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SIS epidemics

I In an SIS (susceptible-infective-susceptible) epidemic model,
each individual is of one of the following two types:
susceptible or infective. When an individual recovers from
infection, they become susceptible again.

I SIS epidemics are used as models for diseases where there is
no lasting immunity following recovery.

I Examples include respiratory diseases apart from influenza,
gastrointestinal infections (e.g. rotavirus and norovirus).

I SIS epidemic models are mathematically equivalent to contact
processes, introduced by Harris in 1974.
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Stochastic logistic SIS epidemic

I We model an SIS (susceptible-infective-susceptible) epidemic
in a population of size N.

I XN(t) is the number of infective individuals at time t.

I Each infective individual encounters a random other member
of the population at rate λ > 0: if the person they meet is
currently susceptible, they become infective.

I So the number XN(t) increases by 1 at rate
λXN(t)(N − XN(t))

N
: each individual attempts to infect

another at rate λ, and the probability that the encountered
individual is currently susceptible is (N − XN(t))/N.

I Each infective person recovers at rate µ > 0, and then
becomes susceptible again.
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Corresponding deterministic model

I We have an infinite population.

I The proportion of infective individuals at time t is x(t).

I Each infective individual encounters a random other member
of the population at rate λ: if the person they meet is
currently susceptible, they become infective.

I Each infective person recovers at rate µ, and then becomes
susceptible again.

I The proportion x(t) of infective individuals at time t satisfies:

dx(t)

dt
= λx(t)(1− x(t))− µx(t).
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Behaviour of the deterministic model

I We can write

dx(t)

dt
= λx(t)

(
1− µ/λ− x(t)

)
.

I For µ ≥ λ, the equation has an attractive fixed point at 0. If
x(0) ∈ [0, 1], then x(t) remains in [0, 1] for all time, and
x(t)→ 0 as t →∞.

I For µ < λ, the equation has a repulsive fixed point at 0, and
an attractive fixed point at 1−µ/λ. If x(0) ∈ (0, 1], then x(t)
remains in [0, 1] for all time, and x(t)→ 1− µ/λ as t →∞.
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Solution of the differential equation

In fact, the differential equation is simple enough that it can be
solved explicitly: assuming x(0) 6= 0,

x(t) =
1− µ/λ

1−
(
µ/λ−1
x(0) + 1

)
e(µ−λ)t

, t ≥ 0 (µ 6= λ);

x(t) =
x(0)

λx(0)t + 1
, t ≥ 0 (µ = λ).

The solution for µ 6= λ is called the logistic curve.

Again, x(t)→ 0 if µ ≥ λ, and x(t)→ 1− µ/λ if µ < λ. The
convergence is exponential except in the critical case µ = λ.
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Stochastic vs deterministic epidemic

The stochastic logistic epidemic is a continuous-time Markov chain
with the following transitions:

X → X + 1 at rate
λX (N − X )

N
;

X → X − 1 at rate µX .

The drift in
1

N
X is

+
1

N
× λX (N − X )

N
− 1

N
× µX =

X

N

(
λ
(
1− X/N

)
− µ

)
,

exactly as in the deterministic model.
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A (short-term) law of large numbers

I We consider a sequence of stochastic epidemic models, one
for each value of N, and assume that the initial number of
infectives satisfies XN(0)/N → x(0) as N →∞, where
x(0) ∈ (0, 1].

I Then the scaled process xN = XN/N converges in probability,
on bounded time intervals, to the solution of the differential
equation

dx

dt
= λx(1− x)− µx ,

with initial condition x(0).
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Law of large numbers

I During this time interval [0, t0], the number of jumps in the
process XN is typically of order N.

I What happens over longer time intervals, perhaps until the
end of the epidemic?
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Basic reproductive ratio

I As for the deterministic system, the key parameter is the ratio
R0 = λ/µ, and whether it is greater or less than 1.

I In the context of an epidemic, R0 is called the basic
reproductive ratio. It is the number of cases one case
generates on average over the course of its infectious period.

