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Anderson Hamiltonian

Anderson Hamiltonian is the random Schrödinger operator of the
form

Hω = −κ∆ + Vω

defined on L2(Rd) or ℓ2(Zd), where Vω is random, stationary and
ergodic.

Typical choices of Vω include the alloy model

Vω(x) =
∑
q∈Zd

ωqv(x − q)

and the random displacement model

Vω(x) =
∑
q∈Zd

v(x − q − ωq).
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Localizations

Due to the randomness, Vω creates deep “traps” in well separated
small regions. Consequently, various localization phenomenon
emerges:

Spectral localization
The spectrum of Hω consists of eigenvalues around the bottom
and the corresponding eigenfunctions decay exponentially.

Dynamical localization
Starting from a low energy state φ, the bulk of wave function
e itHωφ stays bounded.

Localization of diffusion
The diffusion e−tHωδ0 concentrates in some small regions.

Roughly speaking, the trapping effect of Vω is stronger than the
smoothing effect of ∆.
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Setting of the problem

We are interested in the so-called “homogenization” problem.

I D ⊂ Rd : a bounded domain with smooth boundary;

I Dϵ = D ∩ ϵZd : a natural discretization;

I ∆ϵf (x) = ϵ−2
∑

|y−x |=ϵ(f (y) − f (x));

I ξ = {ξ(x) : x ∈ Dϵ}: a random potential.

Let {λ(k)

Dϵ,ξ
}k≥1 be the eigenvalues of the operator (matrix)

−∆ϵ + ξ

with the Dirichlet (zero) boundary condition outside Dϵ.

Remark
−∆ϵ + ξ ←→ ϵ−2(−∆ + ϵ2ξ(ϵ·)) : potential weakened.
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Homogenization of eigenvalues

I λ(k)

D : k-th smallest eigenvalue of −∆ on D.

Theorem (homogenization, Biskup-F.-König)

If ξ is IID with E[|ξ|K ] < ∞ for some K > 1 ∨ d/2,

λ(k)

Dϵ,ξ
→ λ(k)

D + E[ξ] as ϵ ↓ 0

in probability for each k ≥ 1.

Remark
The moment condition is optimal in the sense that if
E[ξ(x)K−] = ∞ for some K < d/2, then limϵ↓0 λDϵ,ξ = −∞.
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Fluctuation around the mean

I λ(k)

D : k-th smallest eigenvalue of −∆ on D.

I ϕ(k)

D : corresponding eigenfunction, ∥ϕ(k)

D ∥2 = 1.

Theorem (fluctuation, BFK)

If ξ is IID with E[|ξ|K ] < ∞ for some K > 2 ∨ d/2 and
λ

(k1)

D , . . . , λ(kn)

D are distinct simple eigenvalues. Then,

ϵ−d/2
(
λ

(k1)

Dϵ,ξ
− Eλ

(k1)

Dϵ,ξ
, . . . , λ(kn)

Dϵ,ξ
− Eλ(kn)

Dϵ,ξ

) ϵ↓0−−→ N (0, σ)

in law, where

σ2
ij := var(ξ)

∫
D

ϕ
(ki )

D (x)2ϕ
(kj )

D (x)2 dx .

Remark
When K is close to 2 ∨ d/2, ξ in the expectation need to be
replaced by ξ ∨ (−ϵ−d/K−o(1)) to make the expectation finite.
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Where does the fluctuation come from?
Note that the weighted sum

〈ξ, (ϕ(k)

D )2〉 :=
∑
x∈Dϵ

ϵdξ(x)ϕ(k)

D (x)2

obeys the same CLT.

On the other hand, the eigenvalue can be
expressed as

λ(k)

Dϵ,ξ
= ∥∇ϵg

(k)

Dϵ,ξ
∥2
2︸ ︷︷ ︸

kinetic energy

+ 〈ξ(ϵ), (g (k)

Dϵ,ξ
)2〉︸ ︷︷ ︸

potential energy

by using the random eigenfunction g (k)

Dϵ,ξ
. It seems as if the

eigenvalue fluctuation comes only from the potential energy part.
This is indeed the case and we can prove

Var(∥∇ϵg
(k)

Dϵ,ξ
∥2
2) = o(ϵd).
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Related works 1

I Bal (2008): Consider

−∆ + ξ(·/ϵ) on D ⊂ Rd (d ≤ 3),

where ξ is stationary, centered and assume either

1. boundedness and a certain mixing condition or
2. E[ξ6(0)] < ∞ and a stronger mixing condition.

