Critical percolation on
the Hamming graph

Tim Hulshof
Eindhoven University of Technology

Joint work with Lorenzo Federico, Remco van der Hofstad & Frank den Hollander

November 4, 2016

1/22

Percolation

A simple model for geometric random graphs

Definition
Fix a graph G = (V,£) and p € [0, 1]. Remove each edge e € £ independently
with probability p: i.e., percolation is a product measure on {0, 1}¢.

2/22

Percolation

A simple model for geometric random graphs

Definition
Fix a graph G = (V,£) and p € [0, 1]. Remove each edge e € £ independently
with probability p: i.e., percolation is a product measure on {0, 1}¢.

Focus of this talk
Percolation on sequences of finite graphs.

2/22

Percolation

A simple model for geometric random graphs

Definition
Fix a graph G = (V,£) and p € [0, 1]. Remove each edge e € £ independently
with probability p: i.e., percolation is a product measure on {0, 1}¢.

Focus of this talk
Percolation on sequences of finite graphs.

Example

The Erdds-Rényi random graph: Take G = K,, (the complete graph on n
vertices). Write G(n, p) for the percolated graph. Study G(n,p) asn — oo
(with p = p(n) - 0).

2/22

The ERRG phase transition

A double jump transition
Write C; fo the j-th largest cluster of G(1,p).

3/22

The ERRG phase transition

A double jump transition
Write C; fo the j-th largest cluster of G(1,p).

For fixedj > 1,
« If p < 1/n we have |Cj| = ©(logn) whp [subcricital]

3/22

The ERRG phase transition

A double jump transition
Write C; fo the j-th largest cluster of G(1,p).

For fixedj > 1,
« If p < 1/n we have |C;| = ©(log n) whp [subcricital]

« Ifp>1/nwehave |C,| = ©(n) and |Cj| = ©(logn) for j > 2 whp
[supercritical]

3/22

The ERRG phase transition

A double jump transition
Write C; fo the j-th largest cluster of G(1,p).
For fixedj > 1,
« If p < 1/n we have |C;| = ©(log n) whp [subcricital]
« If p = 1/n we have n~|C}| is a tight random variable [critical]

« Ifp>1/nwehave |C,| = ©(n) and |Cj| = ©(logn) for j > 2 whp
[supercritical]

3/22

The ERRG phase transition

A double jump transition
Write C; fo the j-th largest cluster of G(1,p).

For fixedj > 1,
« If p < 1/n we have |C;| = ©(log n) whp [subcricital]
« If p = 1/n we have n~|C}| is a tight random variable [critical]

« Ifp>1/nwehave |C,| = ©(n) and |Cj| = ©(logn) for j > 2 whp
[supercritical]

The critical window

We can zoom in on the phase transition by choosing p = with e, - 0.
This shows a much richer structure around criticality. [Too much to discuss
in detail here]

1+e,

3/22

: 7 ¢
e

\

<‘,35%

¥

POSes. R

Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix 0 € R.

6/22

Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix 6 € R. Let B(¢) be a Brownian motion and

BY(t) := B(t) + 0t - g (BM w/ parabolic drift)

6/22

Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix 6 € R. Let B(¢) be a Brownian motion and

BY(t) := B(t) + 0t - g (BM w/ parabolic drift)

R(t) := BY(t) - Oi<n£tB9(t) (B? reflected at 0)

6/22

Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix 6 € R. Let B(¢) be a Brownian motion and

BY(t) := B(t) + 0t - g (BM w/ parabolic drift)

R(t) := BY(t) - 0i<n£tB9(t) (B? reflected at 0)
and

(7i(£))is1 = the excursions of R? ordered s.t. 7(0) > 12(0) > ...

6/22

Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix 6 € R. Let B(¢) be a Brownian motion and

BY(t) := B(t) + 0t - g (BM w/ parabolic drift)

R(t) := BY(t) - 0i<n£tBe(t) (B? reflected at 0)
and
(7i(£))is1 = the excursions of R? ordered s.t. 7(0) > 12(0) > ...

. . ~1/3
Consider the vector of ordered cluster sizes of G(n, %).