I If R0 ≤ 1, then the probability of an epidemic becoming
established (starting with only a few infectives) is close to 0.
If R0 > 1, then this probability is positive.
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Long-term behaviour of the stochastic model

I The stochastic model we introduced is a continuous-time
Markov chain, with a finite state space {0, . . . ,N}.

I There is an absorbing state, namely 0. Once the Markov chain
enters this state, it stays there.

I With probability 1, the Markov chain will eventually enter the
absorbing state: the epidemic will die out, even when R0 > 1
(i.e. even when λ > µ, unlike the deterministic version).
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Extinction time: λ > µ

I Let TN = TN(XN(0)) be the time to extinction for (XN(t)).
i.e., the hitting time of the absorbing state 0.

I Whenever XN(0)→∞, we have

ETN(XN(0)) =
√

2π
λ

(λ− µ)2
eγN√

N
(1− o(1)),

as N →∞, where
γ = log λ− logµ− λ−µ

λ = log R0 − 1 + R−10 > 0.

I Moreover, the time to extinction is asymptotically an

exponential random variable:
TN

ETN
→ Z in distribution, where

Z ∼ Exp(1)

I See: Barbour (1976), Andersson and Djehiche (1998), Nåsell
(2011).
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λ > µ

I Conditioning on the event that the chain has not entered
state 0 by time t, one obtains a limiting quasi-stationary
distribution, centred around the attractive fixed point of the
differential equation.

I Starting from a fixed state, the chain converges rapidly to the
quasi-stationary distribution.

I Moving from near the fixed point to 0 is a rare event. The
expected time until the rare event occurs can be estimated
very precisely, as above.

I One can show that the scaled stochastic process follows the
deterministic one for a time period exponential in N.
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λ < µ: rapid extinction

I In the deterministic model,

x(t) =
µ/λ− 1

( 1
x(0)(µ/λ− 1) + 1)e(µ−λ)t − 1

,

i.e. the population heads rapidly towards extinction.

I For the stochastic model, in distribution,

(µ−λ)TN−
(

log(XN(0))+log(1−λ/µ)−log
(

1+
λXN(0)

N(µ− λ)

))
→W ,

where Pr(W ≤ w) = exp(−e−w ) (standard Gumbel).
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Distribution of extinction time: λ < µ

That is,

TN =
1

µ(1− R0)

log

XN(0)(1− R0)

1 + XN(0)R0

N(1−R0)

+ WN

 ,

where WN →W , and µ is the ‘speed’ parameter.

See recent preprint of Brightwell, House and L. (2017).
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Extinction time: λ = µ and a critical window

I If λ = µ, the time to extinction is somewhere in between
(time of order N1/2, it turns out).

I Supposing λ = λ(N) and µ = µ(N), there is a “critical
window” where |µ− λ| = O(N−1/2).

I If (µ− λ)N1/2 → C (−∞ < C <∞) and X0N−1/2 → b
(b > 0), then the expected time to extinction is
asymptotically f (C , b)N1/2, for some function f .

I Also, the time to extinction is of order
√

N, even if the
starting state is of order larger than

√
N. (But, for instance,

the extinction time starting from state 1 is of order log N.)

I See Doering, Sargsyan and Sander (2005); Dolgoarshinnyk
and Lalley (2006).
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Scaling window: above threshold

Thinking of a scaling window gives a more sophisticated picture.
Suppose again λ = λ(N) and µ = µ(N).

If λ− µ→ 0, and (λ− µ)
√

N →∞ (sufficiently fast), the
epidemic takes a long time to die out
(time of order roughly exp(N(λ− µ)2/2λ2)).

See work of Nåsell. Also there is work in progress by Brightwell
and L.
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Scaling window: below threshold

Whenever (µ− λ)
√

N →∞, and XN(0)(µ− λ)→∞,

(µ−λ)TN−
(

log XN(0)+log(µ−λ)−log
(
1+

λXN(0)

(µ− λ)N

)
−logµ

)
→W ,

in distribution, where W has the standard Gumbel distribution.
(See Brightwell, House and L. 2014.)