Then for each k ≥ 1,

λ(k)

Dϵ,ξ
→ λ(k)

D as ϵ ↓ 0 in probability.

Moreover, for distinct simple eigenvalues λ
(k1)

D , . . . , λ(kn)

D ,

ϵ−d/2
(
λ

(k1)

Dϵ,ξ
− λ

(k1)

D , . . . , λ(kn)

Dϵ,ξ
− λ(kn)

D

) ϵ↓0−−→ N (0, σ)

in law, where σ2
ij := var(ξ)

∫
D ϕ

(ki )

D (x)2ϕ
(kj )

D (x)2 dx .
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Remark

1. E[ξ4(0)] < ∞ suffices for our discrete IID setting.

2. The Green function (−∆)−1(x , ·) ∈ L2+
loc is essential in his

argument which is based on the asymptotic expansion of
Gξ = (−∆ + ξ)−1:

Gξ = G0 − G0ξG0 + G0ξG0ξG0 − · · ·

This causes the restriction d ≤ 3.
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Related works 2

Crushed ice problem

I Kac (1974) and Rauch-Taylor (1975): homogenization of
eigenvalues of −∆ in a randomly perforated domain;

ϵ-ball, number=N

1

When d = 3,

λ
(k)
D\balls → ∞ as Nϵ2 → 1.

Surface area does not control the cooling efficiency.
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I Kac (1974) and Rauch-Taylor (1975): homogenization of
eigenvalues of −∆ in a randomly perforated domain;

ϵ-ball, number=N

1

When d = 3,

λ
(k)
D\balls → λ

(k)
D + α as Nϵ → 1

by using the so-called Wiener sausage.
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Kac, in his 1974 paper:

“Here the probabilistic treatment is extremely useful, because from
the analytic point of view the problem looks impossible, unless you
do it by the perturbation method, which few of us are willing to
buy.”

Khruslov–Marchenko (1974):

A book on a potential theoretical approach to similar problems.

Figari–Orlandi–Teta (1985) and Ozawa (1990):

CLT similar to Bal’s via a perturbation method, but only for d = 3.

Ozawa (1992):

To probabilists: “Find a probabilistic proof of the CLT.”
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Proof of the homogenization

Let E[ξ] = 0 for simplicity. We also focus on the first eigenvalue
and drop the superscript (1).

Rayleigh-Ritz formula

λDϵ,ξ = inf
g∈ℓ2

0(Dϵ),∥g∥2=1

{
∥∇ϵg∥2

2 + 〈ξ, g2〉
}

,

λD = inf
ψ∈H1

0 (D),∥ψ∥2=1
∥∇ψ∥2

2.

→ gDϵ,ξ and ϕD are minimizers.

I λDϵ,ξ . λD by substituting ϕD to the first formula;

I λDϵ,ξ & λD by substituting gDϵ,ξ to the second formula.
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Proof of the homogenization 2

The first step

λDϵ,ξ ≤ ∥∇ϵϕD∥2
2 + 〈ξ, ϕ2

D〉
ϵ↓0−−→ ∥∇ϕD∥2

2 = λD

is nothing but the weak law of large numbers.

The second step

∥∇gDϵ,ξ∥2
2︸ ︷︷ ︸

need an interpolation

∼ ∥∇ϵgDϵ,ξ∥2
2 + 〈ξ, g2

Dϵ,ξ〉︸ ︷︷ ︸
randomly weighted sum

is more problematic.
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Proof of the homogenization 3

We use the following two tools:

Finite element method
∃ piecewise affine interpolation g̃Dϵ,ξ such that
∥∇ϵgDϵ,ξ∥2 = ∥∇g̃Dϵ,ξ∥2.