6/22

Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix 6 € R. Let B(¢) be a Brownian motion and

BY(t) := B(t) + 0t - g (BM w/ parabolic drift)

R(t) := BY(t) - 0i<n£tBe(t) (B? reflected at 0)

and

(7i(£))is1 = the excursions of R? ordered s.t. 7(0) > 12(0) > ...

. . -1/3
Consider the vector of ordered cluster sizes of G(n, %). Then,

(%) - o

6/22

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v

(2) Set all neutral neighbors of v to active

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Setall neutral neighbors of v to active
(3) Setvto dead

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Setall neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Setall neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
o If # an active vertex: Go to (1) [explored a component]

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Setall neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
o If # an active vertex: Go to (1) [explored a component]
« If 3 a neutral vertex: Stop [explored the graph]

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Setall neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
o If # an active vertex: Go to (1) [explored a component]
« If 3 a neutral vertex: Stop [explored the graph]

The exploration process

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
« If A an active vertex: Go to (1) [explored a component]
« If A a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

So = O, St = Si—l - 1 + X

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
« If A an active vertex: Go to (1) [explored a component]
« If A a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

So =0, Si=Si-1 - L Xi

kill token vertex

7122

A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
« If A an active vertex: Go to (1) [explored a component]
« If 3 a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

SO = 0, S,‘ = Si*l — 1 + X;

new active vertices

7122

The exploration process and cluster sizes

Sketch of the proof (2/3)
Set S =0and S; = S;_; — 1 + X;. Observe that

« min{j : §j = —1} = size of first explored cluster

St

A

1 \V/ AN
- \AV/
- A J
Y T
size of first cluster size of second cluster

8/22

The exploration process and cluster sizes

Sketch of the proof (2/3)
Set S =0and S; = S;_; — 1 + X;. Observe that

« min{j : §j = —1} = size of first explored cluster

St
A

1 \V/ AN
- \AV/
- A J
Y T
size of first cluster size of second cluster

If G(n, L;‘_w) has

_ d
(1’[1/3Sm2/3)t20 —> (Ba(t))tzm

then Aldous’ Theorem follows (by relatively standard arguments)
8/22

A scaling limit for (S;);s;
Sketch of the proof (3/3)
SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

Xj ~ Bin(# neutral vertices, p)

91722

A scaling limit for (S;);s;

Sketch of the proof (3/3)

SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1 9 -1/3
Xj ~ Bin(# neutral vertices, p) ~ Bin(n—j, +7n)

91722

A scaling limit for (S;);s;
Sketch of the proof (3/3)
SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+6 -1/3
X; ~ Bin(# neutral vertices, p) » Bin(n—j, +Tn) ~ Poi(1+0n~/—j/n)

91722

A scaling limit for (S;);s;

Sketch of the proof (3/3)

SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+6 -1/3
X; ~ Bin(# neutral vertices, p) » Bin(n—j, +Tn) ~ Poi(1+0n~/—j/n)

So we get

Six Y, (Poi(1+ On= —j/n) - 1)

i
=1

91722

A scaling limit for (S;);s;

Sketch of the proof (3/3)

SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+6 -1/3
X; ~ Bin(# neutral vertices, p) » Bin(n—j, +Tn) ~ Poi(1+0n~/—j/n)

So we get

i 2
Si~ Y. (Poi(1 + 007 —j/n) - 1) ~ Poi (i+ ign~1° — l) —i
j=1 n

91722

A scaling limit for (S;);s;

Sketch of the proof (3/3)

SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+6 -1/3
X; ~ Bin(# neutral vertices, p) » Bin(n—j, +Tn) ~ Poi(1+0n~/—j/n)

So we get

i 2
Si~ Y. (Poi(1 + 007 —j/n) - 1) ~ Poi (i+ ign~1° — l) —i
j=1 n

2/3 -1/3,

Now set i = tn*/* and multiply with n

91722

A scaling limit for (S;);s;

Sketch of the proof (3/3)

SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+6 -1/3
X; ~ Bin(# neutral vertices, p) » Bin(n—j, ++) ~ Poi(1+0n~/—j/n)

