
Probability 1 (MATH 11300) lecture slides

Márton Balázs

School of Mathematics
University of Bristol

Autumn, 2015

December 16, 2015



To know...
◮ http://www.maths.bris.ac.uk/ ˜ mb13434/prob1/
◮ m.balazs@bristol.ac.uk
◮ Drop in Sessions: Tuesdays, 13:00–14:00, office 3.7 in the

Maths bld.
◮ 22+2 lectures, 12 exercise classes, 11 mandatory HW sets.
◮ HW on Weeks 5 & 9 is assessed and counts 10% towards

final mark.

◮ These slides have gaps, come to lectures.  
◮ Core reading: Probability 1, Pearson Custom Publishing.

Compiled from A First Course in Probability by S. Ross. Strongly
encouraged.

◮ Probability is difficult, but interesting, useful, and fun.
◮ Not-to-hand-in extra problem sheets for those interested.

They won’t affect your marks in any way.
◮ This material is copyright of the University unless explicitly stated otherwise. It is provided exclusively for

educational purposes at the University and is to be downloaded or copied for your private study only.
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Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT

1. Elementary probability

2. Conditional probability

3. Discrete random variables

4. Continuous random variables

5. Joint distributions

6. Expectation, covariance

7. Law of Large Numbers, Central Limit Theorem
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1. Elementary probability
Combinatorics
Sample space
Probability
Equally likely outcomes

Objectives:
◮ To define events and sample spaces, describe them in

simple examples
◮ To list the axioms of probability, and use them to prove

simple results
◮ To use counting arguments to calculate probabilities when

there are equally likely outcomes
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Combinatorics / the basic principle of counting

In this part we’ll learn how to count in some typical scenarios.
The starting point is the following:

◮ Suppose an experiment has n outcomes; and another
experiment has m outcomes.

◮ Then the two experiments jointly have n · m outcomes.

Example
Rolling a die and flipping a coin can have a total of 6 · 2 = 12
different outcomes, combined.

3 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Combi. Sample sp. Probability Equally l.

1. Permutations

Definition
Let H = {h1, h2, . . . , hn} be a set of n different objects. The
permutations of H are the different orders in which one can
write all of the elements of H. There are n! = 1 · 2 · 3 · · · n of
them. We set 0! = 1.
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1. Permutations

Definition
Let H = {h1, h2, . . . , hn} be a set of n different objects. The
permutations of H are the different orders in which one can
write all of the elements of H. There are n! = 1 · 2 · 3 · · · n of
them. We set 0! = 1.

 

Example
The results of a horse race with horses
H = {A, B, C, D, E , F , G} are permutations of H. A possible
outcome is (E , G, A, C, B, D, F) (E is the winner, G is second,
etc.). There are 7! = 5 040 possible outcomes.

4 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Combi. Sample sp. Probability Equally l.

2. Permutations with repetitions

Definition
Let H = {h1 . . . h1, h2 . . . h2, . . . , hr . . . hr} be a set of r different
types of repeated objects: n1 many of h1, n2 of h2, . . . nr of hr .
The permutations with repetitions of H are the different orders
in which one can write all of the elements of H. There are

(
n

n1, n2, . . . , nr

)
: =

n!
n1! · n2! · · · nr !

of them, where n = n1 + · · ·+ nr is the total number of objects.
This formula is also known as the multinomial coefficient.
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2. Permutations with repetitions

Example
We can make

(
11

5, 2, 2, 1, 1

)
=

11!
5! · 2! · 2! · 1! · 1!

= 83 160

different words out of the letters A, B, R, A, C, A, D, A, B, R, A.
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3. k-permutations

Definition
Let H = {h1, h2, . . . , hn} be a set of n different objects. The
k-permutations of H are the different ways in which one can
pick and write k of the elements of H in order. There are n!

(n−k)!
of these k-permutations.
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3. k-permutations

Definition
Let H = {h1, h2, . . . , hn} be a set of n different objects. The
k-permutations of H are the different ways in which one can
pick and write k of the elements of H in order. There are n!

(n−k)!
of these k-permutations.

 

Example
The first three places of a horse race with horses
H = {A, B, C, D, E , F , G} form a 3-permutation of H. A
possible outcome is (E , G, A) (E is the winner, G is second, A
is third.). There are 7!

(7−3)! = 210 possible outcomes for the first
three places.
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4. k-permutations with repetitions

Definition
Let H = {h1 . . . , h2 . . . , . . . , hr . . . } be a set of r different types
of repeated objects, each of infinte supply. The
k-permutations with repetitions of H are the different orders in
which one can write an ordered sequence of length k using the
elements of H. There are r k such sequences.
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4. k-permutations with repetitions

Definition
Let H = {h1 . . . , h2 . . . , . . . , hr . . . } be a set of r different types
of repeated objects, each of infinte supply. The
k-permutations with repetitions of H are the different orders in
which one can write an ordered sequence of length k using the
elements of H. There are r k such sequences.

 

(The case when the elements of H are only of finite supply is
much more complicated.)
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4. k-permutations with repetitions

Definition
Let H = {h1 . . . , h2 . . . , . . . , hr . . . } be a set of r different types
of repeated objects, each of infinte supply. The
k-permutations with repetitions of H are the different orders in
which one can write an ordered sequence of length k using the
elements of H. There are r k such sequences.

 

(The case when the elements of H are only of finite supply is
much more complicated.)

Example

There are 263 = 17576 possible k = 3-letter words using the
r = 26 letters of the English alphabet.

8 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Combi. Sample sp. Probability Equally l.

5. k-combinations

Definition
Let H = {h1, h2, . . . , hn} be a set of n different objects. The
k-combinations of H are the different ways in which one can
pick k of the elements of H without order. There are

(
n
k

)
: =

n!
k ! · (n − k)!

of these k-combinations. This formula is also known as the
binomial coefficient (“n choose k”).
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5. k-combinations
Example
There are (

30
5

)
=

30!
5! · (30 − 5)!

= 142 506

possible ways to form a committee of 5 students out of a class
of 30 students.
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5. k-combinations
Example
There are (

30
5

)
=

30!
5! · (30 − 5)!

= 142 506

possible ways to form a committee of 5 students out of a class
of 30 students.

Remark
In a similar way, there are

(
n

k1, k2, . . . , kr

)
: =

n!
k1! · k2! · · · kr !

many ways to form unordered groups of sizes k1, k2, . . . kr of n
objects (n = k1 + · · ·+ kr ). Thus, the multinomial coefficient
generalizes the binomial coefficient.
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6. The Binomial coefficient

◮ Recall the definition, for n, k non-negative integers,
(

n
k

)
: =

n!
k ! · (n − k)!

=

(
n

n − k

)
for 0 ≤ k ≤ n.

We extend this by
(n

k

)
≡ 0 in all other cases. (It is possible

to define these coefficients for any real n, but we won’t
need that.)

11 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Combi. Sample sp. Probability Equally l.

6. The Binomial coefficient
Theorem (Pascal’s Identity)
For any k and 1 ≤ n integers,

(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.
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6. The Binomial coefficient
Theorem (Pascal’s Identity)
For any k and 1 ≤ n integers,

(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

Proof.
Either write out the factorials, or count the number of
k-combinations of n objects in two ways:
◮ the first object is chosen, and the remaining k − 1 objects

need to be picked out of n − 1, or
◮ the first object is not chosen, and all k objects need to be

picked out of n − 1.
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7. The Binomial Theorem

Theorem (Newton’s Binomial Theorem)
For any real numbers x and y, and n ≥ 1, we have

(x + y)n =
n∑

k=0

(
n
k

)
· xk · yn−k .
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7. The Binomial Theorem

Theorem (Newton’s Binomial Theorem)
For any real numbers x and y, and n ≥ 1, we have

(x + y)n =
n∑

k=0

(
n
k

)
· xk · yn−k .

Proof.
In the product (x + y) · · · (x + y) on the left hand-side we need
to pick x or y from each parenthesis in all possible ways, and
multiply them. Picking x from k of these parentheses and y
from the remaining n − k can be done in

(n
k

)
ways, each of

which contributes xk · yn−k to the final sum.
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8. The Multinomial Theorem

The Binomial Theorem generalises to

Theorem (Multinomial Theorem)
Let x1, x2, . . . , xr be real numbers, n ≥ 1. Then

(x1 + x2 + · · ·+ xr )
n =

∑

n1, ..., nr≥0
n1+···+nr=n

(
n

n1 n2 . . . nr

)
· xn1

1 · xn2
2 · · · xnr

r .
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Sample space

Here we are (almost) going to define a mathematical model for
various experiments. To do it properly, we would need some
tools from measure theory. This will be skipped for now, but
you are welcome to revisit this point some time later during your
studies!
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Sample space

Here we are (almost) going to define a mathematical model for
various experiments. To do it properly, we would need some
tools from measure theory. This will be skipped for now, but
you are welcome to revisit this point some time later during your
studies!

◮ We always consider an experiment. Ω will denote the set of
all possible outcomes of this experiment.

◮ An event will be a collection of possible outcomes.
Therefore, and event E will be considered a subset of Ω:
E ⊆ Ω.

◮ Sometimes Ω is too large, and not all its subsets can be
defined as events. This is where measure theory helps...

◮ It makes perfect sense to define the union E ∪ F and the
intersection E ∩ F of two events, E and F .
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Sample space

E F

E ∪ F

Ω
E F

E ∩ F

Ω

Notation: sometimes E ∪ F = E + F , E ∩ F = EF .
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1. Examples

Example

Experiment: Is it going to rain today?

Sample space: Ω = {r, n}.

|Ω| = 2.

An event: E = {r}.

|E | = 1.
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1. Examples

Example

Experiment: Finishing order of a race of 7 horses.

Sample space: Ω = {permutations of A, B, C, D, E , F , G}.

|Ω| = 7!.

An event: E = {horse B wins}
= {permutations that start with B}.

|E | = 6!.

Another event: F = {G wins,D is second}.

= {permutations starting as (G, D, . . . )}.

|F | = 5!.

Notice E ∩ F = ∅ in this example. We call ∅ the null event. This
is the event that never happens.
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1. Examples
Example

Experiment: Flipping two coins.

Sample space: Ω = {ordered pairs of the two outcomes}.

= {(H, H), (H, T ), (T , H), (T , T )}.

|Ω| = 4.

An event: E = {the two coins come up different}
= {(H, T ), (T , H)}.

|E | = 2.

Another event: F = {both flips come up heads}.

= {(H, H)}.

|F | = 1.

Notice: E ∪ F = {(H, T ), (T , H), (H, H)}
= {at least one H}.
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1. Examples

Example

Experiment: Rolling two dice.

Sample space: Ω = {ordered pairs of the two outcomes}
= {(i , j) : i , j = 1 . . . 6}.

|Ω| = 36.

An event: E = {the sum of the rolls is 4}
= {(1, 3), (2, 2), (3, 1)}.

|E | = 3.

Another event: F = {the two rolls are the same}.

= {(i , i) : i = 1 . . . 6}.

|F | = 6.

Notice: E ∩ F = {(2, 2)}.
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1. Examples

Example

Experiment: Repeatedly rolling a die until we first see 6.

Sample space: Ω = {sequences of numbers between 1}

and 5, and then a 6}.  

|Ω| = ∞.

An event: E = {roll 4 first, get 6 on the third roll}
= {(4, k , 6) : k = 1 . . . 5}.

|E | = 5.
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1. Examples
Example

Experiment: Lifetime of a device (measured in years).

Sample space: Ω = [0, ∞)

|Ω| = ∞ (uncountable).

An event: E = {shouldn’t have bought it} = {0}
|E | = 1.

Another event: F = {device lasts for at least 5 years}
= [5, ∞).

|F | = ∞.

Another event: G = {device is dead by its 6th birthday}
= [0, 6).

|G| = ∞.

Notice: F ∩ G = [5, 6), F ∪ G = [0, ∞) = Ω.
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2. The union and the intersection

Inspired by the above:

Remark
The union E ∪ F of events E and F always means E OR F .
The intersection E ∩ F of events E and F always means E
AND F .

Similarly:

Remark
The union

⋃
i Ei of events Ei always means at least one of the

Ei ’s.
The intersection

⋂
i Ei of events Ei always means each of the

Ei ’s.
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2. The union and the intersection

Definition
If E ∩ F = ∅, then we say that the events E and F are
mutually exclusive events.

If the events E1, E2, . . . satisfy Ei ∩ Ej = ∅ whenever i 6= j , then
we say that the Ei ’s are mutually exclusive events.

Mutually exclusive events cannot happen at the same time.
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3. Inclusion and implication

Remark
If the event E is a subset of the event F , E ⊆ F , then the
occurrence of E implies that of F .

Example
The experiment is rolling a die.
E = {rolling 1 on a die} ⊆ {rolling an odd no. on a die} = F .

F

E

E ⊆ F

Ω

1

2
3

45

6
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4. Complementary events

Definition
The complement of an event E is Ec : = Ω− E . This is the
event that E does not occur.

E

Ec

Ω

Notice: E ∩ Ec = ∅, E ∪ Ec = Ω.

Notation: sometimes Ec = Ē = E∗.
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5. Simple properties of events

Commutativity: E ∪ F = F ∪ E ,
E ∩ F = F ∩ E .

27 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Combi. Sample sp. Probability Equally l.

5. Simple properties of events
Associativity: E ∪ (F ∪ G) = (E ∪ F ) ∪ G = E ∪ F ∪ G,

E F

G

E ∩ (F ∩ G) = (E ∩ F ) ∩ G = E ∩ F ∩ G.

E F

G
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5. Simple properties of events
Distributivity: (E ∪ F ) ∩ G = (E ∩ G) ∪ (F ∩ G),

E F

G

E F

G
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5. Simple properties of events

De Morgan’s Law: (E ∪ F )c = Ec ∩ F c.

E F E F
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5. Simple properties of events

Let Ei ’s be events (e.g., Person i has an umbrella). Then

De Morgan’s Law:
(⋃

iEi

)c
=

⋂
iEi

c.

Not true that someone has an umbrella.
= Everyone doesn’t have an umbrella.

(⋂
iEi

)c
=

⋃
iEi

c.

Not true that everyone has an umbrella.
= Someone doesn’t have an umbrella.
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Probability

Finally, we can now define what probability is.

Definition (axioms of probability)
The probability P on a sample space Ω assigns numbers to
events of Ω in such a way, that:

1. the probability of any event is non-negative: P{E} ≥ 0;

2. the probability of the sample space is one: P{Ω} = 1;

3. for any finitely or countably infinitely many mutually
exclusive events E1, E2, . . .,

P
{⋃

i

Ei

}
=

∑

i

P{Ei}.
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Probability

Notation:

n⋃

i=1

Ei = E1 ∪ E2 ∪ · · · ∪ En , or

∞⋃

i=1

Ei = E1 ∪ E2 ∪ . . . ,

n∑

i=1

P{Ei} = P{E1}+ P{E2}+ · · ·+ P{En} , or

∞∑

i=1

P{Ei} = P{E1}+ P{E2}+ . . . .
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A few simple facts

Proposition
For any event, P{Ec} = 1 − P{E}.

Proof.
We know that E and Ec are mutually exclusive, and
E ∪ Ec = Ω. Therefore by Axiom 3, and then 2,

P{E}+ P{Ec} = P{E ∪ Ec} = P{Ω} = 1.

Corollary

We have P{∅} = P{Ωc} = 1 − P{Ω} = 1 − 1 = 0.