Equivalently, whenever (1− R0)
√

N →∞ and
XN(0)(1− R0)→∞,

TN =
1

(1− R0)µ

log

XN(0)(1− R0)

1 + R0XN(0)
N(1−R0)

+ WN

 ,

where WN →W in distribution.
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Informal description

I From any starting state above about (1− R0)N, XN(t) moves
rapidly to a state of order (1− R0)N.

I The bulk of the time to extinction is spent moving from a
state of order (1− R0)N to a state of order about 1/(1− R0).
Here xN(t) = N−1XN(t) follows the differential equation
closely.

I However, most of the randomness of the extinction time
comes from the final phase, from a state around 1/(1−R0) to
extinction. Since (1− R0)−1N−1 � 1− R0, we can ignore
logistic effects and approximate by a linear birth-and-death
chain.
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Stochastic logistic SIS competition model

I There are two competing SIS epidemics in a population of
size N.

I XN,1(t) is the number of infective individuals of type 1 at
time t, and XN,2(t) is the number of infective individuals of
type 2 at time t.

I Each infective individual of type i encounters a random other
member of the population at rate λi : if the person they meet
is susceptible, they become infective.

I So XN,i (t) increases by 1 at rate
λiXN,i (t)(N−XN,1(t)−XN,2(t))

N .

I Each infective person of type i recovers at rate µi and
becomes susceptible again.

I There is perfect cross-immunity between the two strains.
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Two competing epidemics

We assume λ1, λ2, µ1, µ2 > 0.
The stochastic logistic SIS competition model is a Markov chain
(XN(t))t≥0 = (XN,1(t),XN,2(t))t≥0.
The transition rates from (X1,X2) are as follows:

(X1,X2) → (X1 + 1,X2) at rate λ1X1(1− X1/N − X2/N);
(X1,X2) → (X1,X2 + 1) at rate λ2X2(1− X1/N − X2/N);
(X1,X2) → (X1 − 1,X2) at rate µ1X1;
(X1,X2) → (X1,X2 − 1) at rate µ2X2.
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The corresponding deterministic model

I In an infinite population, everyone is either susceptible,
infected with subtype 1, or infected with subtype 2.

I xi (t) represents the proportion of the population infected with
subtype i at time t.

I Each person infected with subtype i meets a random other
person in the population, and infects them if they are
currently susceptible, at rate λi .

I Each person infected with subtype i recovers at rate µi , and
then becomes susceptible.

I Again, if someone is currently infected with one subtype, they
are temporarily immune to infection by the other subtype.
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Deterministic model: differential equations

I The proportions xi (t) of infected individuals then satisfy:

dx1
dt

= λ1x1(1− x1 − x2)− µ1x1;

dx2
dt

= λ2x2(1− x1 − x2)− µ2x2.

I An explicit solution to these equations is not available.

I Let R0,1 = λ1
µ1

, R0,2 = λ2
µ2

, the basic reproduction numbers of
each of the two strains in the absence of the other.

I We assume that R0,1 > R0,2; this means that the first strain is
“stronger” than the second. We also assume that R0,1 > 1.
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Behaviour of the deterministic model

I The differential equations have fixed points at:

(0, 0)T ,
(λ1 − µ1

λ1
, 0
)T
,
(

0,
λ2 − µ2
λ2

)T
.

The third of these only biologically meaningful if λ2 > µ2.

I It follows from a general result of Zeeman (1995) that the

fixed point at
(
λ1−µ1
λ1

, 0
)T

is globally attractive.

I This means that the weaker strain will die out, and the
stronger strain will behave as in the deterministic SIS logistic
model.
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The stochastic model

I As before, we consider a sequence of stochastic models, one
for each value of N.

I We assume that the initial values satisfy X1(0)/N → α, and
X2(0)/N → β, where α and β are positive constants with
α + β ≤ 1.

