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Random edge-weighted graphs

• Complete graph on 𝑛 nodes, 𝐺 = 𝐾𝑛
• Random edge weights, iid 𝐸𝑥𝑝(1)



Distance between nodes: 
Epidemic 

• First passage percolation

• Single node infected initially

• Edge weight = time for infection to cross that 
edge

• Length of shortest path between nodes u and 
v is the same as the time for infection started 
at u to reach v (or vice versa)



Analysis of first-passage percolation

• 𝑇𝑘 : first time that 𝑘 nodes are infected

• Number of edges between infected and 
uninfected nodes : 𝑘(𝑛 − 𝑘)

• Time to infect one more node is minimum of 
𝑘(𝑛 − 𝑘) independent 𝐸𝑥𝑝(1) r.v.s.
















knknknk
TTE kk

111

)(

1
][ 1



Analysis (cont.)

• Time to infect all nodes is

𝑇𝑛 = 𝑇𝑛𝑇𝑛−1 +⋯+ (𝑇2𝑇1) + 𝑇1

• So 𝐸 𝑇𝑛 ~ 2 log(𝑛)/𝑛

• Most nodes infected ~ log(𝑛)/𝑛

• Diameter of graph ~ 3 log(𝑛)/𝑛



Steiner tree problem

• Fix 𝑘 points on our graph G

• Find the minimum weight tree connecting the 
points

• For 𝑘 typical nodes call this weight 𝑊𝑘
• Study asymptotics of this random variable, for 
𝑘 fixed and 𝑛 tending to infinity



Previous results

• Bollobas, Gamarnik, Riordan and Sudakov
(2004):

𝑊𝑘 ~ 𝑘 − 1
log 𝑛 − log(𝑘)

𝑛

• Here, the 𝑘 nodes are chosen at random. 
Equivalently, the nodes are fixed first, and the 
edge weights assigned afterwards.
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Previous results

• What if we first assign edge weights, then 
choose the 𝑘 nodes that maximise the weight 
of the Steiner tree?

• Call this random variable 𝑀𝑘
• Janson (1999):

𝑊2 ~
log(𝑛)

𝑛
, 𝑀2 ~ 3

log(𝑛)

𝑛



More precisely



Distribution of Typical Distance



Related work

• Random edge-weighted model very popular, 
has been used to study many combinatorial 
optimisation problems:

• Minimum spanning tree (Frieze, 1985):

𝑊𝑛 = 𝑀𝑛~(3) =  

𝑗=1
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Related work

• Travelling salesman tour (Frieze, 2004):
(3)  WTSP  6

• Shortest path tree (van der Hofstad, Hooghiemstraa,
van Mieghem, 2006):

𝑊𝑆𝑃𝑇 ~ (2) =  

𝑗=1

∞
1

𝑗2

• Distribution of Diameter (Bhamidi, van der Hofstad, 
2013)



Our results (1)

• The weight of the max-weight 𝑘-Steiner tree
among all choices of 𝑘 nodes is

𝑀𝑘 ~ 2𝑘 − 1
log 𝑛

𝑛



Our results (1)

• Theorem (D., A. Ganesh)



Intuition

• Typical distance between most pairs of nodes 
is log(𝑛)/𝑛

• Some nodes are remote – at distance 
log(𝑛)/𝑛 from their nearest neighbour

• But have ‘typical’ neighbours at this distance

• The typical neighbours are joined by a 𝑘-
Steiner tree of weight (𝑘1)log(𝑛)/𝑛

• Intuition can be turned into a lower bound



Some loose upper bounds

• Janson’s result on graph diameter implies that

𝑀𝑘  3(𝑘 − 1)
log(𝑛)

𝑛
• Consider infection started at a typical node: 

reaches all nodes by time 2 log(𝑛)/𝑛

• Use resulting paths to connect given k nodes: 
yields

𝑀𝑘  2𝑘
log(𝑛)

𝑛



Sketch of upper bound proof

• Want to show that, for any 𝑘 nodes, the 
weight of the 𝑘-Steiner tree connecting them 

is bounded by (2𝑘 − 1)
log(𝑛)

𝑛

• Use Chernoff bound on RV dominating weight 
of a typical 𝑘-Steiner tree, apply union bound
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Sketch of upper bound proof



Upper bound: intuition

• Pick 𝑘 nodes, and start infection 
simultaneously from each of them

• Grow infected sets until each has (a bit more 

than) 𝑛(𝑘−1)/𝑘 nodes

• If subsets were independent, would all have a 
node in common



Upper bound: intuition



Upper bound: intuition

• Pick 𝑘 nodes, and start infection 
simultaneously from each of them

• Grow infected sets until each has 𝐶𝑛(𝑘−1)/𝑘

nodes

• If subsets were independent, would all have a 
node in common

• But sets are not independent after first pair 
intersect



Upper bound: intuition
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Upper bound: intuition



Asymptotic shapes

• Weight of 𝑘-Steiner tree is (𝑘 − 1)log(𝑛)/𝑛

• Same as sum of shortest path lengths from one of 
the 𝑘 nodes to the other 𝑘 − 1

• Suggests tree is degenerate – has no internal 
nodes

• Growing infected sets from each node gives same 
total weight, but different shape

• Expected weight not sufficiently informative, 
need to look at fluctuations



Asymptotic shapes
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Asymptotic shapes



Simulations: 3-Steiner tree
2,250 Vertices



Simulations: 3-Steiner tree
100,000 Vertices



Simulations: 3-Steiner tree
1,000,000 Vertices



Leg 1 Distribution – 1M Vertices



Typical Distance Empirical Distribution
cf. log(n) + Λ1 + Λ2 − Λ1,2



Typical 3-Steiner Tree Weight Empirical 
Distribution cf. 2log(n)



Average Tree Weight vs 2 log(n)



Typical Steiner tree weight

• Conjecture:

• Cf.



Our results (2)

• Theorem (D., A. Ganesh):
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Upper Bound/Lower Bound

• Theorem

• Conjecture



Conclusions

• Obtained limiting results for weight of 
extremal Steiner trees in random edge-
weighted graphs

• Made progress towards characterising 
fluctuations of typical Steiner tree

• Fluctuations progress implies some non-trivial 
distribution of limiting tree shapes