For any event E, P{E} = 1 − P{Ec} ≤ 1.
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A few simple facts

Proposition (Inclusion-exclusion principle)
For any events E and F, P{E ∪F} = P{E}+P{F}−P{E ∩F}.

 

Proposition (Boole’s inequality)
For any events E1, E2, . . . , En,

P
{ n⋃

i=1

Ei

}
≤

n∑

i=1

P{Ei}.
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A few simple facts

Proof by induction.
When n = 2,

P{E1 ∪ E2} = P{E1}+ P{E2} − P{E1 ∩ E2} ≤ P{E1}+ P{E2}.

Now suppose true for n. Then

P
{n+1⋃

i=1

Ei

}
= P

{( n⋃

i=1

Ei

)
∪ En+1

}
≤ P

{ n⋃

i=1

Ei

}
+ P{En+1}

≤
n∑

i=1

P{Ei}+ P{En+1} =
n+1∑

i=1

P{Ei}.
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A few simple facts

Proposition (Inclusion-exclusion principle)
For any events E , F , G,

P{E ∪ F ∪ G} = P{E}+ P{F}+ P{G}
− P{E ∩ F} − P{E ∩ G} − P{F ∩ G}
+ P{E ∩ F ∩ G}.
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A few simple facts

Example
In the sports club,

36 members play tennis, 22 play tennis and squash,
28 play squash, 12 play tennis and badminton,
18 play badminton, 9 play squash and badminton,

4 play tennis, squash and badminton.

How many play at least one of these games?
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A few simple facts

Example

36 members play tennis, 22 play tennis and squash,
28 play squash, 12 play tennis and badminton,
18 play badminton, 9 play squash and badminton,

4 play tennis, squash and badminton.

Solution
Introduce probability by picking a random member out of those
N enrolled to the club. Then

T : = {that person plays tennis},
S : = {that person plays squash},
B : = {that person plays badminton}.
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A few simple facts
Example

36 members play tennis, 22 play tennis and squash,
28 play squash, 12 play tennis and badminton,
18 play badminton, 9 play squash and badminton,

4 play tennis, squash and badminton.

Solution (. . . cont’d)

P{T ∪ S ∪ B} = P{T}+ P{S}+ P{B}
− P{T ∩ S} − P{T ∩ B} − P{S ∩ B}
+ P{T ∩ S ∩ B}

=
36
N

+
28
N

+
18
N

− 22
N

− 12
N

− 9
N

+
4
N

=
43
N

.

Our answer is therefore 43 members.

40 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Combi. Sample sp. Probability Equally l.

A few simple facts

Proposition (Inclusion-exclusion principle)
For any events E1, E2, . . . , En,

P{E1 ∪ E2 ∪ · · · ∪ En} =
∑

1≤i≤n

P{Ei}

−
∑

1≤i1<i2≤n

P{Ei1 ∩ Ei2}

+
∑

1≤i1<i2<i3≤n

P{Ei1 ∩ Ei2 ∩ Ei3}

− · · ·
+ (−1)n+1P{E1 ∩ E2 ∩ · · · ∩ En}.
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A few simple facts
Proposition

If E ⊆ F, then P{F − E} = P{F} − P{E}.  

Corollary
If E ⊆ F, then P{E} ≤ P{F}.

Example
E = {rolling 1 on a die} ⊆ {rolling an odd no. on a die} = F .

1
6 = P{E} ≤ P{F} = 1

2 .

F

E

E ⊆ F

Ω

1

2
3

45

6
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Equally likely outcomes
A very special but important case is when the sample space is
finite: |Ω| = N < ∞, and each outcome of our experiment has
equal probability. Then necessarily this probability equals 1

N :

P{ω} =
1
N

∀ω ∈ Ω.

Definition
These outcomes ω ∈ Ω are also called elementary events.

Let E ⊆ Ω be an event that consists of k elementary events:
|E | = k . Then

P{E} =
|E |
|Ω| =

k
N
.

We thus see why counting will be important.
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Equally likely outcomes

Example
Rolling two dice, what is the probability that the sum of the
numbers shown is 7?

Defining E = {sum is 7} = {(1, 6), (2, 5), . . . , (6, 1)} in the
sample space Ω = {(i , j) : i , j = 1 . . . 6}, and noting that each
pair of numbers is equally likely, we have

P{E} =
|E |
|Ω| =

6
36

=
1
6
.

A wrong solution would be to say that 7 is one out of the
possible values 2, 3, . . . , 12 for the sum, and the answer is 1

11 .
These sums are not equally likely, e.g., 12 only occurs as one
case out of 36. The pairs of numbers above are equally likely.
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Equally likely outcomes

Often there are more than one ways of solving a probability
problem. Sometimes we can count in order, or without order.

Example
An urn contains 6 red and 5 blue balls. We draw three balls at
random, at once (that is, without replacement). What is the
chance of drawing one red and two blue balls?

45 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Combi. Sample sp. Probability Equally l.

Equally likely outcomes

Solution (with order)
Define the sample space Ω as ordered choices of 3 out of the
11 balls (3-permutations of them). Then each choice is equally
likely, and |Ω| = 11!

(11−3)! = 11 · 10 · 9. Now, our event E consists
of:
◮ drawing red-blue-blue, in 6 · 5 · 4 many ways, or
◮ drawing blue-red-blue, in 5 · 6 · 4 many ways, or
◮ drawing blue-blue-red, in 5 · 4 · 6 many ways.

Thus, |E | = 6 · 5 · 4 + 5 · 6 · 4 + 5 · 4 · 6 = 3 · 6 · 5 · 4, and the
answer is

P{E} =
|E |
|Ω| =

3 · 6 · 5 · 4
11 · 10 · 9

=
4

11
.
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Equally likely outcomes

Solution (without order)
Define the sample space Ω as unordered choices of 3 out of
the 11 balls (3-combinations of them). Then each choice is
equally likely, and |Ω| =

(11
3

)
= 11·10·9

6 . Now, our event E
consists of picking 1 out of the 6 red balls and 2 out of the 5
blue balls, with no respect to order. Thus,
|E | =

(6
1

)
·
(5

2

)
= 6 · 10, and the answer is

P{E} =
|E |
|Ω| =

6 · 10
11 · 10 · 9/6

=
4

11
.

Both solutions are fine. Sometimes in order is easier,
sometimes harder than without order. But never mix the two.
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Equally likely outcomes

Example
Out of n people, what is the probability that there are no
coinciding birthdays?

Solution
Assume 365 days in the year. The answer is of course zero, if
n > 365 (this is called the pigeonhole principle).
Otherwise, our sample space Ω is a possible birthday for all n
people, |Ω| = 365n. The event E of no coinciding birthdays can
occur in

|E | = 365 · 364 · · · (365 − n + 1) =
365!

(365 − n)!

many ways  .
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Equally likely outcomes

Solution (. . . cont’d)
The answer is

P{E} =
|E |
|Ω| =

365!
(365 − n)! · 365n .

This is
88% for n = 10,

59% for n = 20,

29% for n = 30,

11% for n = 40,

3% for n = 50,

0.00003% for n = 100.
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Equally likely outcomes

Example
Flipping two fair coins, what is the probability of getting at least
one Head?

Solution (straightforward)
As we have seen, the sample space is
Ω = {(H, H), (H, T ), (T , H), (T , T )} of equally likely
outcomes (coin is fair), and we have at least one Head in 3 out
of the 4 cases so the answer is 3

4 .
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Equally likely outcomes

Solution (using the complement)

The complement of our event G in question is {no Heads},
which happens with probability 1

4 . Therefore
P{G} = 1 − P{Gc} = 1 − 1

4 = 3
4 .

Solution (using inclusion-exclusion)
Define E as the event that the first coin comes up Head, F that
the second coin comes up Head. We are looking for the union
of these events:

P{E ∪ F} = P{E}+ P{F} − P{E ∩ F} =
2
4
+

2
4
− 1

4
=

3
4
.
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2. Conditional probability
Conditional probability
Bayes’ Theorem
Independence

Objectives:
◮ To understand what conditioning means, reduce the

sample space
◮ To use the conditional probability, Law of Total Probability

and Bayes’ Theorem
◮ To understand and use independence and conditional

independence

52 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Cond. Bayes Independence

Conditional probability

Often one is given partial information on the outcome of an
experiment. This changes our view of likelihoods for various
outcomes. We shall build a mathematical model to handle this
issue.

Example
We roll two dice. What is the probability that the sum of the
numbers is 8? And if we know that the first die shows a 5?

The first question is by now easy: 5 cases out of 36, so the
answer is 5

36 . Now, given the fact that the first die shows 5, we
get a sum of 8 if and only if the second die shows 3. This has
probability 1

6 , being the answer to the second question.

We see that partial information can change the probability of
the outcomes of our experiment.

53 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Cond. Bayes Independence

1. The reduced sample space

What happened was that we have reduced our world to the
event F = {first die shows 5} = {(5, 1), (5, 2), . . . , (5, 6)} that
was given to us.

Definition
The event that is given to us is also called a
reduced sample space. We can simply work in this set to figure
out the conditional probabilities given this event.

The event F has 6 equally likely outcomes. Only one of them,
(5, 3), provides a sum of 8. Therefore, the conditional
probability is 1

6 .
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2. The formal definition
Let us also name the event

E = {the sum is 8} = {(2, 6), (3, 5), . . . , (6, 2)}.

The above question can be reformulated as: “In what
proportion of cases in F will also E occur?” or, equivalently,
“How does the probability of both E and F compare to the
probability of F only?”

Definition
Let F be an event with P{F} > 0 (we’ll assume this from now
on). Then the conditional probability of E , given F is defined as

P{E |F} : =
P{E ∩ F}

P{F} .
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2. The formal definition

To answer the question we began with, with the formal
definition we can now write E ∩ F = {(5, 3)} (the sum is 8 and
the first die shows 5), and

P{E |F} : =
P{E ∩ F}

P{F} =
1

36
1
6

=
1
6
.
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3. It’s well-behaved

Proposition
The conditional probability P{· |F} is a proper probability (it
satisfies the axioms):

1. the conditional probability of any event is non-negative:
P{E |F} ≥ 0;

2. the conditional probability of the sample space is one:
P{Ω |F} = 1;

3. for any finitely or countably infinitely many mutually
exclusive events E1, E2, . . .,

P
{⋃

i

Ei |F
}
=

∑

i

P{Ei |F}.
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3. It’s well-behaved

Corollary
All statements remain valid for P{· |F}. E.g.
◮ P{Ec |F} = 1 − P{E |F}.
◮ P{∅ |F} = 0.
◮ P{E |F} = 1 − P{Ec |F} ≤ 1.
◮ P{E ∪ G |F} = P{E |F}+ P{G |F} − P{E ∩ G |F}.
◮ If E ⊆ G, then P{G − E |F} = P{G |F} − P{E |F}.
◮ If E ⊆ G, then P{E |F} ≤ P{G |F}.

Remark
BUT: Don’t change the condition! E.g., P{E |F} and P{E |F c}
have nothing to do with each other.
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4. Multiplication rule
Proposition (Multiplication rule)
For E1, E2, . . . , En events,

P{E1 ∩ · · · ∩ En} = P{E1} · P{E2 |E1} · P{E3 |E1 ∩ E2}
· · ·P{En |E1 ∩ · · · ∩ En−1}.

Proof.

Just write out the conditionals.  

Example
An urn contains 6 red and 5 blue balls. We draw three balls at
random, at once (that is, without replacement). What is the
chance of drawing one red and two blue balls?
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4. Multiplication rule

Solution (with order)
Define R1, R2, R3, B1, B2, B3 for the colors of the respective
draws. We need

P{R1 ∩ B2 ∩ B3}+ P{B1 ∩ R2 ∩ B3}+ P{B1 ∩ B2 ∩ R3}
= P{R1} · P{B2 |R1} · P{B3 |R1 ∩ B2}
+ P{B1} · P{R2 |B1} · P{B3 |B1 ∩ R2}
+ P{B1} · P{B2 |B1} · P{R3 |B1 ∩ B2}

=
6

11
· 5

10
· 4

9
+

5
11

· 6
10

· 4
9
+

5
11

· 4
10

· 6
9
=

4
11

.
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Bayes’ Theorem

The aim here is to say something about P{F |E}, once we
know P{E |F} (and other things. . . ). This will be very useful,
and serve as a fundamental tool in probability and statistics.
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1. The Law of Total Probability

Theorem (Law of Total Probability; aka. Partition Thm.)
For any events E and F,

P{E} = P{E |F} · P{F}+ P{E |F c} · P{F c}.

(As usual, we assume that the conditionals exist.)

Proof.
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1. The Law of Total Probability

Example
According to an insurance company,
◮ 30% of population are accident-prone, they will have an

accident in any given year with 0.4 chance;
◮ the remaining 70% of population will have an accident in

any given year with 0.2 chance.

Accepting this model, what is the probability that a new
customer will have an accident in 2015?
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1. The Law of Total Probability

Solution
Define the following events:
◮ F : = {new customer is accident-prone};
◮ A2015 : = {new customer has accident in 2015}.

Given are: P{F} = 0.3, P{A2015 |F} = 0.4, P{A2015 |F c} = 0.2.
Therefore,

P{A2015} = P{A2015 |F} · P{F}+ P{A2015 |F c} · P{F c}
= 0.4 · 0.3 + 0.2 · 0.7 = 0.26.

Notice a weighted average of 0.4 and 0.2 with weights 30% and
70%.
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1. The Law of Total Probability

Definition
Finitely or countably infinitely many events F1, F2, . . . form a
complete system of events, or a partition of Ω, if Fi ∩ Fj = ∅ and⋃

i Fi = Ω.

Notice that exactly one of the Fi ’s occurs.

Theorem (Law of Total Probability; aka. Partition Thm.)
For any event E and a complete system F1, F2, . . . , we have

P{E} =
∑

i

P{E |Fi} · P{Fi}.

For any event F , the pair F1 : = F and F2 : = F c form a
complete system, and we are back to the previous version of
the Theorem.
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2. Bayes’ Theorem

Theorem (Bayes’ Theorem)
For any events E, F ,

P{F |E} =
P{E |F} · P{F}

P{E |F} · P{F}+ P{E |F c} · P{F c} .

If {Fi}i is a complete system of events, then

P{Fi |E} =
P{E |Fi} · P{Fi}∑
j P{E |Fj} · P{Fj}

.

Proof.
Combine the definition of the conditional with the Law of Total

Probability.  

66 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Cond. Bayes Independence

2. Bayes’ Theorem

Let us go back to the insurance company. Imagine it’s the 1st
January 2016.

Example
We learn that the new customer did have an accident in 2015.
Now what is the chance that (s)he is accident-prone?

According to Bayes’ Theorem,

P{F |A2015} =
P{A2015 |F} · P{F}

P{A2015 |F} · P{F}+ P{A2015 |F c} · P{F c}

=
0.4 · 0.3

0.4 · 0.3 + 0.2 · 0.7
=

6
13

≃ 0.46.

C.f. the unconditioned probability P{F} = 0.3.
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Independence

In some special cases partial information on an experiment
does not change the likelihood of an event. In this case we talk
about independence.

Definition
Events E and F are independent, if P{E |F} = P{E}.
Notice that, except for some degenerate cases, this is
equivalent to P{E ∩F} = P{E} ·P{F}, and to P{F |E} = P{F}.

Don’t mix independence with mutually exclusive events.