I To begin with, we consider the case where λ1, µ1, λ2, µ2 are
fixed constants, with R0,1 > R0,2, and R0,1 > 1.
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Long-term behaviour of the competing epidemics model

Theorem (Lopes and L. (2017+))
Under the assumptions given, the extinction time κN for subtype 2
is equal to

1

R0,1 − R0,2

[R0,1

µ2
log
(

Nβ
(

1− R0,2

R1,0

))
+

R0,2

µ1
log
(1− R−1

0,1

α

)
+ WN

]
,

where WN converges to a random variable W with a Gumbel
distribution.
Furthermore, the extinction time τN of the stronger strain satisfies

EτN =
√

2π
λ1

(λ1 − µ1)2
eγ1N√

N
(1− o(1)),

as N →∞, where
γ1 = log λ1 − logµ1 − λ1−µ1

λ1
= log R0,1 − 1 + R−10,1 > 0.
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Similarly to the single SIS logistic epidemic, there is a phase where
the scaled process xN(t) = N−1XN(t) follows the differential
equation quite closely.

Again, most of the randomness of the extinction time comes from
the later phase, where xN,1(t) is quite close to (λ1 − µ1)/λ1 and
xN,2(t) is o(1). Then one can ignore logistic effects and
approximate the subsequent evolution of XN,2(t) by a linear
birth-and-death chain with birth rate λ2µ1/λ1 and death rate µ2.

We have so far only proved a result for XN,1(0) = NαN and
XN,2(0) = NβN , where αN → α and βN → β. There are other
interesting starting conditions to consider.
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Near-critical epidemics

I In epidemic models, it is important to investigate
“near-critical” cases, as these arise naturally in circumstances
where a mutation in the strain moves its basic reproduction
number across the threshold, or when measures to control the
epidemic start to take effect.

I For our model of two competing epidemics, this means we
should be interested in cases where either R0,1 tends to 1 as
N →∞, or where R0,1 − R0,2 tends to zero, or both.

I There are a variety of different possibilities: we confine
ourselves to considering cases where µ1 = µ2 = 1, λ1 − λ2
tends to zero, and is much smaller than λ1 − 1. For instance,
this is a model of a “supercritical” epidemic where a slightly
more infective strain emerges via mutation, and we are
interested in the time taken for the new strain to supplant the
weaker one in the population.
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Result for a near-critical case (Lopes and L.)

Suppose that:

I N (λ1−λ2)4
(λ1−1)2 / log N →∞;

I N(λ1−1)2

log3
(
(λ1−1)−1

) →∞;

I N(λ1−λ2)2
logN →∞;

I XN,1(0)/N → α and XN,2(0)/N → β as N →∞.

Then the extinction time κN for the second species is equal to

log
(

N(λ1 − 1)(λ1 − λ2)βα

)
+ WN

λ1 − λ2
,

where WN converges in distribution to a random variable W with
the standard Gumbel distribution.

This extends the result in the case where λ1 and λ2 are fixed
constants.

Malwina Luczak Extinction time for the weaker of two competing SIS epidemics



Some ideas of the proof

For simpler computations, we consider the special case where
µ1 = µ2 = 1, and λ1 > 1, λ1 > λ2 are such that
a = 1− λ1−λ2

λ1(λ1−1) 6= 0.
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We write x(t) = x(0) +

∫ t

0
F (x(s)) ds, where F : R2 → R2 is

given by

F (x) =

(
F1(x)
F2(x)

)
=

(
λ1x1(1− x1 − x2)− x1
λ2x2(1− x1 − x2)− x2

)
.

We now decompose: F (x) = A

(
x1 − λ1−1

λ1
x2

)
+ G (x),

where A =

(
−(λ1 − 1) −(λ1 − 1)

0 − (λ1−λ2)
λ1

,

)
;

G (x) =

−λ1(x1 − λ1−1
λ1

)2
− λ1(x1 − λ1−1

λ1
)x2

−λ2(x1 − λ1−1
λ1

)x2 − λ2(x2)2

 .
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The case where a 6= 0 corresponds to matrix A having distinct
eigenvalues.
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It is then not hard to check that the solution x(t) can also be
written as(

x1(t)− λ1−1
λ1

x2(t)

)
= etA

(
x1(0)− λ1−1

λ1
x2(0)

