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Motivation

* The smart grid cyber layer generates considerable electronic data:

— Power flow sensors, phasor measurement units, smart meters, etc.
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Motivation

* The smart grid cyber layer generates considerable electronic data:

— Power flow sensors, phasor measurement units, smart meters, etc.
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* This data can leak information that should be kept secure, or private.

* But, the utility of this data depend on its accessibility.

* How can we characterize this fundamental tradeoff?



Information:

A General Formalism

[Sankar-Rajagopalan-Poor, T-IFS’ | 3]
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* A sequence of n i.i.d. observations of a vector random variable X = (X
X, «ee Xi) with a joint distribution:
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Data Source Model

A sequence of n i.i.d. observations of a vector random variable X = (X
X, «ee Xi) with a joint distribution:

Px(X)=Pyx x (X500, X)

Variables can be divided into public (revealed) and private (hidden)
variables, typically not disjoint:

— k" entry : X = (Xr,k’Xh,k)

ealed



Privacy-Utility Tradeoff

* How can we characterize the tradeoff between utility and
privacy in such a setting?



Privacy-Utility Tradeoff

* How can we characterize the tradeoff between utility and
privacy in such a setting?

— Measure utility by distortion of the public variables as revealed by the
data source; and



Privacy-Utility Tradeoff

* How can we characterize the tradeoff between utility and
privacy in such a setting?

— Measure utility by distortion of the public variables as revealed by the
data source; and

— Measure privacy by equivocation of the private variables in information
revealed by the source. (Can also use other leakage measures.)



Privacy-Utility Tradeoff

* How can we characterize the tradeoff between utility and
privacy in such a setting?

— Measure utility by distortion of the public variables as revealed by the
data source; and

— Measure privacy by equivocation of the private variables in information
revealed by the source. (Can also use other leakage measures.)

* Then the distortion-equivocation region describes the
tradeoff.
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* Encoder maps the original data source to a quantized data source (QDS):
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Distortion-Equivocation Model

* Encoder maps the original data source to a quantized data source (QDS):

Encoder : X" — W ={0DS,,0DS,....

Distortion

AdEE[-l }<D+8

rl’
ll /
rk’

Source >

Encoder

WeW

1
n

.0DS,, |

Equivocation

>

Decoder

H(X|W)>E-¢

X,

k=1



Distortion-Equivocation Model

* Encoder maps the original data source to a quantized data source (QDS):

Encoder: X" — W ={0DS,,0DS,,...,0DS,, }

Distortion Equivocation
1 1 "
AdEE{— }<D+£ A =—H(X]|W)>E-¢
: \ / :
rk’ = WeW {X”’k}kzl
Source = Encoder \ > Decoder —

Add a rate constraint — M < 2”(R+8)




Utility-Privacy/RDE Regions
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Example: Categorical Data

* Categorical data: finite alphabet data

— e.g.: SSN, zipcode, etc.

Zero distortion

Original variable X

=)

Distorted variable X

Hamming Distortion D :

D =Pr(X # X)

Equivocation E :

E=H(XI|X)



Example: Categorical Data

« Optimal input to output mapping: reverse water-filling’

— Only x with p(x) > A revealed (A: water-level).

A input probability p(x)

water-filling level A

\

* Eliminates samples with low probabilities (relative to level \)

.
L

X

— Equivalent to outlier aggregation/suppression

— Such samples reveal the most information

« AsDI ) T,revealing fewer samples



Summary (General Formalism)

* A data source is divided into private and public variables

* Leads to an equivocation-distortion characterization

* Adding rate: a rate-distortion problem with an equivocation constraint



Summary (General Formalism)

* A data source is divided into private and public variables

* Leads to an equivocation-distortion characterization

* Adding rate: a rate-distortion problem with an equivocation constraint

* We can also consider
* multiple sources (side information)

* other measures of privacy and/or utility



Control:

Smart-Meter Privacy

[Sankar-Rajagopolan-Mohajer-Poor, 1-SG’1 3]

[ Tan-Gunduz-Poor, JSAC: SG Series’ | 3]
[Yang-Chen-Zhang-Poor, T-SG’ | 5]



Smart Meter Utility & Privacy

« Smart meter data is useful for price-aware usage, load balancing.
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Smart Meter Utility & Privacy

« Smart meter data is useful for price-aware usage, load balancing.