Independence is usually trivial, or rather tricky.
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Independence
Proposition
Let E and F be independent events. Then E and F c are also
independent.

Proof.

 

Example
Rolling two dice, Let E be the event that the sum of the
numbers is 6, F the event that the first die shows 3. These
events are not independent:

1
36

= P{E ∩ F} 6= P{E} · P{F} =
5

36
· 1

6
.
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Independence

Example
Rolling two dice, Let E be the event that the sum of the
numbers is 7, F the event that the first die shows 3. These
events are independent (!):

1
36

= P{E ∩ F} = P{E} · P{F} =
6

36
· 1

6
=

1
36

.

Equivalently,
1
6
= P{E |F} = P{E}.

Or,
1
6
= P{F |E} = P{F}.
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Independence

Example
Rolling two dice, Let
◮ E be the event that the sum of the numbers is 7,
◮ F the event that the first die shows 3,
◮ G the event that the second die shows 4.

1
36

= P{E ∩ F} = P{E} · P{F} =
6

36
· 1

6
=

1
36

.

1
36

= P{E ∩ G} = P{E} · P{G} =
6

36
· 1

6
=

1
36

.

1
36

= P{F ∩ G} = P{F} · P{G} =
1
6
· 1

6
=

1
36

.

E , F , G are pairwise independent.

But we have a bad feeling about this. . .
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Independence

Example
◮ E is the event that the sum of the numbers is 7,
◮ F the event that the first die shows 3,
◮ G the event that the second die shows 4.

Are these events independent?

1 = P{E |F ∩ G} 6= P{E} =
1
6
!

Or, equivalently,

1
36

= P{E ∩ F ∩ G} 6= P{E} · P{F ∩ G} =
1
6
· 1

36
!

Recall P{F ∩ G} = P{F} · P{G} from the previous page.
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Independence

Definition
Three events E , F , G are (mutually) independent, if

P{E ∩ F} = P{E} · P{F},
P{E ∩ G} = P{E} · P{G},
P{F ∩ G} = P{F} · P{G},

P{E ∩ F ∩ G} = P{E} · P{F} · P{G}.

And, for more events the definition is that any (finite) collection

of events have this factorisation property.  
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Independence
Below, 0 < p < 1 is a probability parameter.

Example
n independent experiments are performed, each of which
succeeds with probability p. What is the probability that every
single experiment succeeds?

Easy: pn.

Example (. . . )
. . . What is the probability that at least one experiment
succeeds?

Looking at the complement, 1 − P{each fails} = 1 − (1 − p)n.
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Independence
Below, 0 < p < 1 is a probability parameter.

Example
n independent experiments are performed, each of which
succeeds with probability p. What is the probability that every
single experiment succeeds?

Easy: pn. −→
n→∞

0

Example (Murphy’s Law)
. . . What is the probability that at least one experiment
succeeds?

Looking at the complement, 1 − P{each fails} = 1 − (1 − p)n.
−→
n→∞

1
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Independence

Example
n independent experiments are performed, each of which
succeeds with probability p. What is the probability that exactly
k of them succeed?

(
n
k

)
· pk · (1 − p)n−k .
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Conditional independence

Back to the insurance company and to the 1st January 2016
again.

Example
We learn that the new customer did have an accident in 2015.
Now what is the chance that (s)he will have one in 2016?

The question is P{A2016 |A2015}. We again consider F (being
accident-prone):
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Conditional independence

Example (. . . cont’d)

P{A2016 |A2015} =
P{A2016 ∩ A2015}

P{A2015}

=
P{A2016 ∩ A2015 ∩ F}

P{A2015}
+

P{A2016 ∩ A2015 ∩ F c}
P{A2015}

=
P{A2016 ∩ A2015 ∩ F}

P{A2015 ∩ F} · P{A2015 ∩ F}
P{A2015}

+
P{A2016 ∩ A2015 ∩ F c}

P{A2015 ∩ F c} · P{A2015 ∩ F c}
P{A2015}

= P{A2016 |A2015 ∩ F} · P{F |A2015}
+ P{A2016 |A2015 ∩ F c} · P{F c |A2015}.
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Conditional independence

Example (. . . cont’d)

P{A2016 |A2015} =
P{A2016 ∩ A2015}

P{A2015}

=
P{A2016 ∩ A2015 ∩ F}

P{A2015}
+

P{A2016 ∩ A2015 ∩ F c}
P{A2015}

=
P{A2016 ∩ A2015 ∩ F}

P{A2015 ∩ F} · P{A2015 ∩ F}
P{A2015}

+
P{A2016 ∩ A2015 ∩ F c}

P{A2015 ∩ F c} · P{A2015 ∩ F c}
P{A2015}

= P{A2016 |A2015 ∩ F} · P{F |A2015}
+ P{A2016 |A2015 ∩ F c} · P{F c |A2015}.

Conditional Law of Total Probability, very useful.
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Conditional independence

Example (. . . cont’d)
Now, we have conditional independence:

P{A2016 |A2015 ∩ F} = P{A2016 |F} = 0.4 and

P{A2016 |A2015 ∩ F c} = P{A2016 |F c} = 0.2.

Thus,

P{A2016 |A2015}
= P{A2016 |F} · P{F |A2015}+ P{A2016 |F c} · P{F c |A2015}

= 0.4 · 6
13

+ 0.2 · 7
13

≃ 0.29.

C.f. P{A2016} = P{A2015} = 0.26 from before.
A2015 and A2016 are dependent!

78 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Mass fct E, var Binom Poi Geom

3. Discrete random variables
Mass function
Expectation, variance
Bernoulli, Binomial
Poisson
Geometric

Objectives:
◮ To build a mathematical model for discrete random

variables
◮ To define and get familiar with the probability mass

function, expectation and variance of such variables
◮ To get experience in working with some of the basic

distributions (Bernoulli, Binomial, Poisson, Geometric)
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Random variables

The best way of thinking about random variables is just to
consider them as random numbers.

But random means that there must be some kind of experiment
behind these numbers. They actually fit well in our framework:

Definition
A random variable is a function from the sample space Ω to the
real numbers R.

The usual notation for random variables is X , Y , Z , etc., we
often don’t mark them as functions: X (ω), Y (ω), Z (ω), etc.
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Random variables

Example
Flipping three coins, let X count the number of Heads obtained.
Then, as a function on Ω,

X (T , T , T ) = 0;

X (T , T , H) = X (T , H, T ) = X (H, T , T ) = 1;

X (T , H, H) = X (H, T , H) = X (H, H, T ) = 2;

X (H, H, H) = 3.

Instead, we’ll just say that X can take on values 0, 1, 2, 3 with
respective probabilities 1

8 , 3
8 , 3

8 , 1
8 .

How did we get 3
8? Well,

P{X = 1} = P{(T , T , H), (T , H, T ), (H, T , T )} = 3
8 .
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Discrete random variables

Definition
A random variable X that can take on finitely or countably
infinitely many possible values is called discrete.

Example
The number of Heads in three coinflips is discrete.

Example
The number of conflips needed to first see a Head is discrete: it
can be 1, 2, 3, . . . .

Example
The lifetime of a device is not discrete, it can be anything in the
real interval [0, ∞).
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Mass function
The distribution of a random variable will be the object of
central importance to us.

Definition
Let X be a discrete random variable with possible values
x1, x2, . . . . The probability mass function (pmf), or distribution of
a random variable tells us the probabilities of these possible
values:

pX (xi) = P{X = xi},
for all possible xi ’s.

Often the possible values are just integers, xi = i , and we can
just write pX (i) for the mass function.
We also omit the subscript X if it’s clear which random variable
we are considering and simply put p(i).
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Mass function
Proposition
For any discrete random variable X,

p(xi) ≥ 0, and
∑

i

p(xi) = 1.

Proof.

 

Remark
Vice versa: any function p which is only non-zero in countably
many xi values, and which has the above properties, is a
probability mass function. There is a sample space and a
random variable that realises this mass function.
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Mass function

Example
We have seen X , the number of Heads in three coinflips. Its
possible values are X = 0, 1, 2, 3, and its mass function is
given by

p(0) = p(3) =
1
8
; p(1) = p(2) =

3
8
.

Indeed,
3∑

i=0

p(i) =
1
8
+

3
8
+

3
8
+

1
8
= 1.

85 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Mass fct E, var Binom Poi Geom

Mass function

Example
Fix a positive parameter λ > 0, and define

p(i) = c · λ
i

i!
, i = 0, 1, 2, . . . .

How should we choose c to make this into a mass function? In
that case, what are P{X = 0} and P{X > 2} for the random
variable X having this mass function?
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Mass function

Solution
First, p(i) ≥ 0 iff c ≥ 0. Second, we need

∞∑

i=0

p(i) = c ·
∞∑

i=0

λi

i!
= c · eλ = 1,

from which c = e−λ. To answer the probabilities,

P{X = 0} = p(0) = e−λλ
0

0!
= e−λ;
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Mass function

Solution (. . . cont’d)

P{X > 2} = 1 − P{X ≤ 2}
= 1 − P{X = 0} − P{X = 1} − P{X = 2}

= 1 − e−λ · λ
0

0!
− e−λ · λ

1

1!
− e−λ · λ

2

2!

= 1 − e−λ − e−λ · λ− e−λ · λ
2

2
.
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Expectation, variance

Once we have a random variable, we would like to quantify its
typical behaviour in some sense. Two of the most often used
quantities for this are the expectation and the variance.
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1. Expectation

Definition
The expectation, or mean, or expected value of a discrete
random variable X is defined as

EX : =
∑

i

xi · p(xi),

provided that this sum exists.

Remark
The expectation is nothing else than a weighted average of the
possible values xi with weights p(xi). A center of mass, in other
words.

p(x1) p(x2) p(x3) p(x4)

x1 x2 x3 x4E(X)
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1. Expectation

Remark

Why is this definition natural?  

Example (an important one. . . )
Let X be an indicator variable:

X =

{
1, if event E occurs,

0, if event Ec occurs.

Its mass function is p(1) = P{E} and p(0) = 1 − P{E}. Its
expectation is

EX = 0 · p(0) + 1 · p(1) = P{E}.
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1. Expectation

Example (fair die)
Let X be the number shown after rolling a fair die. Then
X = 1, 2, . . . , 6, each with probability 1

6 . The expectation is

EX =
6∑

i=1

i · p(i) =
6∑

i=1

i · 1
6
=

1 + 6
2

· 6 · 1
6
=

7
2
.

The expected value is not necessarily a possible value. Have
you ever seen a die showing 3.5. . . ?
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2. A few properties of expectation

Proposition (expectation of a function of a r.v.)
Let X be a discrete random variable, and g : R → R function.
Then

Eg(X ) =
∑

i

g(xi) · p(xi),

if exists. . .

This formula is rather natural.

Proof.
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2. A few properties of expectation

Corollary (linearity of expectations, first version)
Let X be a discrete random variable, a and b fixed real
numbers. Then

E(aX + b) = a · EX + b.

Proof.
According to the above, (with g(x) = ax + b,)

E(aX + b) =
∑

i

(axi + b) · p(xi) = a ·
∑

i

xip(xi) + b ·
∑

i

p(xi)

= a · EX + b.
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2. A few properties of expectation

Corollary (linearity of expectations, first version)
Let X be a discrete random variable, a and b fixed real
numbers. Then
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Proof.
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2. A few properties of expectation
Definition (moments)

Let n be a positive integer. The nth moment of a random
variable X is defined as

EX n.

The nth absolute moment of X is

E|X |n.

Remark
Our notation in this definition and in the future will be

EX n : = E(X n) 6= (EX )n !!
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3. Variance

Example
Define X ≡ 0,

Y =





1, wp.
1
2
,

−1, wp.
1
2
,

Z =





2, wp.
1
5
,

−1
2

, wp.
4
5
,

U =





10, wp.
1
2
,

−10, wp.
1
2
,

Notice EX = EY = EZ = EU = 0, the expectation does not
distinguish between these rv.’s. Yet they are clearly different.

Definition (variance, standard deviation)
The variance and the standard deviation of a random variable
are defined as VarX : = E(X − EX )2 and SD X : =

√
VarX .

Why this definition?  
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3. Variance

Example (. . . cont’d)

VarX = E(X − 0)2 = 02 = 0,

SD X =
√

0 = 0.

VarY = E(Y − 0)2 = 12 · 1
2
+ (−1)2 · 1

2
= 1,

SD Y =
√

1 = 1.

VarZ = E(Z − 0)2 = 22 · 1
5
+
(
−1

2

)2
· 4

5
= 1,

SD Z =
√

1 = 1.

VarU = E(U − 0)2 = 102 · 1
2
+ (−10)2 · 1

2
= 100,

SD U =
√

100 = 10.
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4. A few properties of the variance

These numbers do distinguish between most of our variables
though finer information would be needed to make a difference
between Y and Z .
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4. A few properties of the variance

Proposition (an equivalent form of the variance)

For any X, VarX = EX 2 − (EX )2.

Proof.

 

Corollary

For any X, EX 2 ≥ (EX )2, with equality only if X = const. a.s.

 

New notation a.s. (almost surely) means with probability one.

99 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Mass fct E, var Binom Poi Geom

4. A few properties of the variance

Example
The variance of the number X shown after rolling a fair die is

VarX = EX 2 − (EX )2 = (12 + 22 + · · ·+ 62) · 1
6
−
(7

2

)2
=

35
12

and its standard deviation is
√

35/12 ≃ 1.71.

The two most important numbers we can say about a fair die
are the average of 3.5 and typical deviations of 1.71 around this
average.
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4. A few properties of the variance

Example (an important one)
The variance of the indicator variable X of the event E is

VarX = EX 2−(EX )2 = 12 ·P{E}−(P{E})2 = P{E}·(1−P{E})

and the standard deviation is SD X =
√

P{E} · (1 − P{E}).
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4. A few properties of the variance

Proposition (nonlinearity of the variance)
Let X be a random variable, a and b fixed real numbers. Then

Var(aX + b) = a2 · VarX .

Proof.

 

Notice the square on a2 and also that, in particular,
Var(X + b) = VarX = Var(−X ): the variance is invariant to
shifting the random variable by a constant b or to reflecting it.
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Bernoulli, Binomial

In this part we’ll get to know the Bernoulli and the Binomial
distributions.

The setting will be that a fixed number of independent trials will
be made, each succeeding with probability p. We will be
counting the number of successes.
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1. Definition

Definition
Suppose that n independent trials are performed, each
succeeding with probability p. Let X count the number of
successes within the n trials. Then X has the
Binomial distribution with parameters n and p or, in short,
X ∼ Binom(n, p).

The special case of n = 1 is called the
Bernoulli distribution with parameter p.

Notice that the Bernoulli distribution is just another name for the
indicator variable from before.
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2. Mass function

Proposition
Let X ∼ Binom(n, p). Then X = 0, 1, . . . , n, and its mass
function is

p(i) = P{X = i} =

(
n
i

)
pi(1 − p)n−i , i = 0, 1, . . . , n.

In particular, the Bernoulli(p) variable can take on values 0 or 1,
with respective probabilities

p(0) = 1 − p, p(1) = p.
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2. Mass function

Remark
That the above is indeed a mass function we verify via the
Binomial Theorem (p(i) ≥ 0 is clear):

n∑

i=0

p(i) =
n∑

i=0

(
n
i

)
pi(1 − p)n−i = [p + (1 − p)]n = 1.
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2. Mass function

Example
Screws are sold in packages of 10. Due to a manufacturing
error, each screw today is independently defective with
probability 0.1. If there is money-back guarantee that at most
one screw is defective in a package, what percentage of
packages is returned?