)
+

∫ t

0
eA(t−s)G (x(s)) ds

The matrix exponential etA is given by

etA =

(
1 1
0 −a

)(
e−t(λ1−1) 0

0 e−t(λ1−λ2)/λ1

)(
1 1

a
0 −1

a

)
=

(
e−t(λ1−1) 1

a

(
e−t(λ1−1) − e−t(λ1−λ2)/λ1

)
0 e−t(λ1−λ2)/λ1

)
.
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We can use the above to show that, if

ε = max
{∣∣∣x1(0)− λ1 − 1

λ1

∣∣∣, x2(0)/a
}
,

is small enough, then, for all t, |x1(t)− λ1−1
λ1
| ≤ 2εe−t(λ1−λ2)/λ1 ,

and x2(t) ≤ 2aεe−t(λ1−λ2)/λ1 .

Hence we show that all solutions (x1(t), x2(t))T decay
exponentially towards the fixed point ((λ1 − 1)/λ1, 0)T : given an
initial condition x(0), there exists C = C (x(0)) such that, for all t,
|x1(t)− λ1−1

λ1
| ≤ Ce−t(λ1−λ2)/λ1 , and x2(t) ≤ Ce−t(λ1−λ2)/λ1 .
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The next step is to show that the stochastic process xN(t) tracks
the solution x(t) for a long period of time.

We proceed similarly for the stochastic process. We write
xN(t) = xN(0) +

∫ t
0 F (xN(s)) ds + MN(t), where (MN(t)) is a

martingale, and decompose(
xN,1(t)− λ1−1

λ1
xN,2(t)

)
= etA

(
xN,1(0)− λ1−1

λ1
xN,2(0)

)
+

∫ t

0
eA(t−s)G (xN(s)) ds

+

∫ t

0
eA(t−s) dMN(s).

where A and G are as before.
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I The integral
∫ t
0 eA(t−s) dMN(s) is not itself a martingale.

I However, if we fix some time τ , and define

Mτ
N(t) =

{∫ t
0 eA(τ−s) dMN(s) t ≤ τ

Mτ
N(τ) t ≥ τ,

then Mτ
N(t) is a zero-mean martingale.

I We can bound the quadratic variation of the martingale
Mτ

N(t), and hence show that Mτ
N(τ) =

∫ τ
0 eA(τ−s) dMN(s) is,

with high probability, small at each of a discrete set of times τ .

I As the entries of
∫ t
0 eA(t−s) dMN(s) do not grow much over a

small time interval, this enables us to bound the integral over
a long time period, with high probability.
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We can then bound the differences |xN,1(t)− x1(t)| and
|xN,2(t)− x2(t)|, with high probability, over a deterministic time
interval until the time tN that x2(tN) = N−1/4.

At that time, |x1(tN)− (λ1 − 1)/λ1| = o(1), as well.
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Actually, for simpler calculations, it is easier to work with new
variables x̃N,1(t) and x̃N,2(t), where
x̃N,1(t) = xN,1(t)− λ1−1

λ1
+ 1

axN,2(t) and x̃N,2(t) = xN,2(t).

This amounts to working with eigenvectors of the matrix A.

The left eigenvectors of A are (1, 1/a) and (0, 1), corresponding to
the eigenvalues −(λ1 − 1) and −(λ1 − λ2)/λ1, respectively.
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In terms of the new variables, the differential equation is expressed
as:

dx̃1(t)

dt
= −(λ1 − 1)x̃1(t)− λ1x̃1(t)2 − (λ1 − λ2)2

λ1(λ1 − 1)

( x̃2(t)

a

)2
+

(λ1 − λ2)λ1
λ1 − 1

x̃1(t)
x̃2(t)

a

dx̃2(t)

dt
= −λ1 − λ2

λ1
x̃2(t)− λ2x̃2(t)x̃1(t) +

λ2
λ1a

λ1 − λ2
λ1 − 1

x̃2(t)2.
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We can then write, as before,

x̃(t) = x̃(0) +

∫ t

0
F̃ (x̃(s))ds,

where F̃ : R2 → R2 is given by

F̃ (x̃) =

(
F̃1(x̃)

F̃2(x̃)

