N(0, 1).

We have to show that E(f (iZ )) ∈ R.

By the Schwarz reflection principle and the fact that f is real-valued on R,
we deduce that f (z) = f (z) for all z ∈ C.

Since the distribution of Z is symmetric around zero, this implies that

E(f (iZ )) =
1

2
[E(f (iZ )) + E(f (−iZ ))] =

1

2
[E(f (iZ )) + E(f (iZ ))] ∈ R.
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