Define X to be the number of defective screws in a package.
Then X ∼ Binom(10, 0.1), and the answer is the chance that a
given package has 2 or more faulty screws:

P{X ≥ 2} = 1 − P{X = 0} − P{X = 1}

= 1 −
(

10
0

)
0.100.910 −

(
10
1

)
0.110.99 ≃ 0.2639.
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3. Expectation, variance

Proposition
Let X ∼ Binom(n, p). Then

EX = np, and VarX = np(1 − p).

Proof.
We first need to calculate

EX =
∑

i

i · p(i) =
n∑

i=0

i ·
(

n
i

)
pi(1 − p)n−i .

To handle this, here is a cute trick: i = d
dt t

i
∣∣
t=1.  
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3. Expectation, variance

Proof.

EX =
n∑

i=0

(
n
i

)
i · pi(1 − p)n−i

=
n∑

i=0

(
n
i

)
d
dt

t i |t=1 · pi(1 − p)n−i

=
d
dt

( n∑

i=0

(
n
i

)
(tp)i(1 − p)n−i

)∣∣∣
t=1

=
d
dt
(tp + 1 − p)n|t=1 = n(tp + 1 − p)n−1 · p|t=1 = np.
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3. Expectation, variance

Proof.
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Poisson

The Poisson distribution is of central importance in Probability.
We won’t see immediately why, we’ll just start with defining its
distribution. Later we’ll see how it comes from the Binomial.
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1. Mass function

Definition
Fix a positive real number λ. The random variable X is
Poisson distributed with parameter λ, in short X ∼ Poi(λ), if it is
non-negative integer valued, and its mass function is

p(i) = P{X = i} = e−λ · λ
i

i!
, i = 0, 1, 2, . . .

We have already seen in an example that this is indeed a mass
function.

Ok, nice, but why this distribution?
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2. Poisson approximation of Binomial

Proposition
Fix λ > 0, and suppose that Yn ∼ Binom(n, p) with p = p(n) in
such a way that n · p → λ. Then the distribution of Yn converges
to Poisson(λ):

∀i ≥ 0 P{Yn = i} −→
n→∞

e−λλ
i

i!
.

That is, take Y ∼ Binom(n, p) with large n, small p, such that
np ≃ λ. Then Y is approximately Poisson(λ) distributed.
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2. Poisson approximation of Binomial

Proof.

P{Yn = i} =

(
n
i

)
· pi(1 − p)n−i

=
1
i!
· [np] · [(n − 1)p] · · · [(n − i + 1)p] · (1 − p)n

(1 − p)i .

Now, np → λ, (n − 1)p → λ, . . . (n − i + 1)p → λ .

(1 − p)n =
(

1 − 1
1/p

)n
−→
n→∞

e−λ.  

(1 − p)i → 1. Therefore, P{Yn = i} → 1
i!λ

ie−λ.
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3. Expectation, variance

Proposition
For X ∼ Poi(λ), EX = VarX = λ.

Recall np and np(1 − p) for the Binomial. . .

Proof.

EX =
∞∑

i=0

ip(i) =
∞∑

i=1

i · e−λλ
i

i!

= λ
∞∑

i=1

e−λ λi−1

(i − 1)!
= λ

∞∑

j=0

e−λλ
j

j!
= λ.
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4. Examples

Example
Because of the approximation of Binomial, the
◮ number of typos on a page of a book;
◮ number of citizens over 100 years of age in a city;
◮ number of incoming calls per hour in a customer centre;
◮ number of customers in a post office today

are each well approximated by the Poisson distribution.

Many independent small probability events, summing up to “a

few” in expectation.  
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4. Examples

Example
A book on average has 1/2 typos per page. What is the
probability that the next page has at least three of them?

The number X of typos on a page follows a Poisson(λ)
distribution, where λ can be determined from 1

2 = EX = λ. To
answer the question,

P{X ≥ 3}
= 1 − P{X ≤ 2}
= 1 − P{X = 0} − P{X = 1} − P{X = 2}

= 1 − (1/2)0

0!
· e−1/2 − (1/2)1

1!
· e−1/2 − (1/2)2

2!
· e−1/2

≃ 0.014.
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4. Examples
Example
Screws are sold in packages of 10. Due to a manufacturing
error, each screw today is independently defective with
probability 0.1. If there is money-back guarantee that at most
one screw is defective in a package, what percentage of
packages is returned?

Define X as before; X ∼ Binom(10, 0.1). However, it can
already well be approximated by a Poi(1) distribution
(λ = 1 = 10 · 0.1 = np). Thus,

P{X ≥ 2} = 1 − P{X = 0} − P{X = 1}

≃ 1 − e−1 10

0!
− e−1 11

1!
≃ 0.2642.

Compare this with the exact value 0.2639 from the Binomial.
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Geometric

In this setting we again perform independent trials. However,
the question we ask is now different: we’ll be waiting for the first
success.
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1. Mass function
Definition
Suppose that independent trials, each succeeding with
probability p, are repeated until the first success. The total
number X of trials made has the Geometric(p) distribution (in
short, X ∼ Geom(p)).

Proposition
X can take on positive integers, with probabilities
p(i) = (1 − p)i−1 · p, i = 1, 2, . . ..

That this is a mass function, we verify by p(i) ≥ 0 and

∞∑

i=1

p(i) =
∞∑

i=1

(1 − p)i−1 · p =
p

1 − (1 − p)
= 1.
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1. Mass function

Remark
For a Geometric(p) random variable and any k ≥ 1 we have
P{X ≥ k} = (1 − p)k−1 (we have at least k − 1 failures).

Corollary
The Geometric random variable is (discrete) memoryless: for
every k ≥ 1, n ≥ 0

P{X ≥ n + k |X > n} = P{X ≥ k}.
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2. Expectation, variance

Proposition
For a Geometric(p) random variable X,

EX =
1
p
, VarX =

1 − p
p2 .
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2. Expectation, variance

Proof.

EX =

∞∑

i=1

i · (1 − p)i−1p =

∞∑

i=0

i · (1 − p)i−1p

=
∞∑

i=0

d
dt

t i |t=1 · (1 − p)i−1p =
d
dt

( ∞∑

i=0

t i · (1 − p)i−1p
)∣∣∣

t=1

=
p

1 − p
· d

dt
1

1 − (1 − p)t

∣∣∣
t=1

=
p

1 − p
· 1 − p
(1 − (1 − p))2 =

1
p
.
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2. Expectation, variance
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3. Example

Example

To first see 3 appearing on a fair die, we wait X ∼ Geom(1
6)

many rolls. Our average waiting time is EX = 1
1/6 = 6 rolls, and

the standard deviation is

SD X =
√

VarX =

√√√√1 − 1
6(1

6

)2 =
√

30 ≃ 5.48.
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3. Example

Example (. . . cont’d)

The chance that 3 first comes on the 7th roll is

p(7) = P{X = 7} =
(

1 − 1
6

)6
· 1

6
≃ 0.056,

while the chance that 3 first comes on the 7th or later rolls is

P{X ≥ 7} =
(

1 − 1
6

)6
≃ 0.335.
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4. Continuous random variables
Distribution, density
Uniform
Exponential
Normal
Transformations

Objectives:
◮ To build a mathematical model of continuous random

variables
◮ To define and get familiar with the cumulative distribution

function, probability density function, expectation and
variance of such variables

◮ To get experience in working with some of the basic
distributions (Uniform, Exponential, Normal)

◮ To find the distribution of a function of a random variable
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Non-discrete random variables

Spin a pencil on the table. Let X be the angle it points to after it
has stopped.
◮ What is the probability that X = 0o?
◮ What is the probability that X = 90o?
◮ What is the probability that X = 258.4562o?

These are all zero. P{X = x} = 0 for any x ∈ [0, 360o). This
random variable has no mass function. It is not a discrete
random variable, it can take on uncountably many values.

We need a new framework to handle these kind of phenomena.
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Distribution function

Definition
The cumulative distribution function (cdf) of a random variable
X is given by

F : R → [0, 1], x 7→ F (x) = P{X ≤ x}.

Notice that this function is well defined for any random variable.

Remark
The distribution function contains all relevant information about
the distribution of our random variable. E.g., for any fixed a < b,

P{a < X ≤ b} = P{X ≤ b} − P{X ≤ a} = F (b)− F (a).
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Distribution function

Example
Flip a coin three times, and let X be the number of Heads
obtained. Its distribution function is given by

0 1 2 3

1/8

2/8

3/8

4/8

5/8

6/8

7/8

8/8

0

F (x)

x
◦
• ◦

• ◦

• ◦
•

p(0) = 1/8

p(1) = 3/8

p(2) = 3/8

p(3) = 1/8
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Distribution function

Definition
A random variable with piecewise constant distribution function
is called discrete. Its mass function values equal to the jump
sizes in the distribution function.

And this is equivalent to our earlier definition (taking on
countably many possible values).
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Distribution function

Proposition
A cumulative distribution function F
◮ is non-decreasing;
◮ has limit limx→−∞ F (x) = 0 on the left;
◮ has limit limx→∞ F (x) = 1 on the right;
◮ is continuous from the right.

 

Vice versa: any function F with the above properties is a
cumulative distribution function. There is a sample space and a
random variable on it that realises this distribution function.
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Distribution function

Example
Let F be the function given by

F (x) =





0, x < 0,

x/2, 0 ≤ x < 1,

2/3, 1 ≤ x < 2,

11/12, 2 ≤ x < 3,

1, 3 ≤ x .
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Distribution function
Example (. . . cont’d)

0 1 2 3

0

1/2

2/3

11/12
1

F (x)

x

◦
• ◦

• ◦•

P{X ≤ 3} = F (3) = 1,

P{X < 3} = lim
xր3

F (x) =
11
12

,

P{X = 3} = F (3)− lim
xր3

F (x) =
1

12
.
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Distribution function

Example (. . . cont’d)

0 1 2 3

0

1/4

1/2

1/2

2/3

11/12
1

F (x)

x

◦
• ◦

• ◦•

P
{

X ≥ 1
2

}
= P

{
X >

1
2

}
=

3
4
.
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Distribution function

Example (. . . cont’d)

0 1 2 3

0

1/2

2/3

11/12
1

F (x)

x

◦
• ◦

• ◦•

P{2 < X ≤ 4} = F (4)− F (2) = 1 − 11
12

=
1

12
,

P{2 ≤ X < 4} = P{2 < X ≤ 4} − P{X = 4}+ P{X = 2}

=
1

12
− 0 +

(11
12

− 2
3

)
=

1
3
.
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1. Density function

Definition
Suppose that a random variable has its distribution function in
the form of

F (a) =
∫ a

−∞
f (x) dx , (∀a ∈ R)

with a function f ≥ 0. Then the distribution is called
(absolutely) continuous, and f is the
probability density function (pdf).

We’ll assume that X is continuous for the rest of this chapter.
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1. Density function

Proposition
A probability density function f
◮ is non-negative;
◮ has total integral

∫∞
−∞ f (x) dx = 1.

 

Vice versa: any function f with the above properties is a
probability density function. There is a sample space and a
continuous random variable on it that realises this density.
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2. Properties of the density function

Proposition
For any* subset B ⊆ R,

P{X ∈ B} =

∫

B
f (x) dx .

 

Corollary
Indeed, for a continuous random variable X,

P{X = a} =

∫

{a}

f (x) dx = 0 (∀a ∈ R).
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2. Properties of the density function

Corollary
For a small ε,

P{X ∈ (a, a + ε]} =

∫ a+ε

a
f (x) dx ≃ f (a) · ε.

There is no particular value that X can take on with positive
chance. We can only talk about intervals, and the density tells
us the likelihood that X is around a point a.
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2. Properties of the density function

Corollary
To get to the density from a(n absolutely continuous!)
distribution function,

f (a) =
dF (a)

da
(a.e. a ∈ R).

New notation a.e. (almost every): for all but a zero-measure set
of numbers, so it’s no problem for any integrals.
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3. Expectation, variance

The way of defining the expectation will be no surprise for
anyone (c.f. the discrete case):

Definition
The expected value of a continuous random variable X is
defined by

EX =

∫ ∞

−∞
x · f (x) dx ,

if the integral exists.
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3. Expectation, variance
In a way similar to the discrete case,

Proposition
Let X be a continuous random variable, and g an R → R

function. Then

Eg(X ) =

∫ ∞

−∞
g(x) · f (x) dx

if exists.

From here we can define moments, absolute moments

EX n =

∫ ∞

−∞
xn · f (x) dx , E|X |n =

∫ ∞

−∞
|x |n · f (x) dx ,

variance VarX = E(X − EX )2 = EX 2 − (EX )2 and standard
deviation SD X =

√
VarX as in the discrete case. These enjoy

the same properties as before.
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Uniform

We are given real numbers α < β, and wish to define a random
variable X that’s equally likely to fall anywhere in this interval.
Thinking about the definitions, we can do that by assuming a
constant density on this interval.
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1. Density, distribution function

Definition
Fix α < β reals. We say that X has the
uniform distribution over the interval (α, β), in short,
X ∼ U(α, β), if its density is given by

f (x) =





1
β − α

, if x ∈ (α, β),

0, otherwise.

Notice that this is exactly the value of the constant that makes
this a density.
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1. Density, distribution function
Integrating this density,

F (x) =





0, if x ≤ α,

x − α

β − α
, if α ≤ x ≤ β,

1, if β ≤ x .

x

x
F (x)

f (x)

α β

α β

0

0

1
β−α

1

144 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Distr. Uniform Exponential Normal Transf.

1. Density, distribution function

Remark
If X ∼ U(α, β), and α < a < b < β, then

P{a < X ≤ b} =

∫ b

a
f (x) dx =

b − a
β − α

.

Probabilities are computed by proportions of lengths.
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2. Expectation, variance

Proposition
For X ∼ U(α, β),

EX =
α+ β

2
, VarX =

(β − α)2

12
.

Proof.

EX =

∫ ∞

−∞
xf (x) dx =

∫ β

α

x
β − α

dx =
β2

2 − α2

2

β − α
=

α+ β

2
.
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Exponential

The Exponential is a very special distribution because of its
memoryless property. It is often considered as a waiting time,
and is widely used in the theory of stochastic processes.
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1. Density, distribution function
Definition
Fix a positive parameter λ. X is said to have the
Exponential distribution with parameter λ or, in short,
X ∼ Exp(λ), if its density is given by

f (x) =

{
0, if x ≤ 0,

λe−λx , if x ≥ 0.

Remark
Its distribution function can easily be integrated from the
density:

F (x) =

{
0, if x ≤ 0,

1 − e−λx , if x ≥ 0.
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1. Density, distribution function

x

x
f (x)

F (x)

0

0

1

F (x) = 1 − e−λx ; f (x) = λe−λx .
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2. Expectation, variance

Proposition
For X ∼ Exp(λ),

EX =
1
λ
; VarX =

1
λ2 .

Thinking about X as a waiting time, we now see that λ
describes how fast the event we wait for happens. Therefore λ
is also called the rate of the exponential waiting time.
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2. Expectation, variance

Proof.
We need to compute

EX =

∫ ∞

0
xλe−λx dx and EX 2 =

∫ ∞

0
x2λe−λx dx

using integration by parts.  
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3. The memoryless property

Proposition
The exponential is the only continuous non-negative
memoryless distribution. That is, the only distribution with
X ≥ 0 and

P{X > t + s |X > t} = P{X > s} (∀t , s ≥ 0).