)
=

−(λ1 − 1)x̃1 − λ1x̃2
1 −

(λ1−λ2)2
λ1(λ1−1)

(
x̃2
a

)2
+ (λ1−λ2)λ1

λ1−1 x̃1
x̃2
a

−λ1−λ2
λ1

x̃2 − λ2x̃2x̃1 + λ2
λ1a

λ1−λ2
λ1−1 x̃2

2

 .
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We then decompose

F̃ (x̃) = Ã

(
x̃1
x̃2

)
+ G̃ (x̃),

where

Ã =

(
−(λ1 − 1) 0

0 − (λ1−λ2)
λ1

,

)

and

G̃ (x̃) =

−λ1x̃2
1 −

(λ1−λ2)2
λ1(λ1−1)

(
x̃2
a

)2
+ (λ1−λ2)λ1

λ1−1 x̃1
x̃2
a

−λ2x̃2x̃1 + λ2
λ1a

λ1−λ2
λ1−1 x̃2

2

 .
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It is then not hard to check that the solution x̃(t) satisfies

x̃(t) = etÃx̃(0) +

∫ t

0
e(t−s)ÃG̃ (x̃(s))ds,

or, equivalently,(
x̃1(t)
x̃2(t)

)
=

(
e−t(λ1−1)x̃1(0)

e−t(λ1−λ2)/λ1x2(0)

)
+

∫ t

0

e−(t−s)(λ1−1)[−λ1x̃1(s)2− (λ1−λ2)2
λ1(λ1−1)

(
x̃2(s)
a

)2
+ (λ1−λ2)λ1

λ1−1 x̃1(s) x̃2(s)a ]

e−(t−s)(λ1−λ2)/λ1 [−λ2x̃2(s)x̃1(s) + λ2
λ1a

λ1−λ2
λ1−1 x̃2(s)2]

 ds.
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We can then prove the following result, showing that, for a suitable
starting state, the solution to the differential equation decays
exponentially.

Let L = min{λ1 − 1, (λ1 − λ2)/λ1} and

L1 = λ1 + (λ1−λ2)2
λ1(λ1−1) + (λ1−λ2)λ1

λ1−1 .

Suppose x̃(0) is such that

y(0) = max{|x̃1(0)|, x̃2(0)/|a|} ≤ L/2L1.

Then, for all t ≥ 0, |x̃1(t)| ≤ 2y(0)e−tL, and x̃2(t) ≤ 2|a|y(0)e−tL.

Moreover, if y(0) ≤ L/8L1, then, for all t ≥ 0,

1

2
x2(0)e−t(λ1−λ2)/λ1 ≤ x2(t) ≤ 2x2(0)e−t(λ1−λ2)/λ1 .
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We now perform a similar decomposition for the random process.

We write

x̃N(t) = x̃N(0) +

∫ t

0
F̃ (x̃N(s))ds + MN(t),

where (MN(t)) is a martingale, and F̃ (x̃) is the drift of (x̃N(t))
when in state x̃ .
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By analogy with the deterministic process x̃(t), we can decompose(
x̃N,1(t)
x̃N,2(t)

)
as

eÃt
(

x̃N,1(0)
x̃N,2(0)

)
+

∫ t

0
eÃ(t−s)G̃ (XN(s))ds +

∫ t

0
eÃ(t−s)dMN(s),

where Ã and G̃ are as before, which is equal to(
e−t(λ1−1)x̃N,1(0)

e
−t λ1−λ2

λ1 x̃N,2(0)

)
+

∫ t

0

e−(t−s)(λ1−1)
[
−λ1x̃N,1(s)2− (λ1−λ2)

2

λ1(λ1−1)

(
x̃N,2(s)

a

)2
+ (λ1−λ2)λ1

λ1−1 x̃N,1(s)
x̃N,2(s)

a

]
e−(t−s)

λ1−λ2
λ1

[
− λ2x̃N,2(s)x̃N,1(s) + λ2

λ1a
λ1−λ2

λ1−1 x̃N,2(s)2
]

 ds

+

∫ t

0

(
e−(t−s)(λ1−1)dMN,1(s)

e
−(t−s)λ1−λ2

λ1 dMN,2(s)

)
.
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In order to bound
∫ t
0 e−(t−s)(λ1−1)dMN,1(s) and

e
−(t−s)λ1−λ2

λ1 dMN,2(s), the key objects to estimate are the
quantities

∫ t
0 vt,i (x̃N(s), s)ds, where

vt,i (x , s) =
∑

y qN(x , x + y)(eÃ(t−s)y)i )
2.

