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Outline

Motivation.
SIR epidemics on a network/graph.
A simple model of a population as a network/graph.

e The network.
e Epidemics on it.
o Their analysis.

Vaccination.
o Allocating vaccine to better mitigate epidemics.

‘Dropping’.
e Individuals changing their behaviour in response to the
presence of infection.
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Motivation

o Mathematically tractable epidemic models are valuable tools
for understanding, predicting, mitigating, planning, ...in the
context of infectious diseases.

@ Classical models include several assumptions of homogeneity,
many of which are unrealistic.

@ Heterogeneity has been included in many ways, including
households, multiple types, multiple severities, . ...

@ Our focus is on using network structure to reflect population
structures like social networks in human/animal populations,
network connectivity of computers.

)
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Framework & underlying models
°

Stochastic SIR epidemic on a network

Given a graph G (undirected), identify nodes with individuals and
edges with ‘friendships’ and define an epidemic model:

Initially 1 infectious (chosen UAR) and n — 1 susceptible.
SIR (suceptible — infectious — removed) progression.

Infectious individuals remain so for random time distributed as
I, then become removed.

Infectious individuals make contacts with each neighbour in G
at the points of Poisson Processes of rate A > 0; if neighbour
is susceptible it becomes infectious.

Infectious periods and PPs mutually independent.

Continue until no infectious individuals remain.

Classical model has G = K,,. Analysis is as n — oo.

Investigate the number of initial susceptibles that are
ultimately removed, the final size.
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Final size behaviour

Histograms of relative final sizes from 10,000 simulations of a
network-based SIR epidemic model, n = 300.
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We investigate (i) whether large outbreaks are possible, and if so
(ii) how likely they are and (iii) how big they are.
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Epidemic model properties

@ Main object of interest is the final size Z, the number of
initial susceptibles that are ultimately removed.

@ As n — oo, we empirically we observe in that either the
infection dies out quickly and infects few individuals
(Z = O(1)) or takes off and infects a significant fraction of
the population (Z = O(n)).

@ By analysing the early stages of the epidemic we find a
threshold parameter R, and the probability of a major
outbreak pmaj = P(Z = O(n)); with ppaj >0 <= R, > 1L

@ We also find the expected relative final size of a major
outbreak z =E[Z/n | Z = O(n)].

e (Can also get CLT for v/n(Z/n — z) in the event of a major
outbreak.)
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BP approximations

A forward process Br approximates the spread of infection.
The criticality of Bg determines whether a major outbreak is
possible.

R. = mean of offspring distn of BF.
Total progeny of B approximates the final size.

Pmaj =~ P(BF avoids extinction).

A backward process Bg approximates the ‘spread’ of an
individual's ‘susceptibility set’.

In the event of a major outbreak, a UAR chosen individual is
infected 'iff’ its susceptibility set is infinite.

Total progeny of Bg approximates the size of an individuals
susceptibility set.

z ~ [P(Bg avoids extinction). o
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@ Classical model has G = K,,.

o Can also use G(n, p) or random regular graphs®.

@ These represent (more-or-less) homogeneous mixing of
homogeneous individuals.

@ The degree distribution of these graphs does not reflect what
is empirically observed.

o degree distribution: distribution of the number of neighbours
of a randomly chosen vertex.

'Neal (2003); Diekmann, de Jong & Metz (1998).
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Configuration model

A random graph model with specified degree distribution?.
@ Given n and a degree distribution D,

e assign each individual D; 2 D stubs (half-edges) and
e pair the stubs UAR.

@ This gives a random graph with specified degree distribution,
uniformly from all (multi-)graphs on n vertices with that
degree distribution.

@ There are sufficiently few of these ‘imperfections’ that they
don’t affect our analysis.

@ No clustering (small loops) or degree correlation (assortativity
/ disassortativity).

2Durrett (2007).
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Configuration model

SIR epidemic on a CM random graph3.

@ BP approximations give the following threshold parameter and
PGF for z:

0.2
Ri=ppp_y = p(pp + 72 — 1),
fer(s) = f5_1(1—p+sp), fa(s)=fo(l— p+sp)

Here P(D = d) = dP(D = d)/up, p =1 — ¢(A),
fx(s) = E[s%] and f()(s) = L £(s).

More complex PGFs for py,j, but just as numerically
amenable.

3Andersson (1997); Newman (2002); Kenah & Robins (2007); Ball, Sirl &
Trapman (2009).
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Vaccination

@ Including the effect of possible interventions is a key use of
epidemic models.

@ We deal with prophylactic vaccination; vaccination done in
advance of any outbreak.

@ (Not contact tracing or any other reactive approach.)

@ Two key aspects to model:

o Allocation: who gets vaccinated.
e Action: the effect on those who are vaccinated.