Suppose we have waited for time t . The chance of waiting an
additional time s is the same as if we would start waiting anew.
The distribution does not remember its past.
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3. The memoryless property

Proof.
To prove that the Exponential distribution is memoryless,

P{X > t + s |X > t} =
P{{X > t + s} ∩ {X > t}}

P{X > t}

=
P{X > t + s}

P{X > t}

=
e−λ(t+s)

e−λt = e−λs = P{X > s}.

To prove that the Exponential is the only one,  .
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3. The memoryless property

Example
Suppose that the length of a phone call in a phone booth is
exponentially distributed with mean 10 minutes. If we arrive to
an already occupied booth (but there is no one else queuing),
what is the probability that we’ll wait between 10 and 20
minutes for the booth to free up?

Notice that by the memoryless property we don’t care about
how long the phone booth has been occupied for. (For all other
distributions this would matter!). The remaining time of that
person’s phone call is X ∼ Exp(λ) with λ = 1/EX = 1/10, and
we calculate

P{10 < X ≤ 20} = F (20)− F (10)

= 1 − e−20/10 − (1 − e−10/10) = e−1 − e−2 ≃ 0.233.
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Normal

The Normal, or Gaussian, is a very nice distribution on its own,
but we won’t see why it is useful until a bit later.
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1. Density, distribution function

Definition
Let µ ∈ R, σ > 0 be real parameters. X has the
Normal distribution with parameters µ and σ2 or, in short
X ∼ N (µ, σ2), if its density is given by

f (x) =
1√

2π · σ
· e−

(x−µ)2

2σ2 (x ∈ R).

To prove that this is a density, 2-dim. polar coordinates are
needed, anyone interested come and see me after class.
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1. Density, distribution function

x

f (x)

µ− 3σ µ− 2σ µ− σ µ µ+ σ µ+ 2σ µ+ 3σ

Definition

The case µ = 0, σ2 = 1 is called standard normal distribution
(N (0, 1)). Its density is denoted by ϕ, and its distribution
function by Φ:

ϕ(x) =
1√
2π

· e−x2/2, Φ(x) =
∫ x

−∞

1√
2π

· e−y2/2 dy (x ∈ R).
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1. Density, distribution function

Remark
The standard normal distribution function

Φ(x) =
∫ x

−∞

1√
2π

· e−y2/2 dy

has no closed form, its values will be looked up in tables.

Next we’ll establish some tools that will enable us to use such
tables to find probabilities of normal random variables.
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2. Symmetry

Proposition
For any z ∈ R,

Φ(−z) = 1 − Φ(z).

Proof.
The standard normal distribution is symmetric: if X ∼ N (0, 1),
−X ∼ N (0, 1) as well. Therefore

Φ(−z) = P{X < −z} = P{−X > z} = P{X > z} = 1 − Φ(z).

That’s why most tables only have entries for positive values of z.
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3. Linear transformations

Proposition

Let X ∼ N (µ, σ2), and α, β ∈ R fixed numbers. Then
αX + β ∼ N (αµ+ β, α2σ2).

Proof.
We prove for positive α, for negatives it’s similar. Start with the
distribution function of Y = αX + β:

FY (y) = P{Y < y} = P{αX + β < y}

= P
{

X <
y − β

α

}
= FX

(y − β

α

)
.
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3. Linear transformations

Proof.
Differentiate this to get

fY (y) =
d

dy
FY (y) =

d
dy

FX

(y − β

α

)
= fX

(y − β

α

)
· 1
α

=
1√
2π σ

exp
(
−

(
y−β
α − µ

)2

2σ2

)
· 1
α

=
1√

2π ασ
e
− (y−(αµ+β))2

2(ασ)2 ,

which implies the statement: Y ∼ N (αµ+ β, α2σ2).

Corollary

If X ∼ N (µ, σ2), then its standardised version X−µ
σ ∼ N (0, 1).

Just use α = 1
σ and β = −µ

σ .
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4. Expectation and variance

Proposition
If X ∼ N (0, 1) is standard normal, then its mean is 0 and its
variance is 1.

That the mean is zero follows from symmetry.

162 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Distr. Uniform Exponential Normal Transf.

4. Expectation and variance

Corollary

If X ∼ N (µ, σ2), then its mean is µ and its variance is σ2.

Proof.

EX = σ · E
(X − µ

σ

)
+ µ = 0 + µ = µ,

VarX = σ2 · Var
(X − µ

σ

)
= σ2 · 1 = σ2

as X−µ
σ is standard.

N (µ, σ2) is also said to be the normal distribution with mean µ,
variance σ2.
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5. Example

Example
Let X be normally distributed with mean 3 and variance 4.
What is the chance that X is positive?

We have X ∼ N (3, 4), hence X−3
2 ∼ N (0, 1):

P{X > 0} = P
{X − 3

2
>

0 − 3
2

}
= 1 − Φ(−1.5)

= 1 −
[
1 − Φ(1.5)

]
= Φ(1.5) ≃ 0.9332.

Make sure you know how to use the table. . .
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5. Example

Φ(z)
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
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6. Why Normal?

Theorem (DeMoivre-Laplace)
Fix p, and let Xn ∼ Binom(n, p). Then for every fixed a < b
reals,

lim
n→∞

P
{

a <
Xn − np√
np(1 − p)

≤ b
}
= Φ(b)− Φ(a).

That is, take X ∼ Binom(n, p) with large n, fixed (not small) p.
Then X−np√

np(1−p)
is approximately N (0, 1) distributed.

This will be a special case of the Central Limit Theorem, no
proof here. In fact, Normal will appear in many similar
scenarios. Measured quantities, heights of people, length of
these lectures, etc.
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6. Why Normal?

Example
The ideal size of a course is 150 students. On average, 30% of
those accepted will enroll, thus the organisers accept 450
students. What is the chance that more than 150 students will
enroll?

The number of enrolling students is X ∼ Binom(450, 0.3). With
the DeMoivre-Laplace Thm (np = 135,

√
np(1 − p) ≃ 9.72)

P{X > 150} = P{X > 150.5} ≃ P
{X − 135

9.72
>

150.5 − 135
9.72

}

≃ 1 − Φ
(150.5 − 135

9.72

)
≃ 1 − Φ(1.59) ≃ 0.0559.
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P{X > 150} = P{X > 150.5} ≃ P
{X − 135

9.72
>

150.5 − 135
9.72

}

≃ 1 − Φ
(150.5 − 135

9.72

)
≃ 1 − Φ(1.59) ≃ 0.0559.
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Transformations

Let X be a random variable, and g(X ) a function of it. If X is
discrete then the distribution of g(X ) is rather straightforward.
In the continuous case the question is more interesting.

We have in fact seen an example before: an affine
transformation g(x) = ax + b of Normal keeps it Normal. We’ll
see more examples, and then a general statement about this
phenomenon.
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Transformations

Example
Let X be a continuous random variable with density fX .
Determine the density of Y : = X 2.
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Transformations

Solution
Fix y > 0 (for y ≤ 0 the density is trivially zero), and start with
the distribution function:

FY (y) = P{Y < y} = P{X 2 < y} = P{−√
y < X <

√
y}

= FX (
√

y)− FX (−
√

y).

Differentiate this to get

fY (y) = F ′
X (

√
y) · 1

2
√

y
+ F ′

X (−
√

y) · 1
2
√

y

= fX (
√

y) · 1
2
√

y
+ fX (−

√
y) · 1

2
√

y
.
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Transformations

What is going on?

X

Y = X 2

dx dx

dy

−√
y

√
y

y

fY (y) dy = fX (
√

y) · 1
2
√

y
dy + fX (−

√
y) · 1

2
√

y
dy .
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Transformations

There is a general formula along the same lines:

Proposition
Let X be a continuous random variable with density fX , and g a
continuously differentiable function with nonzero derivative.
Then the density of Y = g(X ) is given by

fY (y) =
fX
(
g−1(y)

)
∣∣g′(g−1(y)

)∣∣ .

Proving this can be done in a way very similar to the scheme
above.

The scheme is important.
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5. Joint distributions
Joint distributions
Independence, convolutions

Objectives:
◮ To build a mathematical model for several random

variables on a common probability space
◮ To get familiar with joint, marginal and conditional discrete

distributions
◮ To understand discrete convolutions
◮ To get familiar with the Gamma distribution (via a

continuous convolution)
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Joint distributions

Often an experiment can result in several random quantities at
the same time. In this case we have several random variables
defined on a common probability space. Their relations can be
far from trivial, and are described by joint distributions. Here
we’ll familiarise ourselves with the basics of joint distributions.

For most part we restrict our attention to the discrete case, as
the jointly continuous case would require multivariable calculus
and more time.

At the end of this chapter we introduce the Gamma distribution,
purely motivated by joint distributions.
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1. Joint mass function
Most examples will involve two random variables, but
everything can be generalised for more of them.

Definition
Suppose two discrete random variables X and Y are defined
on a common probability space, and can take on values
x1, x2, . . . and y1, y2, . . ., respectively. The
joint probability mass function of them is defined as

p(xi , yj) = P{X = xi , Y = yj}, i = 1, 2, . . . , j = 1, 2, . . . .

This function contains all information about the joint distribution
of X and Y .
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1. Joint mass function

Definition
The marginal mass functions are

pX (xi) : = P{X = xi}, and pY (yj) : = P{Y = yj}.

It is clear from the Law of Total Probability that

Proposition

pX (xi) =
∑

j

p(xi , yj), and pY (yj) =
∑

i

p(xi , yj).
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1. Joint mass function

Proposition
Any joint mass function satisfies
◮ p(x , y) ≥ 0, ∀x , y ∈ R;
◮

∑
i, j p(xi , yj) = 1.

Vice versa: any function p which is only non-zero in countably
many (xi , yj) values, and which has the above properties, is a
joint probability mass function. There is a sample space and
random variables that realise this joint mass function.
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1. Joint mass function

Proof.
Non-negativity is clear. For the double sum,

∑

i, j

p(xi , yj) =
∑

i

∑

j

p(xi , yj) =
∑

i

pX (xi) = 1.
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1. Joint mass function

Example
An urn has 3 red, 4 white, 5 black balls. Drawing 3 at once, let
X be the number of red, Y the number of white balls drawn.
The joint mass function is:

Y\X 0 1 2 3 pY (·)
0 (5

3)
(12

3 )
(3

1)·(
5
2)

(12
3 )

(3
2)·(

5
1)

(12
3 )

1
(12

3 )
(8

3)
(12

3 )

1 (4
1)·(

5
2)

(12
3 )

(4
1)·(

3
1)·(

5
1)

(12
3 )

(4
1)·(

3
2)

(12
3 )

0 (4
1)·(

8
2)

(12
3 )

2 (4
2)·(

5
1)

(12
3 )

(4
2)·(

3
1)

(12
3 )

0 0 (4
2)·(

8
1)

(12
3 )

3 (4
3)

(12
3 )

0 0 0 (4
3)

(12
3 )

pX (·) (9
3)

(12
3 )

(3
1)·(

9
2)

(12
3 )

(3
2)·(

9
1)

(12
3 )

1
(12

3 )
1
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2. Conditional mass function

Definition
Suppose pY (yj) > 0. The
conditional mass function of X , given Y = yj is defined by

pX |Y (x | yj) : = P{X = x |Y = yj} =
p(x , yj)

pY (yj)
.

As the conditional probability was a proper probability, this is a
proper mass function: ∀x , yj ,

pX |Y (x | yj) ≥ 0,
∑

i

pX |Y (xi | yj) = 1.

180 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

2. Conditional mass function

Example
Let X and Y have joint mass function

X\Y 0 1
0 0.4 0.2
1 0.1 0.3

The conditional distribution of X given Y = 0 is

pX |Y (0 | 0) = p(0, 0)
pY (0)

=
p(0, 0)

p(0, 0) + p(1, 0)
=

0.4
0.4 + 0.1

=
4
5
,

pX |Y (1 | 0) = p(1, 0)
pY (0)

=
p(1, 0)

p(0, 0) + p(1, 0)
=

0.1
0.4 + 0.1

=
1
5
.
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Independence, convolutions

An important special case of joint distributions is the one of
independent variables: whatever the value of some of them is,
it does not influence the distribution of the others. We’ll make
this precise in this part, and then use it to determine the
distribution of the sum of independent variables.

As a slight generalisation and application, we’ll also introduce
the Gamma distribution.
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1. Independent r.v.’s

Definition
Random variables X and Y are independent, if events
formulated with them are so. That is, if for every A, B ⊆ R

P{X ∈ A, Y ∈ B} = P{X ∈ A} · P{Y ∈ B}.

Similarly, random variables X1, X2, . . . are independent, if
events formulated with them are so. That is, if for every
Ai1 , Ai2 , . . . , Ain ⊆ R

P{Xi1 ∈ Ai1 , Xi2 ∈ Ai2 , . . . Xin ∈ Ain}
= P{Xi1 ∈ Ai1} · P{Xi2 ∈ Ai2} · · ·P{Xin ∈ Ain}.

Recall mutual independence for events...
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1. Independent r.v.’s

Remark
People use the abbreviation i.i.d. for independent and
identically distributed random variables.

Proposition
Two random variables X and Y are independent if and only if
their joint mass function factorises into the product of the
marginals:

p(xi , yj) = pX (xi) · pY (yj), (∀xi , yj).
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1. Independent r.v.’s

Example (a trivial one)
Rolling two dice, let X and Y be the two numbers shown on
them. Then every pair of numbers have equal probability:

p(i , j) =
1

36
=

1
6
· 1

6
= pX (i) · pY (j) (∀i , j = 1, . . . , 6),

and we see that these variables are independent (in fact i.i.d.
as well).

185 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

2. Discrete convolution

We restrict ourselves now to integer valued random variables.
Let X and Y be such, and also independent. What is the
distribution of their sum?

Proposition
Let X and Y be independent, integer valued random variables
with respective mass functions pX and pY . Then

pX+Y (k) =
∞∑

i=−∞
pX (k − i) · pY (i), (∀k ∈ Z).

This formula is called the discrete convolution of the mass
functions pX and pY .
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2. Discrete convolution

Proof.
Using the Law of Total Probability, and independence,

pX+Y (k) = P{X + Y = k} =
∞∑

i=−∞
P{X + Y = k , Y = i}

=

∞∑

i=−∞
P{X = k − i , Y = i} =

∞∑

i=−∞
pX (k − i) · pY (i).
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2. Discrete convolution

Example
Let X ∼ Poi(λ) and Y ∼ Poi(µ) be independent. Then
X + Y ∼ Poi(λ+ µ).

Example (of course. . . )
Let X ∼ Binom(n, p) and Y ∼ Binom(m, p) be independent
(notice the same p!). Then X + Y ∼ Binom(n + m, p).
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3. Continuous convolution
Recall the discrete convolution formula

pX+Y (k) =
∞∑

i=−∞
pX (k − i) · pY (i), (∀k ∈ Z).

In a very similar way we state without proof the
continuous convolution formula for densities:

Proposition
Suppose X and Y are independent continuous random
variables with respective densities fX and fY . Then their sum is
a continuous random variable with density

fX+Y (a) =
∫ ∞

−∞
fX (a − y) · fY (y) dy , (∀a ∈ R).
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4. Gamma distribution

We’ll only use the continuous convolution formula on a
particular case:

Let X and Y be i.i.d. Exp(λ), and see the density of their sum
(a ≥ 0):

fX+Y (a) =
∫ ∞

−∞
fX (a − y) · fY (y) dy =

∫ a

0
λe−λ(a−y) · λe−λy dy

= λ2a · e−λa.