So we get
i 1'2

Si~ . (Poi(1+0n™'/* ~j/n) - 1) ~ Poi (i +in~ ' -) —i
j1 n

2/3 -1/3,

Now set i = tn*/* and multiply with n

n738 o m 07 (Poi(tn® + t9n'? — 120!) — tn?l3)

91722

A scaling limit for (S;);s;

Sketch of the proof (3/3)

SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+0n7'/
++)

Xj ~ Bin(# neutral vertices, p) ~ Bin(n—j, ~ Poi(1+0n~/—j/n)

So we get

i

2
Si~ Y. (Poi(1 +0n7? —j/n) - 1) ~ Poi (i+ i0n~/3 - l) —i
n

j=1

2/3 -1/3,

Now set i = tn“/” and multiply with n

n738 o m 07 (Poi(tn® + t9n'? — 120!) — tn?l3)
x 73 (Poi(tn??) — tn®?) + 10 - 1

91722

A scaling limit for (S;);s;

Sketch of the proof (3/3)

SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+0n7'/
++)

Xj ~ Bin(# neutral vertices, p) ~ Bin(n—j, ~ Poi(1+0n~/—j/n)

So we get

i

2
Si~ Y. (Poi(1 +0n7? —j/n) - 1) ~ Poi (i+ i0n~/3 - l) —i
n

j=1

2/3 -1/3,

Now set i = tn“/” and multiply with n

n738 o m 07 (Poi(tn® + t9n'? — 120!) — tn?l3)
x 73 (Poi(tn??) — tn®?) + 10 - 1

L B +t0-12=B(t) [

91722

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

10/22

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.0.) most parts are confirmed
[Bhamidi, Broutin, Sen & Wang ’14] + much more.

10/22

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.0.) most parts are confirmed
[Bhamidi, Broutin, Sen & Wang ’14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and
Hamming graphs a lot is known, but mostly about (slightly) sub- and
supercritical percolation. The critical window is difficult.

10/22

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.0.) most parts are confirmed
[Bhamidi, Broutin, Sen & Wang ’14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and
Hamming graphs a lot is known, but mostly about (slightly) sub- and
supercritical percolation. The critical window is difficult.

The main difficulty in going from the ERRG to geometric graphs is that K, is
highly symmetric and self-similar, which makes everything easier. For
instance, if we remove a component of size k from G(n, p), the (conditional)
law of what remains is G(n — k, p). This is obviously not true for percolation
on any other graph.

10/22

The Hamming graph

Definition of the Hamming graph
H(d, n) is defined as the (d — 1)-fold Cartesian product of K,,,

H(d,n) ~K, x K, x---x K,

H(d, n) has degree m := d(n — 1) and V := n vertices.

11/22

The critical window

Theorem [FHHH]
For percolation on H(d, n) with degree m =d(n—1) andd =2,3,...,6,

2
Ham o1, 24°-1 1
‘ m 2(d-1)2m?

is a point inside the critical window.

12/22

Critical percolation on the Hamming graph
An ERRG-type scaling limit

Theorem [FHHH]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p =pf(d’")(1 +0V71/3). Then,

(45) - it

13/22

Critical percolation on the Hamming graph
An ERRG-type scaling limit

Theorem [FHHH]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p =pf(d’")(1 +0V~1/%). Then,

(%)i>1 i’ (71(0))iz1

[Exactly the same as the ERRG!]

13/22

Critical percolation on the Hamming graph
An ERRG-type scaling limit

Theorem [FHHH]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p =pf(d’")(1 +0V71/3). Then,

(%)i>1 i’ (71(0))iz1

[Exactly the same as the ERRG!]

About the proof

The proof uses an exploration process, just like Aldous. But there are two
complications:

13/22

Critical percolation on the Hamming graph
An ERRG-type scaling limit

Theorem [FHHH]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p :pf(d’”)(l +0V~1/3). Then,

(J/CZI/L)i>1 - (7i(0))iz1

[Exactly the same as the ERRG!]

About the proof

The proof uses an exploration process, just like Aldous. But there are two
complications:

» Geometry = consecutive steps in the exploration are highly dependent

13/22

Critical percolation on the Hamming graph
An ERRG-type scaling limit

Theorem [FHHH]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p :pf(d’”)(l +0V~1/3). Then,

(J/CZI/L)i>1 - (7i(0))iz1

[Exactly the same as the ERRG!]

