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Load forecasting

Probabilistic forecasting of electricity demand is an important task
for all active market participants!

I pricing of electricity contracts for end customers
I basis for risk management and hedging strategies of

suppliers and vendors
I optimization of electricity procurement (generation) and

consumption
I evaluation of the fair market price of electricity
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Literature

I approaches vary from AI-based like neural networks to
parametric approaches like exponential smoothing or time
series analysis (Weron (2006), Alfares and Nazeeruddin
(2002))

I typically considered: load forecasting models for households
or for the total system load (Paatero and Lund (2005),
Dordonnat et. al (2008))

I lack of information about uncertainty (deterministic forecasts)
I usual forecast horizon is hours to days ((very) short term)

Suitable studies of medium term probabilistic models for industrial
end customers seem to be rare so far.
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Our aim:

I load forecasting for companies with respect to business
sectors

I medium-term, i.e. year-ahead forecasts
I total system load as an exogenous factor
I SARIMA model for stochastic load component
I challenge: consumption patterns can vary significantly

among different sectors
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Load profiles

I metering of electricity demand
I apply our model to hourly load data
I the cumulated load of a set of households or the total system

load show a quite homogeneous behavior (diversification)
I in contrast, the load of a single industry customer is more

heterogeneous
I reason: stochastic events like machine failures have a

greater impact on the individual demand profile
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Some examples

Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa Su

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa Su

Retail Service

Electric Steel Mill Paper Mill

Automotive Parts SupplierConnection Technology

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

Metal Processing Industry Metal Forming Technologies
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Fundamental model equation

Let Ct denote the electricity consumption at time t , the model
equation has the following form:

log Ct = Dt + u(G∗t ) + Rt

Here,
I Dt is a deterministic trend,
I u(G∗t ) is a function of the residual grid load G∗t and
I Rt is a residual time series.
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A similar-day approach for Dt

The deterministic trend Dt is given by

Dt =β0 + β1 sin{ 2πt
365.25 · 24

}+ β2 cos{ 2πt
365.25 · 24

}

+
16∑

j=3

βjϑj−2(t) +
40∑

j=17

βj%j−16(t),

where the βj are determined via OLS (using outlier-cleaned
historical data). The dummies ϑj , j = 1, . . . ,14 are described in
table 1 and %1, . . . , %24 denote the hours.
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A similar-day approach for Dt

Table : Overview of dummy variables for D41sincos.

ϑ1 Mondays (if not a public holiday or a bridge day)
ϑ2 Fridays (if not a public holiday or a bridge day)
ϑ3 Tuesdays, Wednesdays and Thursdays (if not a p. hol.)
ϑ4 Saturdays (if not a public holiday)
ϑ5 Sundays (if not a public holiday)
ϑ6 Winter holiday period
ϑ7 Summer holiday period
ϑ8 Public holidays
ϑ9 Bridge day (Monday before a public holiday)
ϑ10 Bridge day (Friday after a public holiday)
ϑ11 January 1st
ϑ12 December 24th
ϑ13 December 25th and 26th
ϑ14 New Year’s Eve
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G∗t as an exogenous factor

I G∗t denotes the residual grid load, i.e. the total system load
minus its deterministic part

I maps the stochastic fluctuations of the market
I correlation with a customer’s electricity demand can be

positive or negative
I the function u(G∗t ) could be any suitable function, we found a

linear approach sufficient

 

 

Residual grid load vs. residual customer consumption (peak hours): Corr=23.16%

Robust regression
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The residual time series Rt

I covers remaining autocorrelations and seasonalities
I often modeled by a Gaussian white noise process (iid normal

distributed)
I general assumption of independence and light tails is wrong
I choose a (seasonal) ARIMA model for Rt

I number and choice of parameters depend on business sector

Kevin Berk and Alfred Müller Electricity load forecasting 12



Motivation

Load profiles

Methodology

Empirical
analysis

Forecasting

Comparing
Models

Conclusion

Database

I load data of 21 German customers
I each data set includes an hourly profile of two years (17520

data points)
I hourly market and grid load data, provided by EEX and

ENTSOE
I customers are divided into three industry sectors

1. Retail industry
2. Two shift operating industry
3. Three shift operating industry
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Real consumption vs. Dt

Deterministic trend / one year
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Figure : Retail industry (top left), three shift operating industry (top right), two shift
operating industry (bottom left) and grid load (bottom right).

Kevin Berk and Alfred Müller Electricity load forecasting 14



Motivation

Load profiles

Methodology

Empirical
analysis

Forecasting

Comparing
Models

Conclusion

Real consumption vs. Dt

Deterministic trend / one week
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Figure : Retail industry (top left), three shift operating industry (top right), two shift
operating industry (bottom left) and grid load (bottom right).
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Function u(G∗t )

u(G∗t ) = λ0,k + λ1,k G∗t,k where k ∈ {peak,off-peak,weekend}

I dependence between residual demand (stochastic load
component) and residual system load

I linear approach for peak, off-peak and weekend hours
I negatively correlated for retail industry customers
Industry ρp ρoff ρwe λ0,p λ1,p λ0,off λ1,off λ0,we λ1,we

Retail -14.1 % -18.4 % -25.9 % 16.18 -0.36 -309 -0.46 -420 -0.78
2 Shifts 22.6 % 14.1 % 25.1 % 552.15 0.68 931 0.6 295 2.31
3 Shifts 23.1 % 31.0 % 24.3 % 195.96 0.31 595 0.22 1109 0.55
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Residual time series Rt

Rt = log Ct − Dt − u(G∗t )
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Figure : Residual time series Rt for retail industry
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Model choice for Rt

I BIC suggests a SARIMA(p,0,q)× (P,0,Q)24 model with

(p,0,q)× (P,0,Q) =

=


(3,0,3)× (0,0,2) for retail customers,
(4,0,4)× (1,0,1) for two shift operating customers,
(2,0,0)× (2,0,2) for three shift operating customers.