@ We focus on the former.
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Vaccination
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Vaccination: our baseline models

The CM-SIR epidemic model.
@ Configuration model network with degrees ~ D.

@ Per-pair infection rate \.

@ Infectious period ~ /.

e Formulae to compute Ry, pmaj, z numerically.
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Vaccination modelling

e Vaccine action*

e Perfect: complete protection.

e All or nothing: complete protection with probability ¢,
otherwise no effect, independently for each individual.

e Non-random: rate of incoming PPs multiplied by a > 0, rate
of outgoing PPs multiplied by b > 0.

@ Vaccine allocation

e Simplest is to vaccinate individuals UAR. Analysis is fairly
straightforward.

o Being more intelligent (i.e. exploiting population structure)
allows us to do better.

o For example, in the standard households model the equalising
strategy is provably optimal in some circumstances and often
(but certainly not always) optimal or near-optimal otherwise®.

*Becker & Starczak (1998).
®Ball et al. (1997); Keeling & Ross (2015).
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Acquaintance vaccination

A challenge is to develop vaccine allocation strategies which target
key (well-connected) individuals in the network structure, using
only local knowledge about this structure.

One way of doing this is through acquaintance vaccination®.

@ Sample individuals UAR with probability ps.

@ Sampled individuals independently name each of their
neighbours with probability py.

@ Named individuals are vaccinated.

®Ball & Sirl (2013).
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Acquaintance vaccination: BP approximations

Sample individuals UAR w.p. ps; sampled individuals name each of
their neighbours for vaccination independently w.p. py.

@ Knowing an individual is vaccinated gives some information
about its degree.
e We type individuals as N/V /U and S/5°¢.
e Named for vaccination by their infector, Vaccinated but not
named by their infector, Unvaccinated.
o Sampled or unsampled (for possibly naming their neighbours).
@ This yields 6-type BPs, from which we derive a threshold
parameter R, and also pma; and z.
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Acquaintance vaccination: allocation specifics

Vaccine coverage is easily shown to be

pv =1—fp(1— pspn).

@ This depends on ps and py only through the product pspy.

@ Performance (measured by Ry, pmaj or z) does depend on
specific values of ps and py.

@ For a perfect vaccine and fixed pspy, R, is increasing in pp;
i.e. it is better to have everyone name a few friends than a
few people name all their friends.

@ The difference between best and worst is quite small; and for
imperfect vaccines the dependence on the precise values of pg
and py again seems very small.
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Asides before numerical results

@ Use the notation D ~ Hea(k, o) to mean

B(D = d) {ka ford =0,1,...,k,
d™® ford=k+1,k+2,....

@ We compare the performance of old and new (best and worst)
acquaintance vaccination to vaccinating individuals chosen
UAR and to the ‘CM-optimal” allocation of vaccinating
individuals of highest degree.
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Acquaintance vaccination performance 1la

25
\ —_——
N UAR
\ New Worst
oL N
\ \\ New Best
\ N
\ N X old
\ N
\ \\ — — — CM-Opt
15 N N
N N
. \ N
\d AN N
N N
N N
1 e s o \K .........................................
N N
N ~
AN N
N
S N
\ N
05 S N
~ N
~ - ~
S~ - N N
0 L L L L =~
0 0.2 0.4 0.6 0.8 1

covera;

Acquaintance vaccination performafce with CM population.
Parameters D ~ Poi(10), / ~ exp(3) and A = 1.
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Acquaintance vaccination performance 1b
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Acquaintance vaccination performance with CM population.
Parameters D ~ Poi(10), / ~ exp(3) and A = 1.

18 /32



Vaccination
°

Acquaintance vaccination performance 2a
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Acquaintance vaccination performafce with CM population.
Parameters D ~ Hea(12,3.4), | ~ exp(10) and A = 1.
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Acquaintance vaccination performance 2b
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Acquaintance vaccination performance with CM population.
Parameters D ~ Hea(12,3.4), | ~ exp(10) and A = 1.
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k-Acquaintance vaccination in CM population

Sample individuals UAR w.p. ps; sampled individuals name each of
their neighbours w.p. py.

@ Rather than vaccinating individuals named at least once,
vaccinate those named at least k times.

@ With higher k this more strongly targets individuals of high
degree. (But requires more effort to achieve a given coverage.)

@ Branching process of infected individuals (— Ry, pmaj, 2).

@ Now need an 8 type process, typing by whether or not an
individual is

e Named by its infector,
e Vaccinated,
e Sampled.

@ Numerical results for k = 2.
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k-Acquaintance vaccination performance 1
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Acquaintance vaccination perforr;fseﬁéee with CM population.
Parameters D ~ Poi(10), / ~ exp(3) and A = 1.
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Vaccination

k-Acquaintance vaccination performance 2
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Acquaintance vaccination performance with CM population.
Parameters D ~ Hea(12,3.4), | ~ exp(10) and A = 1.
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Dropping
°

Dropping edges in the CM-SIR model

@ CM network model, SIR progression as before.
@ Infectives

e infect each neighbour at rate A,
e recover at rate 7.