This density is called the Gamma(2, λ) density.
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4. Gamma distribution
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4. Gamma distribution
Now, let X ∼ Exp(λ), and Y ∼ Gamma(2, λ) be independent.
Again,

fX+Y (a) =
∫ ∞

−∞
fX (a − y) · fY (y) dy

=

∫ a

0
λe−λ(a−y) · λ2ye−λy dy =

λ3a2e−λa

2
.

This is the Gamma(3, λ) density.
Now, let X ∼ Exp(λ), and Y ∼ Gamma(3, λ) be independent.

fX+Y (a) =
∫ ∞

−∞
fX (a − y) · fY (y) dy

=

∫ a

0
λe−λ(a−y) · λ

3y2e−λy

2
dy =

λ4a3e−λa

2 · 3
.

This is the Gamma(4, λ) density.
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4. Gamma distribution

Inductively,

Proposition
The convolution of n i.i.d. Exp(λ) distributions results in the
Gamma(n, λ) density:

f (x) =
λnxn−1e−λx

(n − 1)!
, ∀x ≥ 0

and zero otherwise.

This is the density of the sum of n i.i.d. Exp(λ) random
variables. In particular, Gamma(1, λ) ≡ Exp(λ).
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4. Gamma distribution

Corollary
Make a change z = λx of the integration variable, and write∫∞

0 f (x) dx =
∫∞

0
λnxn−1e−λx

(n−1)! dx =
∫∞

0
(λx)n−1e−λx

(n−1)! λ dx = 1:

(n − 1)! =
∫ ∞

0
zn−1e−z dz.

Definition
The gamma function is defined, for every α > 0 real numbers,
by

Γ(α) : =

∫ ∞

0
zα−1e−z dz.

In particular, Γ(n) = (n − 1)! for positive integer n’s.
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∫ ∞

0
zα−1e−z dz.

In particular, Γ(n) = (n − 1)! for positive integer n’s.
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4. Gamma distribution
Integration by parts yields

Proposition

Γ(1) = 1, and Γ(α+ 1) = α · Γ(α), (∀α > 0).

 

With this tool in hand, we can generalise to

Definition
The Gamma(α, λ) distribution of positive real shape and rate
parameters α and λ is the one with density

f (x) =
λαxα−1e−λx

Γ(α)
, ∀x ≥ 0

and zero otherwise.
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4. Gamma distribution

Proposition
If X ∼ Gamma(α, λ), then

EX =
α

λ
, VarX =

α

λ2 .

This is rather natural from the sum of i.i.d. Exponentials when α
is integer, and can easily be integrated out in all cases.
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6. Expectation, covariance
Properties of expectations
Covariance
Conditional expectation
Moment generating functions

Objectives:
◮ To explore further properties of expectations of a single

and multiple variables
◮ To define covariance, and use it for computing variances of

sums
◮ To explore and use conditional expectations
◮ To define and use moment generating functions
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Properties of expectations

Recall the respective definitions

EX =
∑

i

xip(xi) or EX =

∫ ∞

−∞
xf (x) dx

for the discrete and continuous cases. In this chapter we’ll
explore properties of expected values. We’ll always assume
that the expectations we talk about exist. Most proofs will be
done for the discrete case, but everything in this chapter is very
general even beyond discrete and continuous. . .

197 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

1. A simple monotonicity property

Proposition
Suppose that a ≤ X ≤ b a.s. Then a ≤ EX ≤ b.

Recall: a.s. means with probability one.

Proof.
Due to the assumption, all possible values satisfy a ≤ xi ≤ b.
Therefore

a = a · 1 =
∑

i

ap(xi) ≤
∑

i

xip(xi) ≤
∑

i

bp(xi) = b · 1 = b.
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2. Expectation of functions of variables
Proposition
Suppose that X and Y are discrete random variables, and
g : R× R → R function. Then

Eg(X , Y ) =
∑

i, j

g(xi , yj) · p(xi , yj).

There is a very analogous formula for continuous random
variables, using joint densities, beyond the scope of this unit.

A similar formula holds for functions of 3, 4, etc. random
variables.

Proof.

The proof goes as in the one-variable case  .
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3. Expectation of sums and differences
Corollary (a very important one)
Let X and Y be any random variables. Then

E(X + Y ) = EX + EY and E(X − Y ) = EX − EY .

Proof.

E(X ± Y ) =
∑

i, j

(xi ± yj)p(xi , yj)

=
∑

i

∑

j

xip(xi , yj)±
∑

j

∑

i

yjp(xi , yj)

=
∑

i

xipX (xi)±
∑

j

yjpY (yj) = EX ± EY .

200 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

3. Expectation of sums and differences
Corollary (a very important one)
Let X and Y be any random variables. Then

E(X + Y ) = EX + EY and E(X − Y ) = EX − EY .

Proof.

E(X ± Y ) =
∑

i, j

(xi ± yj)p(xi , yj)

=
∑

i

∑

j

xip(xi , yj)±
∑

j

∑

i

yjp(xi , yj)

=
∑

i

xipX (xi)±
∑

j

yjpY (yj) = EX ± EY .

200 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

3. Expectation of sums and differences
Corollary (a very important one)
Let X and Y be any random variables. Then

E(X + Y ) = EX + EY and E(X − Y ) = EX − EY .

Proof.

E(X ± Y ) =
∑

i, j

(xi ± yj)p(xi , yj)

=
∑

i

∑

j

xip(xi , yj)±
∑

j

∑

i

yjp(xi , yj)

=
∑

i

xipX (xi)±
∑

j

yjpY (yj) = EX ± EY .

200 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

3. Expectation of sums and differences
Corollary (a very important one)
Let X and Y be any random variables. Then

E(X + Y ) = EX + EY and E(X − Y ) = EX − EY .

Proof.

E(X ± Y ) =
∑

i, j

(xi ± yj)p(xi , yj)

=
∑

i

∑

j

xip(xi , yj)±
∑

j

∑

i

yjp(xi , yj)

=
∑

i

xipX (xi)±
∑

j

yjpY (yj) = EX ± EY .

200 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

3. Expectation of sums and differences
Corollary (a very important one)
Let X and Y be any random variables. Then

E(X + Y ) = EX + EY and E(X − Y ) = EX − EY .

Proof.

E(X ± Y ) =
∑

i, j

(xi ± yj)p(xi , yj)

=
∑

i

∑

j

xip(xi , yj)±
∑

j

∑

i

yjp(xi , yj)

=
∑

i

xipX (xi)±
∑

j

yjpY (yj) = EX ± EY .

200 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

3. Expectation of sums and differences

Corollary
Let X and Y be such that X ≤ Y a.s. Then EX ≤ EY.

Proof.
Just look at the difference Y − X . This is a.s. non-negative,
hence its expectation is non-negative as well:

0 ≤ E(Y − X ) = EY − EX .
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3. Expectation of sums and differences

Example (sample mean)
Let X1, X2, . . . , Xn be identically distributed random variables
with mean µ. Their sample mean is

X̄ : =
1
n

n∑

i=1

Xi .

Its expectation is

EX̄ = E
1
n

n∑

i=1

Xi =
1
n

E
n∑

i=1

Xi =
1
n

n∑

i=1

EXi =
1
n

n∑

i=1

µ = µ.
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3. Expectation of sums and differences

Example
Let A1, A2, . . . , An be events, and X1, X2, . . . , Xn their respective
indicator variables. Then

X : =
n∑

i=1

Xi

counts the number of these events that occur. The expected
number of them is

EX = E
n∑

i=1

Xi =
n∑

i=1

EXi =
n∑

i=1

PAi .
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3. Expectation of sums and differences

Example (Boole’s inequality)
Let A1, A2, . . . , An be events, and X1, X2, . . . , Xn their respective
indicator variables. Define further

X : =
n∑

i=1

Xi and Y : =

{
1, if X ≥ 1,

0, if X = 0.

Notice that Y = 1
{ n⋃

i=1
Ai

}
and that Y ≤ X  , thus

P
{ n⋃

i=1

Ai

}
= EY ≤ EX = E

n∑

i=1

Xi =
n∑

i=1

EXi =
n∑

i=1

P{Ai}

known as Boole’s inequality.
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3. Expectation of sums and differences
Example (Binomal distribution)
Suppose that n independent trials are made, each succeeding
with probability p. Define Xi as the indicator of success in the
i th trial, i = 1, 2, . . . , n. Then

X : =
n∑

i=1

Xi

counts the total number of successes, therefore
X ∼ Binom(n, p). Its expectation is

EX = E
n∑

i=1

Xi =
n∑

i=1

EXi =
n∑

i=1

p = np.

Simpler than before, is it?
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3. Expectation of sums and differences

Example (Gamma distribution)
Let n be a positive integer, λ > 0 real, and X ∼ Gamma(n, λ).
Then we know

X d
=

n∑

i=1

Xi ,

where X1, X2, . . . , Xn are i.i.d. Exp(λ). Therefore

EX = E
n∑

i=1

Xi =
n∑

i=1

EXi =
n∑

i=1

1
λ
=

n
λ
.

Here d
= means “equal in distribution”.

We have seen the above formula EX = α
λ in more generality for

X ∼ Gamma(α, λ) with any real α > 0.
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Covariance

In this part we investigate the relation of independence to
expected values. It will give us some (not perfect) way of
measuring independence.

Again, we assume that all the expectations we talk about exist.
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1. Independence

We start with a simple observation:

Proposition
Let X and Y be independent random variables, and g, h
functions. Then

E
(
g(X ) · h(Y )

)
= Eg(X ) · Eh(Y ).

Proof.
This is true for any random variables. For the discrete case, the

proof uses the factorisation of the mass functions:  
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2. Covariance
Then, the following is a natural object to measure
independence:

Definition
The covariance of the random variables X and Y is

Cov(X , Y ) = E[(X − EX ) · (Y − EY )].

Before exploring its properties, notice

Cov(X , Y ) = E[(X − EX ) · (Y − EY )]

= E[X · Y ]− E[X · EY ]− E[(EX ) · Y ] + E[EX · EY ]

= E[X · Y ]− EX · EY − EX · EY + EX · EY

= EXY − EX · EY .
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2. Covariance

Remark
From either forms

Cov(X , Y ) = E[(X − EX ) · (Y − EY )] = EXY − EX · EY

it is clear that for independent random variables,

Cov(X , Y ) = 0.
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2. Covariance

Example
This is not true the other way around: let

X : =





−1, with prob.
1
3
,

0, with prob.
1
3
,

1, with prob.
1
3
,

Y : =

{
0, if X 6= 0,

1, if X = 0.

Then X · Y = 0 and EX = 0, thus Cov(X , Y ) = 0, but these
variables are clearly not independent.
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2. Covariance

Proposition (properties of covariance)
Fix ai , b, cj , d real numbers. Covariance is
◮ positive semidefinite: Cov(X , X ) = VarX ≥ 0,
◮ symmetric: Cov(X , Y ) = Cov(Y , X ),
◮ almost bilinear:

Cov
(∑

i

aiXi + b,
∑

j

cjYj + d
)
=

∑

i, j

aicjCov(Xi , Yj).
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3. Variance

Now we can answer a long overdue question: what happens to
the variance of sums or random variables?

Proposition (variance of sums)
Let X1, X2, . . . , Xn be random variables. Then

Var
n∑

i=1

Xi =

n∑

i=1

VarXi + 2
∑

1≤i<j≤n

Cov(Xi , Xj).

In particular, variances of independent random variables are
additive.

No additivity, however, of variances in general.
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3. Variance
Proof.
Just using properties of the covariance,

Var
n∑

i=1

Xi = Cov
( n∑

i=1

Xi ,
n∑

j=1

Xj

)
=

n∑

i, j=1

Cov(Xi , Xj)

=
n∑

i=1

Cov(Xi , Xi) +
∑

i 6=j

Cov(Xi , Xj)

=
n∑

i=1

VarXi +
∑

i<j

Cov(Xi , Xj) +
∑

i>j

Cov(Xi , Xj)

=
n∑

i=1

VarXi + 2
∑

1≤i<j≤n

Cov(Xi , Xj).
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3. Variance

Remark
Notice that for independent variables,

Var(X − Y ) = Var(X + (−Y ))

= VarX + Var(−Y ) + 2Cov(X , −Y )

= VarX + VarY − 2Cov(X , Y )

= VarX + VarY .
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3. Variance

Example (variance of the sample mean)

Suppose that Xi ’s are i.i.d., each of variance σ2. Recall the
definition

X̄ : =
1
n

n∑

i=1

Xi

of the sample mean. Its variance is

VarX̄ = Var
(1

n

n∑

i=1

Xi

)
=

1
n2 Var

( n∑

i=1

Xi

)

=
1
n2

n∑

i=1

VarXi =
1
n2 · nσ2 =

σ2

n
.

Decreases with n, that’s why we like sample averages.
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3. Variance
Example (Binomal distribution)
Suppose that n independent trials are made, each succeeding
with probability p. Define Xi as the indicator of success in the
i th trial, i = 1, 2, . . . , n. Then

X : =
n∑

i=1

Xi

counts the total number of successes, therefore
X ∼ Binom(n, p). Its variance is

VarX = Var
n∑

i=1

Xi =
n∑

i=1

VarXi =
n∑

i=1

p(1 − p) = np(1 − p).

Simpler than before, is it?
217 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

3. Variance

Example (Gamma distribution)
Let n be a positive integer, λ > 0 real, and X ∼ Gamma(n, λ).
Then we know

X d
=

n∑

i=1

Xi ,

where X1, X2, . . . , Xn are i.i.d. Exp(λ). Therefore

VarX = Var
n∑

i=1

Xi =
n∑

i=1

VarXi =
n∑

i=1

1
λ2 =

n
λ2 .

Here d
= means “equal in distribution”.

We have seen the above formula VarX = α
λ2 in more generality

for X ∼ Gamma(α, λ) with any real α > 0.
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4. Cauchy-Schwarz inequality

Theorem (Cauchy-Schwarz inequality)
For every X and Y ,

|EXY | ≤
√

EX 2 ·
√

EY 2,

with equality iff Y = const. · X a.s.

This is essentially the same statement as Cauchy-Schwarz in
linear algebra.
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4. Cauchy-Schwarz inequality

Proof.

0 ≤ E
( X√

EX 2
± Y√

EY 2

)2

= E
( X 2

EX 2

)
+ E

( Y 2

EY 2

)
± 2E

XY√
EX 2 ·

√
EY 2

= 2 ± 2
EXY√

EX 2 ·
√

EY 2
.
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4. Cauchy-Schwarz inequality

Proof.

0 ≤ E
( X√

EX 2
− Y√

EY 2

)2

= E
( X 2

EX 2

)
+ E

( Y 2

EY 2

)
− 2E

XY√
EX 2 ·

√
EY 2

= 2 − 2
EXY√

EX 2 ·
√

EY 2
.

When −,

2
EXY√

EX 2 ·
√

EY 2
≤ 2,

EXY ≤
√

EX 2 ·
√

EY 2.
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4. Cauchy-Schwarz inequality

Proof.

0 ≤ E
( X√

EX 2
+

Y√
EY 2

)2

= E
( X 2

EX 2

)
+ E

( Y 2

EY 2

)
+ 2E

XY√
EX 2 ·

√
EY 2

= 2 + 2
EXY√

EX 2 ·
√

EY 2
.