Elliptic regularity
∥∇ϵgDϵ,ξ∥2

2 is bounded (with high probability). This follows by
a Moser’s iteration combined with some probabilistic estimates.

H1-boundedness & Poincaré inequality
⇓

gDϵ,ξ can be well-aproximated by a
step function with large plateaus.

For a step function, we can use weak LLN (with a tail bound)
step-wise. ¤
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Proof of the fluctuation (martingale decomposition)

We use a martingale CLT. Assume E[ξ] = 0 and Var(ξ) = 1.
Let Dϵ = {x1, . . . , xn} and Fm = σ[ξ(x1), . . . , ξ(xm)].

λDϵ,ξ − E[λDϵ,ξ] =
n∑

m=1

E[λDϵ,ξ|Fm] − E[λDϵ,ξ|Fm−1]

=:
n∑

m=1

Zm.

Need to check:

(1) ϵ−d
∑

m E[Z 2
m|Fm−1]

ϵ↓0−−→
∫
D ϕD(x)4dx in prob.;

(2) ϵ−d
∑

m E[Z 2
m1{|Zm|>δϵd/2}|Fm−1]

ϵ↓0−−→ 0 in prob. (easy)
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Proof of the fluctuation (Hadamard’s formula)

By independence,

Zm = E[λDϵ,ξ|Fm] − E[λDϵ,ξ|Fm−1]

= Ê
[
λ

Dϵ, ξ≤m, bξ>m
− λ

Dϵ, ξ<m, bξ≥m

]
= Ê

[∫ ξm

bξm

∂mλ
Dϵ, ξ<m, eξm, bξ>m

dξ̃m

]
= Ê

[∫ ξm

bξm

ϵdg2
Dϵ, ξ<m, eξm, bξ>m

(xm)dξ̃m

]
.

The last = is a consequence of Hadamard’s first variation formula.

∂mλDϵ,ξ = ϵdgDϵ,ξ(xm)2.
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Proof of the fluctuation (heuristics)

We expect

E[Z 2
m|Fm−1] = ϵ2d

∫
P(dξm)Ê

[∫ ξm

bξm

g2
Dϵ, ξ<m, eξm, bξ>m

(xm)dξ̃m

]2

?∼ ϵ2d

∫
P(dξm)Ê

[∫ ξm

bξm

ϕ2
D(xm)dξ̃m

]2

= ϵ2dϕD(xm)4

⇒ ϵ−d
∑
m

E[Z 2
m|Fm−1] ∼

∑
m

ϵdϕD(xm)4 ∼
∫

D
ϕD(x)4dx .

But the dummy variable ξ̃m prevent us from using ANY probability

estimates to establish
?∼.
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Proof of the replacement

Essential part of the proof is∫
P(dξm)Ê

[∫ ξm

bξm

g2
Dϵ, ξ<m, eξm, bξ>m

(xm)dξ̃m

]2

?∼
∫

P(dξm)Ê
[∫ ξm

bξm

g2
Dϵ, ξ<m, ξm, bξ>m

(xm)dξ̃m

]2

.

Lemma

∂m log gDϵ,ξ(xm) = P⊥
1 (HDϵ,ξ − λDϵ,ξ)

−1P⊥
1 (xm, xm)

with P⊥
1 the orthogonal projection onto 〈gDϵ,ξ〉⊥.
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Proof of the replacement (comparison)

For some large λ > 0,

(HDϵ,ξ − λDϵ,ξ)
−1P⊥

1 (xm, xm)

=
∑
k≥2

1

λ(k)

Dϵ,ξ
− λDϵ,ξ

g (k)

Dϵ,ξ
(xm)2

.
∑
k≥1

1

λ(k)

Dϵ,ξ
+ λ

g (k)

Dϵ,ξ
(xm)2

= (HDϵ,ξ + λ)−1(xm, xm).

If we can replace HDϵ,ξ by HDϵ,0, we are done:

(HDϵ,0 + λ)−1(xm, xm) .