@ Also let each neighbour of an infective drop their connection
to the infective at rate w.
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Analysis of model with dropping

e Britton et al.” (i) treat an SEIR model and (ii) allow
‘rewiring’.

@ Britton et al. analyse the early stages (threshold parameters
and early exponential growth rate).

e Branching process approximation.

o Pair approximation (deterministic large population ‘limit’ ODEs
for the number of singletons, pairs, triples, ... of individuals in
the various disease states): system of 7/10 ODEs.

@ They find that the threshold parameters disagree, but
simulation results are more in agreement with the BP
predictions.

@ The simpler model is what we® have investigated further (as a
first step).

"Britton et al. (2016).
®Ball, Britton, Leung & Sirl (in prep.).
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Dropping
°

Effective degree representation®

@ Construct the network and the epidemic at the same time.

e Give individuals their (random number of) stubs; an
individual's effective degree is the number of remaining free
stubs it has.

@ Let the epidemic evolve, pairing up stubs only when an
infection or informing event occurs.

@ This leads to a CTMC
W(t) = ((Xi(t))Zo, (Yi(t))Zo, ZE(t)) € 2T X LT X L.

@ Here X; is the number of susceptible individuals of effective
degree i, Y; similarly for infectives and Zg is the number of
unpaired stubs emanating from removed individuals.

°Ball and Neal (2008).
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Effective degree analysis

@ Theory of density dependent population processes!® gives a
functional LLN and CLT, e.g.

lim ———=

N—o0 N
where w(t) is the solution of an ODE system and — can be
made precise.

@ DD theory applies to finite systems, so must impose a
maximum degree (or apply the optimism principle of applied
mathematics).

@ Infinite system reduces to a single driving ODE; which when
w = 0 is that of Volz/Miller'!.

OEthier & Kurtz (1986, Chapter 11)
“Miller, Slim & Volz (2012).
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(Expected relative) final size

@ Letting t — oo in the ODE(s) gives the asymptotic relative
final size of the epidemic started with a positive fraction of
infected individuals (i.e. a major outbreak).

@ This yields implicit equations for z.
@ (The same one we saw earlier when w = 0.)

@ Final size in this model with dropping
= final size without dropping but recovery rate v + w.
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CLT for final size

@ Kurtz's theory of DD processes also gives a CLT for the final

size of the epidemic:
(N)
(247 -2).

(A little more work is is required to make the DD theory

apply.)
@ This will suggest a CLT for the size of the giant component in
a CM random graph. Previously
o Derived heuristically for a very special case'?.
o Asymptotic variance known rigorously3.

2Ball & Neal (2008).
3Ball & Neal (2016).
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Summary & future

BP approximations to characterise final size behaviour of SIR
epidemic models on random graph population structures.
Vaccination.

e Acquaintance vaccination.

e Including household structure.

o Further targeting of highly connected individuals.
Dropping

e A simple dynamic network.

e Incorporate ‘rewiring’.

Finding individuals whose vaccination will have the most
impact (by some measure).

Minimising R, is not always equivalent to minimising z.
Variations / refinements.

Performance in other models of network structure.

A version /variation suitable for implementation?

30/32



End matter
[ 1}

References |

Andersson (1997). Math. Biosci. 140:79-84.

Ball, Mollison & Scalia-Tomba (1997). Ann. Appl. Probab. 7:46-89.
Ball & Neal (2008). Math. Biosci. 212:69-87.

Ball & Neal (2016). Ann. Appl. Probab. To appear.

Ball & Sirl (2013). J. Appl. Probab. 50:1147-1168.

Ball, Sirl & Trapman (2009). Adv. Appl. Probab. 41:765-796.

Ball, Sirl & Trapman (2010). Math. Biosci. 224:53-73. (Erratum
ibid. 225:81.)

Britton, Juher & Saldafa (2016). Bull. Math. Biol. 78:2427-2454.
Diekmann, de Jong & Metz (1998). J. Appl. Probab. 35:448-462.
Durrett (2007). Random Graph Dynamics.

31/32



End matter
[ 1}

References |l

Ethier & Kurtz (1986). Markov Processes: Characterization and
Convergence.

Keeling & Ross (2015). Epidemics 11:7-13.

Kenah & Robins (2007). Phys. Rev. E 76:036113.

Miller, Slim & Volz (2012). J. R. Soc. Interface 9:890-906.
Neal (2003). J. Appl. Probab. 40:779-782.

Newman (2002). Phys. Rev. E 66:016128.

32/32



	Front matter
	Framework & underlying models
	Vaccination
	Dropping
	End matter

