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Percolation

A simple model for geometric random graphs

Definition
Fix a graph G = (V,£) and p € [0, 1]. Remove each edge e € £ independently
with probability p: i.e., percolation is a product measure on {0, 1}¢.
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Percolation

A simple model for geometric random graphs

Definition
Fix a graph G = (V,£) and p € [0, 1]. Remove each edge e € £ independently
with probability p: i.e., percolation is a product measure on {0, 1}¢.

Focus of this talk
Percolation on sequences of finite graphs.

Example

The Erdds-Rényi random graph: Take G = K,, (the complete graph on n
vertices). Write G(n, p) for the percolated graph. Study G(n,p) asn — oo
(with p = p(n) - 0).
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The ERRG phase transition

A double jump transition
Write C; fo the j-th largest cluster of G(1,p).
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The ERRG phase transition

A double jump transition
Write C; fo the j-th largest cluster of G(1,p).

For fixedj > 1,
« If p < 1/n we have |C;| = ©(log n) whp [subcricital]
« If p = 1/n we have n~|C}| is a tight random variable [critical]

« Ifp>1/nwehave |C,| = ©(n) and |Cj| = ©(logn) for j > 2 whp
[supercritical]

The critical window

We can zoom in on the phase transition by choosing p = with e, - 0.
This shows a much richer structure around criticality. [Too much to discuss
in detail here]

1+e,
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Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix 0 € R.
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A scaling limit

Theorem [Aldous, 1997]
Fix 6 € R. Let B(¢) be a Brownian motion and

BY(t) := B(t) + 0t - g (BM w/ parabolic drift)

R(t) := BY(t) - 0i<n£tBe(t) (B? reflected at 0)

and

(7i(£))is1 = the excursions of R? ordered s.t. 7(0) > 12(0) > ...

. . -1/3
Consider the vector of ordered cluster sizes of G(n, % ). Then,

(%) - o
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A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral
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A graph exploration algorithm

Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Setvto dead

(4) « If 3 an active vertex: move token to an active vertex. Call it v. Go to (2)
« If A an active vertex: Go to (1) [explored a component]
« If 3 a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

SO = 0, S,‘ = Si*l — 1 + X;

new active vertices
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The exploration process and cluster sizes

Sketch of the proof (2/3)
Set S =0and S; = S;_; — 1 + X;. Observe that

« min{j : §j = —1} = size of first explored cluster

St

A

1 \V/ AN
- \AV/
- A J
Y T
size of first cluster size of second cluster
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The exploration process and cluster sizes

Sketch of the proof (2/3)
Set S =0and S; = S;_; — 1 + X;. Observe that

« min{j : §j = —1} = size of first explored cluster

St
A

1 \V/ AN
- \AV/
- A J
Y T
size of first cluster size of second cluster

If G(n, L;‘_w) has

_ d
(1’[ 1/3Sm2/3)t20 —> (Ba(t))tzm

then Aldous’ Theorem follows (by relatively standard arguments)
8/22



A scaling limit for (S;);s;
Sketch of the proof (3/3)
SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

Xj ~ Bin(# neutral vertices, p)
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SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),
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SetSp=0and S; = S;-; — 1 + X;. For G = G(n, p),

1+0n7'/
++)
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i
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Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.
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Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.0.) most parts are confirmed
[Bhamidi, Broutin, Sen & Wang ’14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and
Hamming graphs a lot is known, but mostly about (slightly) sub- and
supercritical percolation. The critical window is difficult.

The main difficulty in going from the ERRG to geometric graphs is that K, is
highly symmetric and self-similar, which makes everything easier. For
instance, if we remove a component of size k from G(n, p), the (conditional)
law of what remains is G(n — k, p). This is obviously not true for percolation
on any other graph.
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The Hamming graph

Definition of the Hamming graph
H(d, n) is defined as the (d — 1)-fold Cartesian product of K,,,

H(d,n) ~K, x K, x---x K,

H(d, n) has degree m := d(n — 1) and V := n vertices.

11/22



The critical window

Theorem [FHHH]
For percolation on H(d, n) with degree m =d(n—1) andd =2,3,...,6,

2
Ham o1, 24°-1 1
‘ m  2(d-1)2m?

is a point inside the critical window.
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Critical percolation on the Hamming graph
An ERRG-type scaling limit

Theorem [FHHH]
For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p =pf(d’")(1 +0V71/3). Then,

(45) - it
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For percolation on H(d, n) with d = 2, 3,4, fix § € R and
p :pf(d’”)(l +0V~1/3). Then,

(J/CZI/L )i>1 - (7i(0))iz1

[Exactly the same as the ERRG!]

About the proof

The proof uses an exploration process, just like Aldous. But there are two
complications:

» Geometry = consecutive steps in the exploration are highly dependent

» Geometry = current cluster is dependent on explored clusters
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About the proof

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.
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Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when

they collide or visit a previously visited site. We call them killed branching
random walks.

Advantages:

« The path between two particles in a (not killed) BRW has the same law
as a simple random walk

« Self-intersections of BRW are fairly easy to estimate
« Intersections between different BRWs are possible to estimate
» We can explore the GW-trees instead of the clusters

Disadvantage:

« The measure of killed BRW’s on H(d, ) is much more complicated than
the percolation product measure
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About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous’ ERRG exploration process, we activate the direct neighbors. On
the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first r, > log” n
generations in the GW-tree. We only activate the boundary.
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A two-scale exploration

In Aldous’ ERRG exploration process, we activate the direct neighbors. On
the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first r,, > log” n
generations in the GW-tree. We only activate the boundary.

Advantage:
« Random walk on H(d, n) mixes fast [tmix(H(d, n)) = O(dlogd)], so the

rn-th generation of the BRW is very well mixed = no dependence
between large-scale exploration steps

Disadvantage:

+ The number of dead vertices is no longer deterministic. But for the right
choice of r,, (not too large or small) the number concentrates.
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About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n — k, p)). On the Hamming graph, this is not true.
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About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n —k, p)). On the Hamming graph, this is not true. But the geometry
of the explored clusters does not matter for the probability that a BRW
started from a randomly chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.
Advantage:

« The sticky coupling for BRW on the Hamming graph is very quick: whp

only a few vertices do not couple (at most log” n << r,,)

Disadvantage:

+ Many different processes and couplings going on at the same time
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Thank you
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