I innovations are heavy tailed
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Figure : normal distribution fit for SARIMA model innovations
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Model choice for Rt

Best fit for innovations given by NIG-distribution.

−1.5 −1 −0.5 0 0.5 1 1.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure : Fit of a normal distribution (dotted) and a normal inverse Gaussian
distribution (dashed) to the kernel density of the empirical innovations (solid) on a
semi-logaritmic scale.
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Medium-term forecasts

I year ahead forecast scenarios
I Monte-Carlo approach for retail pricing (see Burger and

Müller (2012))
I trading strategy evaluation
I investment appraisal (thermal power station, photovoltaic

system)
I peak load management
I strategic planning
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Real load vs one-year forecast scenarios
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Real load vs one-year forecast scenarios
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Real load vs expected consumption / forecast
scenarios
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Real load vs expected consumption / forecast
scenarios
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Real load vs expected consumption / forecast
scenarios
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Comparing Models

Comparing different variants of the model:

I different number of parameters for seasonal patterns
I monthly dummies, sin-cos, area-preserving splines of order 4
I innovations normal, t or NIG

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
 

 

Figure : Regression coefficients of monthly dummy variables and fitted spline of
order four.
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Evaluation of probabilistic forecasts

For a given observation x̃ let F̃ (z) = 1[z≥x̃ ] be the empirical cdf.
We use the continuous ranked probability score (CPRS), which is
defined for a probabilistic forecast with cdf F and an observation
x̃ as

CRPS(F , x̃) =
∫ ∞
−∞

(F (z)− F̃ (z))2dz

=

∫ 1

0
QSα(F−1(α), x̃)dα

with
QSα(q, x̃) = 2(1[x̃<q] − α)(q − x̃)

the quantile score.
We estimate F via Monte-Carlo simulation.
We compute this for every point of time t and add up over t (of
one year).
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Data of four companies
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Figure : Weekly (left) and yearly (right) electricity demand structure of the four
customers in our database. Customers I-IV from top to bottom.
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Evaluation of probabilistic forecasts

Table : CRPS of different models for customer I to II. Absolute value and
percentage deviation from benchmark. Rank in brackets, best values in bold.

Model CRPS pct. CRPS pct.
customer I customer II

Benchmark 28.59 (10) 100% 14.24 (10) 100%
D31sincos-Normal 23.43 (9) -18.03% 9.01 (9) -36.77%
D35-SARIMA-Normal 23.26 (8) -18.62% 8.95 (8) -37.13%
D35-SARIMA-NIG 22.84 (7) -20.12% 8.89 (5) -37.6%
D35spline-SARIMA-NIG 22.78 (6) -20.33% 8.93 (7) -37.33%
D41sincos-SARIMA-NIG 21.29 (3) -25.53% 8.83 (3) -38.03%
D41sincos-GL-SARIMA-NIG 20.57 (1) -28.03% 8.72 (1) -38.8%
D51-SARIMA-Normal 21.96 (5) -23.19% 8.89 (6) -37.56%
D51-SARIMA-NIG 21.57 (4) -24.55% 8.86 (4) -37.78%
D51spline-GL-SARIMA-NIG 20.87 (2) -27% 8.73 (2) -38.68%
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Evaluation of probabilistic forecasts

Table : CRPS of different models for customer III and IV. Absolute value and
percentage deviation from benchmark. Rank in brackets, best values in bold.

Model CRPS pct. CRPS pct.
customer III customer IV

Benchmark 888.78 (10) 100% 45.33 (10) 100%
D31sincos-Normal 830.72 (6) -6.53% 27.46 (3) -39.43%
D35-SARIMA-Normal 848.54 (9) -4.53% 27.44 (2) -39.47%
D35-SARIMA-NIG 844.13 (8) -5.02% 27.59 (7) -39.14%
D35spline-SARIMA-NIG 841.13 (7) -5.36% 27.56 (6) -39.21%
D41sincos-SARIMA-NIG 771.95 (1) -13.14% 27.51 (5) -39.31%
D41sincos-GL-SARIMA-NIG 774.24 (2) -12.89% 27.97 (8) -38.3%
D51-SARIMA-Normal 792.51 (3) -10.83% 27.39 (1) -39.58%
D51-SARIMA-NIG 792.53 (4) -10.83% 27.49 (4) -39.37%
D51spline-GL-SARIMA-NIG 795.26 (5) -10.52% 28.14 (9) -37.91%

Kevin Berk and Alfred Müller Electricity load forecasting 27



Motivation

Load profiles

Methodology

Empirical
analysis

Forecasting

Comparing
Models

Conclusion

Evaluation of probabilistic forecasts
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Figure : Rank histograms of the empirical PITs for the best ranked models. Top
row: customer I and II. Bottom row: customer III and IV.
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Conclusion

I model choice justified by data
I in-sample fit superior to other models (e.g. white noise

residuals)
I innovations non-normal
I captures peak behavior well
I out-of sample backtesting supports the model
I good performance in risk management

Outlook
I Current research: Model extension to regime-switching load

profiles
I ARMA model with regime dependent coefficients
I time-varying transition probabilities
I evaluating dependence modeling of probabilistic forecasts
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Thank you for your attention!

Kevin Berk and Alfred Müller Electricity load forecasting 32


	Motivation
	Load profiles
	Methodology
	Empirical analysis
	Forecasting
	Comparing Models
	Conclusion