1, d = 1,

log 1
ϵ , d = 2,

ϵ2−d , d ≥ 3.
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Proof of the replacement (Khas’minskii’s lemma)

We write

(HDϵ,ξ + λ)−1(xm, xm) =

∫ ∞

0
e−t(HDϵ,ξ+λ)(xm, xm)dt.

Khas’minskii’s lemma

∃τ > 0, sup
z∈Dϵ

Iτ,z(ξ) := sup
z∈Dϵ

∫ τ

0
e−sHDϵ,0ξ−(z)ds < 1/2

⇒ e−tHDϵ,ξ(xm, xm) ≤ etζ(τ)e−tHDϵ,0(xm, xm).

Remark
This is “incredible” at the first sight since it deduces a bound on
E z [e−

R τ
0 ξ(Xs)ds ] from that of E z [

∫ τ
0 ξ−(Xs)ds].
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Khas’minskii’s lemma

∃τ > 0, sup
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z∈Dϵ
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0
e−sHDϵ,0ξ−(z)ds < 1/2

⇒ e−tHDϵ,ξ(xm, xm) ≤ etζ(τ)e−tHDϵ,0(xm, xm).

If we can find the above τ ,

(HDϵ,ξ + λ)−1(xm, xm) ≤
∫ ∞

0
e−t(HDϵ,0+λ−ζ(τ))(xm, xm)dt

= (HDϵ,0 + λ − ζ(τ))−1(xm, xm).
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Proof of the replacement (finding τ)

Note that E[Iτ,z ] = E[
∫ τ
0 e−sHDϵ,0ξ−(z)ds] ≤ τ maxy E[ξ−(y)].

Moreover, since

|Iτ,z(ξ) − Iτ,z(η)| ≤
∫ τ

0
∥e−s∆ϵ(z , ·)∥2∥ξ − η∥2ds

= ∥ξ − η∥2

∫ τ

0
e−2s∆ϵ(z , z)1/2ds

. ∥ξ − η∥2


τ1−d/4ϵd/2, d ≤ 3,

ϵ2 log(τϵ−2), d = 4,

ϵ2, d ≥ 5,

Talagrand’s inequality implies concentration around the mean.
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Random vs. non-random error

I Perturbation methods −→ CLT around the homogenized
eigenvalues for d ≤ 3, (under mixing condition)

I Probabilistic method −→ CLT around the mean for any
dimensions. (under independence)

We can always write

λDϵ,ξ − λD =λDϵ,ξ − E[λDϵ,ξ]︸ ︷︷ ︸ + E[λDϵ,ξ] − λD︸ ︷︷ ︸ .

random shift non-random shift

Question: Can we prove that the non-random part is{
= o(ϵd/2), when d ≤ 3,

≫ ϵd/2, when d ≥ 4?

Partial Answer: It is & ϵ2 for continuous problem on (R/Z)d .
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Random vs. non-random: local time heuristics

Let ξ be IID standard Gaussian and D = (R/Z)d . (λD = 0.)

E
[
exp

{
−ϵ−d/2λDϵ,ξ

}]
∼ E

[
e−ϵ−d/2Hξ1(0)

]
= E

[
E0

[
exp

{
−

∫ ϵ−d/2

0
ξ(Xϵ−2s)ds

}]]

= E

[
E0

[
exp

{
−ϵ2

∑
x

ξ(x)ℓϵ−2−d/2(x)

}]]

= E0

[
exp

{
ϵ4

2

∑
x

ℓϵ−2−d/2(x)2

}]
,

where X is SRW on (R/ϵ−1Z)d and ℓt(x) =
∫ t
0 1{Xs=x}ds.
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Random vs. non-random: local time heuristics

E
[
exp

{
−ϵ−d/2λDϵ,ξ

}]
∼ E0

[
exp

{
ϵ4

2

∑
x

ℓϵ−2−d/2(x)2

}]
.

Easy to check:

E0

[
∥ℓϵ−2−d/2∥2

2

]
≈

{
ϵ−4, d ≤ 3,

ϵ−2−d/2 ≫ ϵ−4, d ≥ 5.

This suggests (but does not prove) that we need a different scaling
in higher dimensions.
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Thank you!
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