When +,

−2
EXY√

EX 2 ·
√

EY 2
≤ 2,

EXY ≥ −
√

EX 2 ·
√

EY 2.
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4. Cauchy-Schwarz inequality

Proof.

0 ≤ E
( X√

EX 2
+

Y√
EY 2

)2

= E
( X 2

EX 2

)
+ E

( Y 2

EY 2

)
+ 2E

XY√
EX 2 ·

√
EY 2

= 2 + 2
EXY√

EX 2 ·
√

EY 2
.

When +,

−2
EXY√

EX 2 ·
√

EY 2
≤ 2,

EXY ≥ −
√

EX 2 ·
√

EY 2.

For the “equality iff” part,  .
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4. Cauchy-Schwarz inequality
Corollary
Apply Cauchy-Schwarz on |X | and |Y | to get

E|XY | = E(|X | · |Y |) ≤
√

E|X |2 ·
√

E|Y |2 =
√

EX 2 ·
√

EY 2.

Corollary

Apply Caucy-Schwarz on X̃ : = X − EX and Ỹ : = Y − EY:

|Cov(X , Y )| = |E[(X − EX ) · (Y − EY )]| = |E[X̃ · Ỹ ]|

≤
√

EX̃ 2 ·
√

EỸ 2

=
√

E(X − EX )2 ·
√

E(Y − EY )2 = SD X · SD Y .
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5. Correlation

Definition
The correlation coefficient of random variables X and Y is

̺(X , Y ) : =
Cov(X , Y )

SD X · SD Y
.

Remark
The previous corollary precisely states that

−1 ≤ ̺(X , Y ) ≤ 1,

and the “equality iff” part of Cauchy-Schwarz implies that we
have equality iff Ỹ = aX̃ , that is, Y = aX +b for some fixed a, b.
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5. Correlation

Positive correlation means that typical values of Y tend to be
larger when those of X are larger. Negative correlation means
that typical values of Y tend to be smaller when those of X are

larger.  
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5. Correlation

Example
Rolling two dice, let X be the number shown on the first die, Y
the one shown on the second die, Z = X + Y the sum of the
two numbers. Clearly, X and Y are independent,
Cov(X , Y ) = 0, ̺(X , Y ) = 0. For X and Z ,

Cov(X , Z ) = Cov(X , X + Y ) = Cov(X , X ) + Cov(X , Y )

= VarX + 0 = VarX ;

Var(Z ) = Var(X + Y ) = VarX + VarY indep.!

= VarX + VarX = 2VarX ;

̺(X , Z ) =
Cov(X , Z )

SD X · SD Z
=

VarX√
VarX ·

√
2VarX

=
1√
2
.

224 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance Conditional Mom.gen.

Conditional expectation

Recall that the conditional mass function pX |Y (x | yj) is a proper
mass function. This allows in particular to build an expectation
out of it, a very useful tool.

As usual, we assume that all expectations exist. Everything
here is completely general, but most proofs are only shown for
the discrete case.
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1. Conditional expectation

We can therefore define

Definition
The conditional expectation of X , given Y = yj is

E(X |Y = yj) : =
∑

i

xi · pX |Y (xi | yj).

Example
Let X and Y be independent Poi(λ) and Poi(µ) variables, and
Z = X + Y . Find the conditional expectation E(X |Z = k).
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1. Conditional expectation

Solution
Start with the conditional mass function (0 ≤ i ≤ k):

pX |Z (i | k) =
p(i , k)
pZ (k)

,

where p(i , k) is the joint mass function of X and Z at (i , k). To
find this latter one, write

p(i , k) = P{X = i , Z = k} = P{X = i , X + Y = k}

= P{X = i , Y = k − i} = e−λλ
i

i!
· e−µ µk−i

(k − i)!
.

Recall also that Z = X + Y ∼ Poi(λ+ µ), pZ (k) = e−λ−µ (λ+µ)k

k! .
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1. Conditional expectation

Solution
Combining,

pX |Z (i | k) =
p(i , k)
pZ (k)

=
e−λ λi

i! · e−µ µk−i

(k−i)!

e−λ−µ (λ+µ)k

k!

=

(
k
i

)
·
( λ

λ+ µ

)i( µ

λ+ µ

)k−i
=

(
k
i

)
· pi(1 − p)k−i

with p : = λ
λ+µ . We conclude (X |Z = k) ∼ Binom(k , p),

therefore

E(X |Z = k) = kp = k · λ

λ+ µ
.
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1. Conditional expectation

Remark
We abbreviate our assertion

E(X |Z = k) = k · λ

λ+ µ
as E(X |Z ) = Z · λ

λ+ µ
.

Notice, however, that something deeper actually happened.
◮ E(X |Z = k) is the expected value of X if I know that

Z = k . It is a function of k .
◮ E(X |Z ) is the expected value of X if I know the value of Z ,

but I won’t tell you. It is the same function of Z .

As such, E(X |Z ) itself is a random variable (namely, a function
of Z ).
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2. Tower rule
It therefore makes sense to talk about the expectation of the
random variable E(X |Y ).

Proposition (Tower rule; aka. Law of total expectation)
For any random variables, EE(X |Y ) = EX.

Proof.

EE(X |Y ) =
∑

j

E(X |Y = yj) · pY (yj)

=
∑

j

∑

i

xipX |Y (xi | yj) · pY (yj)

=
∑

i

∑

j

xip(xi , yj) =
∑

i

xip(xi) = EX .
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2. Tower rule

Example
A disoriented miner finds himself in a room of the mine with
three doors:
◮ The first door brings him to safety after a 3 hours long hike.
◮ The second door takes him back to the same room after 5

hours of climbing.
◮ The third door takes him again back to the same room

after 7 hours of exhausting climbing.

The disoriented miner chooses one of the three doors with
equal chance independently each time he is in that room. What
is the expected time after which the miner is safe?
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2. Tower rule

Solution
Let X be the time to reach safety, and Y the initial choice of a
door (= 1, 2, 3). Then

EX = EE(X |Y )

= E(X |Y = 1) · P{Y = 1}+ E(X |Y = 2) · P{Y = 2}
+ E(X |Y = 3) · P{Y = 3}

= 3 · 1
3
+ (EX + 5) · 1

3
+ (EX + 7) · 1

3
,

which we rearrange as

3EX = 15 + 2EX ; EX = 15.
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3. Conditional variance

A Tower rule-like formula also exists for variances. We start
with defining

Definition
The conditional variance of X , given Y is

Var(X |Y ) = E
[
(X − E(X |Y ))2 |Y

]
= E(X 2 |Y )−

[
E(X |Y )

]2
.

No surprise here, just use conditionals everywhere in the
definition of variance.

Notice that Var(X |Y ) is again a function of Y .
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3. Conditional variance

Proposition
The conditional variance formula holds:

VarX = EVar(X |Y ) + VarE(X |Y ).

In words: the variance is the expectation of the conditional
variance plus the variance of the conditional expectation.
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3. Conditional variance

Proof.

VarX = EX 2 − [EX ]2 = EE(X 2 |Y )− [EE(X |Y )]2 =

= E
(
E(X 2 |Y )− [E(X |Y )]2

)

+ E[E(X |Y )]2 − [EE(X |Y )]2

= EVar(X |Y ) + VarE(X |Y ).
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3. Conditional variance

Example
An initially empty train departs from the station at a T ∼ U(0, t)
time. While in the station, it collects passengers, and given the
time T of departure it has Poisson many passengers with mean
λT . What is the overall mean and variance of the number of
passengers who take this train from the station?
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3. Conditional variance

Solution
Let us start with translating the problem. Call N the number of
passengers on the train. Then T ∼ U(0, t) and
(N |T ) ∼ Poi(λT ). Thus,

EN = EE(N |T ) = E(λT ) = λET = λ
t
2
,

VarN = EVar(N |T ) + VarE(N |T ) = E(λT ) + Var(λT )

= λET + λ2VarT = λ
t
2
+ λ2 t2

12
.

Notice how N fluctuates for two reasons  .
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4. Random sums

Generalise slightly from before:
◮ E(Z · X |Z = k) is the expected value of Z · X if I know that

Z = k . It is a function of k .
◮ E(Z · X |Z ) is the expected value of Z · X if I know the

value of Z , but I won’t tell you. It is the same function of Z .

It is clear that
E(Z · X |Z = k) = E(k · X |Z = k) = k · E(X |Z = k), and by
the analogy we conclude

E(Z · X |Z ) = Z · E(X |Z ).

The message of this formula is the fact that given Z , Z is not
random, it goes in and out the conditional expectation. This is
the second very important property of conditional expectations
after the tower rule.
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4. Random sums

Example (random sums)
A local store sees a random N number of customers a day, the
i th of whom independently of everything spends an amount Xi

with mean µ and variance σ2. Let’s find the mean and variance
of the total amount spent in the store in a day.

Solution
Notice that we are after the mean and variance of

N∑

i=1

Xi ,

and the summation boundary is random too.
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4. Random sums

Solution (. . . cont’d)
It is completely WRONG to write

E
N∑

i=1

Xi =

N∑

i=1

EXi

as we have no right to commute the E over the random N.
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4. Random sums

Solution (. . . cont’d)
However, conditioning on N makes N non-random for the
conditional expectation, and that’s the way to proceed:

E
N∑

i=1

Xi = EE
( N∑

i=1

Xi

∣∣∣N
)
= E

N∑

i=1

E(Xi |N)

= E
N∑

i=1

EXi = E
N∑

i=1

µ = E(Nµ) = µ · EN.

No surprise here. But how about the variance?
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4. Random sums

Solution (. . . cont’d)

Var
N∑

i=1

Xi = EVar
( N∑

i=1

Xi

∣∣∣N
)
+ VarE

( N∑

i=1

Xi

∣∣∣N
)

= E
N∑

i=1

Var(Xi |N) + Var
N∑

i=1

E(Xi |N)

= E
N∑

i=1

VarXi + Var
N∑

i=1

EXi = E
N∑

i=1

σ2 + Var
N∑

i=1

µ

= E(Nσ2) + Var(Nµ) = σ2 · EN + µ2 · VarN.

Notice again the two sources of fluctuations  .
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Moment generating functions

Moment generating functions will be an exciting new tool to
make probabilistic computations very efficient. Moreover, they
will serve as the fundamental tool to prove the Central Limit
Theorem.

People working in probability often use the characteristic
function instead, the complex big brother of the moment
generating function.
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1. Definition

Definition
The moment generating function of the random variable X is

M(t) : = EetX , (∀t ∈ R).

This always exists due to etX > 0, but is not always finite. For
most cases, it will be finite at least for t ’s sufficiently close to 0.
We’ll assume this in this chapter.

Proposition (how it generates moments)

M(0) = 1, and M [n](0) = EX n,

where M [n](0) denotes the nth derivative at zero.  
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2. Examples

Example (Binomial distribution)
Let X ∼ Binom(n, p).

M(t) = EetX =

n∑

k=0

(
n
k

)
etkpk (1 − p)n−k =

(
etp + 1 − p

)n
,

M(0) = (p + 1 − p)n = 1,

EX = M ′(0) = npet(etp + 1 − p
)n−1∣∣

t=0 = np,

EX 2 = M ′′(0) = npet(etp + 1 − p
)n−1

+ n(n − 1)p2e2t(etp + 1 − p
)n−2∣∣

t=0

= np + n(n − 1)p2,

and that gives, as before, VarX = np(1 − p).
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2. Examples

Example (Poisson distribution)
Let X ∼ Poi(λ).

M(t) = EetX =
∞∑

i=0

eti λ
i

i!
· e−λ =

∞∑

i=0

(λet)i

i!
· e−λ

= eλet · e−λ = eλ(e
t−1),

M(0) = eλ(e
0−1) = 1,

EX = M ′(0) = λet · eλ(e
t−1)

∣∣
t=0 = λ,

EX 2 = M ′′(0) = λet · eλ(e
t−1) + λ2e2t · eλ(e

t−1)
∣∣
t=0 = λ+ λ2,

and VarX = λ as before.
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2. Examples

Example (Exponential distribution)
Let X ∼ Exp(λ). The moment generating function is only finite
for t < λ:

M(t) = EetX =

∫ ∞

0
etxλe−λx dx =

λ

λ− t
,

M(0) =
λ

λ− 0
= 1,

EX = M ′(0) =
λ

(λ− t)2

∣∣∣
t=0

=
1
λ
,

EX 2 = M ′′(0) =
2λ

(λ− t)3

∣∣∣
t=0

=
2
λ2 ,

and VarX = 1
λ2 .
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2. Examples

Example (Normal distribution)
First take Z ∼ N (0, 1).

MN (0, 1)(t) = EetZ =
1√
2π

∫ ∞

−∞
etze−z2/2 dz

=
et2/2
√

2π

∫ ∞

−∞
e−(z−t)2/2 dz = et2/2.
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2. Examples

Example (Normal distribution)

Next, if X ∼ N (µ, σ2), then X−µ
σ ∼ N (0, 1),

MN (µ, σ2)(t) = EetX = E
(
eσt ·X−µ

σ

)
· eµt

= MN (0, 1)(σt) · eµt = eσ
2t2/2+µt ,

MN (µ, σ2)(0) = eσ
202/2+µ0 = 1,

EX = M ′
N (µ, σ2)(0) = (σ2t + µ)eσ

2t2/2+µt
∣∣
t=0 = µ,

EX 2 = M ′′
N (µ, σ2)(0) = σ2eσ

2t2/2+µt + (σ2t + µ)2eσ
2t2/2+µt

∣∣
t=0

= σ2 + µ2,

from which VarX = σ2.
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2. Examples

Example (Gamma distribution)
Let X ∼ Gamma(α, λ), and t < λ.

M(t) = EetX =

∫ ∞

0
etx λ

αxα−1e−λx

Γ(α)
dx

=
( λ

λ− t

)α
∫ ∞

0

(λ− t)αxα−1e−(λ−t)x

Γ(α)
dx

=
( λ

λ− t

)α
∫ ∞

0
fGamma(α, λ−t)(x) dx =

( λ

λ− t

)α
,
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2. Examples

Example (Gamma distribution)

M(t) =
( λ

λ− t

)α
,

M(0) =
( λ

λ− 0

)α
= 1,

EX = M ′(0) = α
λα

(λ− t)α+1

∣∣∣
t=0

=
α

λ
,

EX 2 = M ′′(0) = α(α+ 1)
λα

(λ− t)α+2

∣∣∣
t=0

=
α(α+ 1)

λ2 ,

and the variance is

VarX =
α(α+ 1)

λ2 − α2

λ2 =
α

λ2 .
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3. Independent sums

The following two statements offer a very elegant and often
used alternative to convolutions.

Proposition
Let X and Y be independent random variables. Then the
moment generating function MX+Y of their sum is of product
form:

MX+Y (t) = Eet(X+Y ) = E
(
etX etY ) = EetX · EetY = MX (t) · MY (t).

Theorem
The moment generating function on an open interval around

zero uniquely determines the distribution.  
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3. Independent sums

Example (Binomials)
Let X ∼ Binom(n, p), Y ∼ Binom(m, p) be independent. Then
X + Y ∼ Binom(n + m, p):

MX+Y (t) = MX (t) · MY (t)

=
(
etp + 1 − p

)n ·
(
etp + 1 − p

)m
=

(
etp + 1 − p

)n+m
,

which is the Binom(n + m, p) moment generating function,
therefore X + Y ∼ Binom(n + m, p).
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3. Independent sums
Example (Poissons)
Let X ∼ Poi(λ) and Y ∼ Poi(µ) be independent. Then
X + Y ∼ Poi(λ+ µ):

MX+Y (t) = MX (t) · MY (t) = eλ(e
t−1) · eµ(e

t−1) = e(λ+µ)(et−1).