Letting β1 = λ1 − 1 and let β2 = (λ1 − λ2)/λ1, we prove that the
probability that {supt≤eω/8 |

∫ t
0 e−βi (t−s)dMN,i (s)ds| > eβi

√
ωKi}

for either i = 1 or i = 2, while at the same time∫ t
0 vt,i (x̃N(s), s)ds ≤ Ki , for i = 1, 2 and all t ≤ eω/8 is at most

4e−ω/8.
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We then prove the following.

Let fN(t) = max{|x̃N,1(t)− x̃1(t)|, |x̃N,2(t)− x̃2(t)||a|−1}.

Suppose that

fN(0) ≤ 4e L̃
(ωa1

N

)1/2
.

Suppose also that y(0) ≤ L/8L1.

Then

P
(

sup
t≤eω/8

fN(t) > 16e L̃
(ωa1

N

)1/2)
≤ 8e−ω/8.

(Here a1 = b2(λ1+1)
λ1−1 , where b = |a|+1

|a| . Also,

L = min{λ1 − 1, (λ1 − λ2)/λ1}, L̃ = max{λ1 − 1, (λ1 − λ2)/λ2},
and L1 = λ1 + (λ1−λ2)2

λ1(λ1−1) + (λ1−λ2)λ1
λ1−1 .)
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To prove this result, we show that, on some good event (that the
martingale terms are not too large and that fN(t) is not too large),

fN(t) ≤ e−tLfN(0) + 4L1y(0)e−tL
∫ t

0
fN(s)ds + 4

(ωa1
N

)1/2
e L̃.

We can then apply Gronwall’s inequality to fN(t)etL to deduce the
result.

The inequality says the following. Suppose that the function u
satisfies

u(t) ≤ α(t) +

∫ t

0
β(s)u(s)ds,

where β is non-negative and α is non-decreasing. Then

u(t) ≤ α(t) exp(

∫ t

0
β(s)ds).
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For a suitable choice of ω, tN ≤ eω/16.

From time tN onwards, x1(t), and hence xN,1(t), is very close to
λ1−1
λ1

.

Once XN,2(t) has dropped below about N3/4, the “logistic effects”
become negligible, and the process (XN,2(t)) behaves like a
sub-critical linear birth-and-death chain, and the distribution of the
time to extinction from this point onwards can thus be closely
approximated.
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The total time taken is approximately the sum of the following two
terms:

λ2
λ1 − λ2

log(x1(tN)/x1(0))− λ1
λ1 − λ2

log(x2(tN)/x2(0)),

and

λ1
λ1 − λ2

(
log(Nx2(tN)) + log

(
1− λ2

λ1

))
+

λ1
λ1 − λ2

WN ,

where WN converges in distribution to a standard Gumbel
variable G .
The first term corresponds to the phase where the process tracks
the differential equation, while the second term comes from the
approximation by a linear birth-and-death chain.
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Near-critical analysis

Here things get more complicated.

We break the analysis into three phases. We show that, in the first
two phases, x̃N(t) tracks x̃(t) closely. We need to do these phases
separately, as we use different bounds on the quadratic variation
for each phase.

I After a short first phase of duration of order (λ1 − 1)−1, x̃N,1
has fallen to δ(λ1 − 1) for some suitably small δ.

I During the second phase, x̃N,2 falls below λ1 − λ2, while the
variables track the differential equation closely.

I After this time, the variable XN,2 is closely approximated by a
linear birth-and-death chain, and so the distribution of the
time to extinction can be closely approximated.
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Future work

I Different starting conditions

I Different near-critical regimes

I More species

I Generalisation of the method.
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