* But, it leaks information about in-home activity.
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A Source-Coding Approach

[Sankar-Rajagopolan-Mohajer-Poor; T-SG’ | 3]

hidden Gauss-Markov
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* encoding of the meter readings
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A Source-Coding Approach

[Sankar-Rajagopolan-Mohajer-Poor; T-SG’ | 3]

hidden Gauss-Markov
 hidden state is in {continuous, intermittent}
* encoding of the meter readings

Model:

distortion of usage

Tradeoff: versus
information leakage about the intermittent state

a type of “reverse water-filling”

Solution: , A . |
(i.e., rate-minimizing source coding for Gaussian sources)




Reverse Water-Filling




A Control Approach

[ Tan-Gunduz-Poor, [SAC: SG Series’| 3]

* Consider situations with energy harvesting (e.g., solar or wind) and
rechargeable storage devices (e.g., electric vehicle):

ENERGY
HARVESTING (EH)
DEVICE

Harvested
Energy

uTILITY
PROVIDER
(UpP)

ENERGY MANAGEMENT UNIT

APPLIANCES
(EMU)

(sm)

Input Load

At discrete time i :

Charging

*X;: energy demand of appliances (i.i.d. binary)
*Y; : energy taken from UP

RECHARGEABLE
BATTERY (RB)

*Z;: harvested energy (i.i.d. binary, indep. of X;)
*B,: battery state (<1)

*the meter reads and reports Y,

*(stochastic) control: (X;, Z;, B.,;)) —> (Y;,B;) with X; =Z, + (B;-B.)) *+ Y,



Energy Management Policies
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. 1Ix
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Energy Management Policies

1
wasted energy rate: B, = _E(Zi +Y, - X))
n i=1

Tradeoff: versus |
information leakage rate: ["==1(X";Y")
n
Policy: transition probabilities: P(Y; | X, Z;, B, )

(1-px)(1-p; )Pno,o,o

(‘1 ~px)(1-pz )(1 _Pno.o,o‘)

Px(l-p; energywasted )

p, ( 1-p, ) ( 1- Proa )



The Privacy-Utility Tradeoff

battery introduces memory: closed form expressions are elusive

numerically compute mutual information
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With/ Without a Battery Vs. EH Rate

Equiprobable input load (p, = 0.5)
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With No Energy Harvesting

Equiprobable input load (p, = 0.5)
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Summary (Smart Meter Privacy)
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* source coding at the meter (reverse water filling)

* control with storage and local supply



Summary (Smart Meter Privacy)

* Two approaches to smart meter privacy:
* source coding at the meter (reverse water filling)

* control with storage and local supply

* We can also consider [Yang-Chen-Zhang-Poor, T-SG’ | 5]:

* adaptive control

* jointly consider privacy and cost (exploit price variations)



Games:

Competitive Privacy

[Belmega-Sankar-Poor, JSTSP’ 1 5]



Motivating Example: Multiple RTOs

N.A. Grid: interconnected regional transmission organizations (RTOs)
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Motivating Example: Multiple RTOs

N.A. Grid: interconnected regional transmission organizations (RTOs) which

— need to share state measurements for reliability of state estimation (utility)
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Motivating Example: Multiple RTOs

N.A. Grid: interconnected regional transmission organizations (RTOs) which
— need to share state measurements for reliability of state estimation (utility)

— wish to withhold information for economic competitiveness (privacy)
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Motivating Example: Multiple RTOs

* N.A. Grid: interconnected regional transmission organizations (RTOs) which
— need to share state measurements for reliability of state estimation (utility)
— wish to withhold information for economic competitiveness (privacy)

Alberta Electric
System Operator Midwest ISO

Ontario Independent
Electricity System Operator
/ New Brunswick

System Operator
- 1SO New
England
I N7 New York ISO
R
. A v PJM
California ISO -‘E e
Electric Reliability Southwest I RC . Subnet Control Center
Council of Texas Power Pool ISO/RTO Council

@ Subnetnode

* Leads to a problem of competitive privacy



Competitive Privacy Model

* Noisy measurements at RTO k:

Y, = ZHkm X +Z,k=12,....M

™~

mth system state . e dso ®

@ subnetnode

Subnet Control Center



Competitive Privacy Model

* Noisy measurements at RTO k:

0%
Y= H, X, +Z, k=12,.., ANA-
m=1 \ <Y/, A
mth system state Jov—0 ’

* Cooperation leads to inevitable leakage of state information.
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Competitive Privacy Model

* Noisy measurements at RTO k:

0%
Y, =Y Ho, X, +Z, k=12,..., ANNYE
m=1 \ \[>< Y, AN,
mth system state fiiLs s

* Cooperation leads to inevitable leakage of state information.
» Utility for RTO k: mean-square error for its own state X,

* Privacy for RTO k: leakage of information about X to other RTOs



Two-Agent Case
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Two-Agent Case

Y =X +aX, +7Z ,i=1..,n
Y, = :BXU +X, +Z,,i=L...n

n i.i.d. observations at each RTO:

Stochastic model: X, .~ N(0,1);Z, .~ N(O,sz.);all indep.
1 NERY:
= —ZE[(X. -x ) }
n i=1 /e 7
Tradeoff parameters: .
L :;I(X .y

Theorem: Wyner-Ziv coding maximizes privacy (i.e., minimizes L, and L,) for a
desired utility at each agent (fixed D, and D,).

But, [, depends on D;, (not D), so how should each agent choose to behave!?

We can study this issue via game theory [Belmega-Sankar-Poor].



Rate and Privacy Leakage (lllustration)
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A One-Shot Game

The action g; of agent j is the distortion caused at agent 3-j, maximally 133_],

D,
The payoff for agent j: ul(a,a, )=—w.L(a)+w, 108£a )
3—j
Nash equilibrium (prisoner’s dilemma): (afaa;) :(Dzal_)l)
- D,
Add pricing:
PrEmS M(a,3)u(a,3)+p10g[a]
J

Any behavior can then be incentivized within the limits of the model.
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A Common-Goal Game

A common payoff:

q D +D,
u(a,a,)=— L(al)—L(a2)+510g I
1 2

Enables cooperation in a non-cooperative setting (a potential game).

Nontrivial equilibria exist; the nature of these depends on the value of q.



A Multi-Stage Game

T
T-stage game, with a discounted payoff for agent j: 2 pt_luj(ay ),ag?j)
=1



A Multi-Stage Game

T

[-stage game, with a discounted payoff for agent j: 2 “lu, (a(t)» gt)]
=1

With T < oo, the only Nash equilibrium (subgame perfect equilibrium):

(a"",a""y=(D,,D,),Vt



A Multi-Stage Game

T

[-stage game, with a discounted payoff for agent j: 2 “lu, (a(t)» gt)]
=1

With T < oo, the only Nash equilibrium (subgame perfect equilibrium):

(a"",a""y=(D,,D,),Vt

But, with T = oo,any (D,", D,") satisfying the condition below is also a subgame
perfect equilibrium for large enough p < I:

u(D D )>u(D 3])]—12



Minimal Discount Factor for Sustaining
Non-trivial Equilibria
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Summary (Competitive Privacy)

* An additional dimension to privacy vs. utility tradeoff is
added when there are multiple competing agents.

* Wyner-Ziv coding gives optimal information exchange.

* Game theory can help in modeling and understanding this
problem:

— one-shot games: prisoner’s dilemma/pricing
— multi-stage games: finite vs. infinite time window

— common-goal games: enables cooperation
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Summary

Motivation: privacy-utility tradeoff

General Formalism: information theoretic formulation
Smart Meter Privacy: source coding & control approaches
Competitive Privacy: game theoretic approach

Information-, control- and game-theoretic ideas allow fundamental

examination of privacy issues in smart grid.



Basic P-U Tradeoff: Other Potential
Applications

Biometric Systems: tradeoff :
between security & privacy

't = <: Social Networks: tradeoff
I 4 0 between sharing & privacy

E-Commerce: tradeoff
between economic benefit :>

iy ’
& privacy V 4
\‘



Competitive Privacy: Other Potential
Applications

agent 2 estimates X."

Other Networks of Interacting Agents, e.g.:

~
-
.

* resource localization in competitive
environments

-
---———‘—

,"f1(Y2n)
* joint sensing with untrustworthy allies \

agent 1 estimates X"
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