Example (Normals)

Let X ∼ N (µ1, σ
2
1), Y ∼ N (µ2, σ

2
2) be independent. Then

X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2):

MX+Y (t) = MX (t) · MY (t) = eσ
2
1 t2/2+µ1t · eσ

2
2 t2/2+µ2t

= e(σ
2
1+σ2

2)t
2/2+(µ1+µ2)t .
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3. Independent sums

Example (Gammas)
Let X ∼ Gamma(α, λ), Y ∼ Gamma(β, λ) be independent.
Then X + Y ∼ Gamma(α+ β, λ):

MX+Y (t) = MX (t) · MY (t)

=
( λ

λ− t

)α
·
( λ

λ− t

)β
=

( λ

λ− t

)(α+β)
.

In particular, the convolution of n many
Exp(λ) = Gamma(1, λ)’s is Gamma(n, λ).
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7. Law of Large Numbers, Central Limit Theorem
Markov’s, Chebyshev’s inequality
Weak Law of Large Numbers
Central Limit Theorem

Objectives:
◮ To get familiar with general inequalities like Markov’s and

Chebyshev’s
◮ To (almost) prove and use the Weak Law of Large

Numbers
◮ To (almost) prove and use the Central Limit Theorem
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Markov’s, Chebyshev’s inequality

Knowing a distribution of a random variable makes it possible to
compute its moments. Vice-versa, knowing a few moments
gives some bounds on certain probabilities. We’ll explore such
bounds in this part.

Our bounds here will be very general, and that makes them
very useful in theoretical considerations. The price to pay is
that they are often not sharp enough for practical applications.
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1. Markov’s inequality

Theorem (Markov’s inequality)
Let X be a non-negative random variable. Then for all a > 0
reals,

P{X ≥ a} ≤ EX
a

.

Of course this inequality is useless for a ≤ EX .

Proof.

Let Y =

{
1, if X ≥ a,

0, if X < a.
Then X ≥ aY  , thus

EX ≥ EaY = aEY = aP{X ≥ a}.
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2. Chebyshev’s inequality
Theorem (Chebyshev’s inequality)

Let X be a random variable with mean µ and variance σ2 both
finite. Then for all b > 0 reals,

P{|X − µ| ≥ b} ≤ VarX
b2 .

Of course this inequality is useless for b ≤ SD X .

Proof.

Apply Markov’s inequality on the random variable (X − µ)2 ≥ 0:

P{|X − µ| ≥ b} = P
{
(X − µ)2 ≥ b2} ≤ E(X − µ)2

b2 =
VarX

b2 .
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3. Examples

Example
On average, 50 gadgets per day are manufactured in a factory.
What can be said on the probability that at least 75 will be
produced tomorrow?

Let X be the number of gadgets produced tomorrow. Clearly
X ≥ 0, thus using Markov’s inequality,

P{X ≥ 75} ≤ EX
75

=
50
75

=
2
3
.

Notice that nothing was assumed on the distribution of X
except its mean!
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3. Examples

Example
On average, 50 gadgets per day are manufactured in a factory
and the standard deviation of this number is 5. What can be
said on the probability that more than 40 but less than 60 will
be produced tomorrow?

Let X be the number of gadgets produced tomorrow, µ = 50,
VarX = 25. By Chebyshev’s inequality,

P{40 < X < 60} = P{−10 < X − µ < 10} = P{|X − µ| < 10}
= 1 − P{|X − µ| ≥ 10}

≥ 1 − VarX
102 = 1 − 25

102 =
3
4
.

Again, only µ and σ2 were needed.
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Weak Law of Large Numbers

Finally, we arrived to the first of two very important theorems
we cover. The Law of Large Numbers will tell us that the
sample mean of an i.i.d. sample converges to the expectation
of the individual variables.

A suitable application will make the connection between our
abstract definition of probability and relative frequencies
observed in a large number of independent trials.
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Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers (WLLN))
Let X1, X2, . . . be a sequence of i.i.d. random variables with
finite mean µ. Then for every ε > 0,

P
{∣∣∣

X1 + X2 + · · ·+ Xn

n
− µ

∣∣∣ > ε
}

−→
n→∞

0.
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Weak Law of Large Numbers

Proof.

We prove a bit less: we’ll assume a finite variance σ2 for our
variables. The WLLN is true without this assumption.

P
{∣∣∣

X1 + X2 + · · ·+ Xn

n
− µ

∣∣∣ > ε
}
= P

{∣∣X̄ − µ
∣∣ > ε

}

≤ VarX̄
ε2 =

σ2

nε2 −→
n→∞

0.
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Weak Law of Large Numbers

Proof.

We prove a bit less: we’ll assume a finite variance σ2 for our
variables. The WLLN is true without this assumption.

P
{∣∣∣

X1 + X2 + · · ·+ Xn

n
− µ

∣∣∣ > ε
}
= P

{∣∣X̄ − µ
∣∣ > ε

}

≤ VarX̄
ε2 =

σ2

nε2 −→
n→∞

0.
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Weak Law of Large Numbers

Proof.
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Weak Law of Large Numbers

Corollary
Let Yn ∼ Binom(n, p). Then for all ε > 0,

P
{∣∣∣

Yn

n
− p

∣∣∣ ≥ ε
}

−→
n→∞

0.

Notice that Yn
n is precisely the relative frequency of successes

in n independent trials, and p is the probability of success in a
particular trial.
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Weak Law of Large Numbers

Proof.
Let Xi , i = 1 . . . n be i.i.d. Bernoulli(p) variables. Then we know

Yn
d
=

n∑

i=1

Xi and EXi = µ = p,

hence by the WLLN

P
{∣∣∣

Yn

n
− p

∣∣∣ ≥ ε
}
= P

{∣∣∣
∑n

i=1 Xi

n
− µ

∣∣∣ ≥ ε
}

−→
n→∞

0.
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Central Limit Theorem

The WLLN tells us that the sample mean of an i.i.d. sequence
is close to the expectation of the variables. A second, finer
approach will be the Central Limit Theorem. It will tell us the
order of magnitude of the distance between the sample mean
and the true mean of our random variables.
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Central Limit Theorem

We start with an auxiliary proposition without proof.

Proposition
Suppose that the moment generating function values MZn(t) of
a sequence Zn of random variables converge to the moment
generating function MZ (t) of a random variable Z at every t of
an open interval that contains 0. Then the distribution function
values FZn(z) of Zn converge to FZ (z) at every point z where
this latter is continuous.
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Central Limit Theorem

Theorem (Central Limit Theorem (CLT))
Let X1, X2, . . . be i.i.d. random variables with both their mean µ
and variance σ2 finite. Then for every real a < b,

P
{

a <
X1 + X2 + · · ·+ Xn − nµ√

n σ
≤ b

}
−→
n→∞

Φ(b)− Φ(a).

Remark

Notice the mean nµ and standard deviation
√

n σ of the sum
X1 + X2 + · · ·+ Xn.
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Central Limit Theorem

Remark

When Xi are i.i.d. Bernoulli(p), µ = p, σ2 = p(1 − p),
Yn : = X1 + · · ·+ Xn ∼ Binom(n, p), and the CLT becomes the
DeMoivre-Laplace Theorem:

P
{

a <
X1 + X2 + · · ·+ Xn − nµ√

n σ
≤ b

}

= P
{

a <
Yn − np√
np(1 − p)

≤ b
}

−→
n→∞

Φ(b)− Φ(a).

270 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT
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Proof.
Again, we prove a little bit less: we assume that the moment
generating function M(t) of the Xi ’s is finite for small t ’s.

Assume first µ = 0, σ = 1. Then we look at
n∑

i=1

Xi√
n
 . Its

moment generating function is

M n∑

i=1

Xi
√

n

(t) = Ee
t

n∑

i=1

Xi
√

n
= E

n∏

i=1

et
Xi
√

n =
n∏

i=1

Ee(
t

√

n
)Xi

=
n∏

i=1

M
( t√

n

)
=

[
M
( t√

n

)]n
.

We’ll take log of this function, therefore define
Ψ(x) : = ln M(x).
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Proof.
For small x ’s,

Ψ(x) = Ψ(0) + Ψ ′(0) · x + Ψ ′′(0) · x2

2
+O(x3)

= 0 + EX · x + VarX · x2

2
+O(x3)

= 0 + 0 · x + 1 · x2

2
+O(x3).  
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Proof.

Ψ(x) = x2

2 +O(x3). Therefore,

ln M n∑

i=1
Xi/

√
n
(t) = ln

[
M
( t√

n

)]n
= n ln M

( t√
n

)
= nΨ

( t√
n

)

= n · t2

2n
+ nO

( t3

n3/2

)
−→
n→∞

t2

2
,

M n∑

i=1
Xi/

√
n
(t) −→

n→∞
et2/2 = MN (0, 1)(t),

and we are done in the case µ = 0, σ = 1.

273 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT

Central Limit Theorem

Proof.

Ψ(x) = x2

2 +O(x3). Therefore,

ln M n∑

i=1
Xi/

√
n
(t) = ln

[
M
( t√

n

)]n
= n ln M

( t√
n

)
= nΨ

( t√
n

)

= n · t2

2n
+ nO

( t3

n3/2

)
−→
n→∞

t2

2
,

M n∑

i=1
Xi/

√
n
(t) −→

n→∞
et2/2 = MN (0, 1)(t),

and we are done in the case µ = 0, σ = 1.

273 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT

Central Limit Theorem

Proof.

Ψ(x) = x2

2 +O(x3). Therefore,

ln M n∑

i=1
Xi/

√
n
(t) = ln

[
M
( t√

n

)]n
= n ln M

( t√
n

)
= nΨ

( t√
n

)

= n · t2

2n
+ nO

( t3

n3/2

)
−→
n→∞

t2

2
,

M n∑

i=1
Xi/

√
n
(t) −→

n→∞
et2/2 = MN (0, 1)(t),

and we are done in the case µ = 0, σ = 1.

273 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT

Central Limit Theorem

Proof.

Ψ(x) = x2

2 +O(x3). Therefore,

ln M n∑

i=1
Xi/

√
n
(t) = ln

[
M
( t√

n

)]n
= n ln M

( t√
n

)
= nΨ

( t√
n

)

= n · t2

2n
+ nO

( t3

n3/2

)
−→
n→∞

t2

2
,

M n∑

i=1
Xi/

√
n
(t) −→

n→∞
et2/2 = MN (0, 1)(t),

and we are done in the case µ = 0, σ = 1.

273 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT

Central Limit Theorem

Proof.

Ψ(x) = x2

2 +O(x3). Therefore,

ln M n∑

i=1
Xi/

√
n
(t) = ln

[
M
( t√

n

)]n
= n ln M

( t√
n

)
= nΨ

( t√
n

)

= n · t2

2n
+ nO

( t3

n3/2

)
−→
n→∞

t2

2
,

M n∑

i=1
Xi/

√
n
(t) −→

n→∞
et2/2 = MN (0, 1)(t),

and we are done in the case µ = 0, σ = 1.

273 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT

Central Limit Theorem

Proof.

Ψ(x) = x2

2 +O(x3). Therefore,

ln M n∑

i=1
Xi/

√
n
(t) = ln

[
M
( t√

n

)]n
= n ln M

( t√
n

)
= nΨ

( t√
n

)

= n · t2

2n
+ nO

( t3

n3/2

)
−→
n→∞

t2

2
,

M n∑

i=1
Xi/

√
n
(t) −→

n→∞
et2/2 = MN (0, 1)(t),

and we are done in the case µ = 0, σ = 1.

273 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT

Central Limit Theorem

Proof.

Ψ(x) = x2

2 +O(x3). Therefore,

ln M n∑

i=1
Xi/

√
n
(t) = ln

[
M
( t√

n

)]n
= n ln M

( t√
n

)
= nΨ

( t√
n

)

= n · t2

2n
+ nO

( t3

n3/2

)
−→
n→∞

t2

2
,

M n∑

i=1
Xi/

√
n
(t) −→

n→∞
et2/2 = MN (0, 1)(t),

and we are done in the case µ = 0, σ = 1.

273 / 280



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev WLLN CLT

Central Limit Theorem

Proof.

For general µ and σ2,

X1 + X2 + · · ·+ Xn − nµ√
n σ

=
X1−µ
σ + X2−µ

σ + · · ·+ Xn−µ
σ√

n
,

and Xi−µ
σ are i.i.d. with mean zero and variance 1, thus we can

apply the previous case to conclude the proof.

Remark
A natural question is where the CLT starts giving a useful
approximation for practical purposes. People usually agree
that, depending on the required level of accuracy, one or two
dozens of random variables are enough in most cases. See the
Berry-Esseen theorems for a theoretical bound on this.
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Central Limit Theorem

Example
An astronomer measures the unknown distance µ of an
astronomical object. He performs n i.i.d. measurements each
with mean µ and standard deviation 2 lightyears. How large
should n be to have ±0.5 lightyears accuracy with at least 95%
probability?
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Solution
Clearly, the outcome of the n measurements will be the sample
mean X̄ . We wish to bring this closer to µ than 0.5 with high
probability:

0.95 ≤ P
{∣∣∣

X1 + X2 + · · ·+ Xn

n
− µ

∣∣∣ ≤ 0.5
}

= P
{∣∣∣

X1 + X2 + · · ·+ Xn − nµ
2
√

n

∣∣∣ ≤ 0.5
√

n
2

}

= P
{
−
√

n
4

≤ X1 + X2 + · · ·+ Xn − nµ
2
√

n
≤

√
n

4

}
.

We now assume that we need enough measurements for the
CLT to kick in:
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Central Limit Theorem

Solution (. . . cont’d)

0.95 ≤ P
{
−
√

n
4

≤ X1 + X2 + · · ·+ Xn − nµ
2
√

n
≤

√
n

4

}

0.95 . Φ
(√n

4

)
− Φ

(
−
√

n
4

)
= 2Φ

(√n
4

)
− 1

0.975 . Φ
(√n

4

)

1.96 .

√
n

4
61.5 . n,

the astronomer needs at least 62 measurements.
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Closing remarks

This unit was the first step in your probability and statistics
studies at the University. Probability has a broad range of
applications in e.g.
◮ statistics
◮ financial mathematics
◮ actuarial sciences
◮ physics
◮ computer sciences and electrical engineering
◮ social sciences
◮ traffic engineering
◮ biology
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as well as beautiful pure mathematical research questions on
its own connecting to, among others,
◮ analysis (potential theory, asymptotic analysis, complex

function theory, functional analysis, dynamical systems,
fractals)

◮ combinatorics (counting problems, coloring, combinatorial
processes, graph theory)

◮ mathematical physics (statistical physics problems,
quantum systems)

◮ number theory (Riemann Zeta function, distribution of
primes)

◮ algebra (group theory, random matrix theory).
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Your next unit will be Statistics 1. For further studies in
probability, please consult the document Unit Choice
Supplement for Studies in Probability, available on the
Probability 1 webpage and on Intranet (similar guides on
Statistics and Data Science / Logic and Set Theory are on
Intranet).

Thank you.
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