About the proof

The proof uses an exploration process, just like Aldous. But there are two
complications:

» Geometry = consecutive steps in the exploration are highly dependent

» Geometry = current cluster is dependent on explored clusters

13/22

About the proof

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.

14 /22

7 8 9 10 11 12

P (T(1) |

About the proof

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.

Advantages:

« The path between two particles in a (not killed) BRW has the same law
as a simple random walk

17 /22

About the proof

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.

Advantages:

« The path between two particles in a (not killed) BRW has the same law
as a simple random walk

« Self-intersections of BRW are fairly easy to estimate

17 /22

About the proof

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.

Advantages:

« The path between two particles in a (not killed) BRW has the same law
as a simple random walk

« Self-intersections of BRW are fairly easy to estimate

« Intersections between different BRWs are possible to estimate

17 /22

About the proof

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.

Advantages:

« The path between two particles in a (not killed) BRW has the same law
as a simple random walk

« Self-intersections of BRW are fairly easy to estimate
« Intersections between different BRWs are possible to estimate

» We can explore the GW-trees instead of the clusters

17 /22

About the proof

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.

Advantages:

« The path between two particles in a (not killed) BRW has the same law
as a simple random walk

« Self-intersections of BRW are fairly easy to estimate
« Intersections between different BRWs are possible to estimate
» We can explore the GW-trees instead of the clusters

Disadvantage:

« The measure of killed BRW’s on H(d,) is much more complicated than
the percolation product measure

17 /22

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous’ ERRG exploration process, we activate the direct neighbors. On
the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first r, > log” n
generations in the GW-tree. We only activate the boundary.

18 /22

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous’ ERRG exploration process, we activate the direct neighbors. On
the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first r, > log” n
generations in the GW-tree. We only activate the boundary.

V3 v}@—}:}% Vs vy
/
—> — — s
) 1 U3 I U3

step 1 step 2 step 3 step 4

18 /22

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous’ ERRG exploration process, we activate the direct neighbors. On
the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first r, > log” n
generations in the GW-tree. We only activate the boundary.

Advantage:

« Random walk on H(d, n) mixes fast [tyix(H(d, n)) = O(dlogd)], so the
rn-th generation of the BRW is very well mixed = no dependence
between large-scale exploration steps

18 /22

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous’ ERRG exploration process, we activate the direct neighbors. On
the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first r,, > log” n
generations in the GW-tree. We only activate the boundary.

Advantage:
« Random walk on H(d, n) mixes fast [tmix(H(d, n)) = O(dlogd)], so the

rn-th generation of the BRW is very well mixed = no dependence
between large-scale exploration steps

Disadvantage:

+ The number of dead vertices is no longer deterministic. But for the right
choice of r,, (not too large or small) the number concentrates.

18 /22

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n — k, p)). On the Hamming graph, this is not true.

19/22

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n —k,p)). On the Hamming graph, this is not true. But the geometry

of the explored clusters does not matter for the probability that a BRW
started from a randomly chosen vertex hits them.

19/22

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n — k,p)). On the Hamming graph, this is not true. But the
geometry of the explored clusters does not matter for the probability that a
BRW started from a randomly chosen vertex hits them.

We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.

19/22

$u(T)

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n —k, p)). On the Hamming graph, this is not true. But the geometry
of the explored clusters does not matter for the probability that a BRW
started from a randomly chosen vertex hits them.

We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.

Advantage:

« The sticky coupling for BRW on the Hamming graph is very quick: whp
only a few vertices do not couple (at most log” n << r,,)

21/22

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n —k, p)). On the Hamming graph, this is not true. But the geometry
of the explored clusters does not matter for the probability that a BRW
started from a randomly chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.
Advantage:

« The sticky coupling for BRW on the Hamming graph is very quick: whp

only a few vertices do not couple (at most log” n << r,,)

Disadvantage:

+ Many different processes and couplings going on at the same time

21/22

Thank you

22/22

