

Fakultät IV Department Mathematik

《曰》 《聞》 《臣》 《臣》 三臣

900

Probabilistic Forecasting of Medium-Term Electricity Demand: A Comparison of Time Series Models

Kevin Berk and Alfred Müller

University of Bristol

March 13, 2015

Load forecasting

Motivation

- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

Probabilistic forecasting of electricity demand is an important task for all active market participants!

- pricing of electricity contracts for end customers
- basis for risk management and hedging strategies of suppliers and vendors
- optimization of electricity procurement (generation) and consumption
- evaluation of the fair market price of electricity

Literature

Motivation

- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

- approaches vary from AI-based like neural networks to parametric approaches like exponential smoothing or time series analysis (Weron (2006), Alfares and Nazeeruddin (2002))
- typically considered: load forecasting models for households or for the total system load (Paatero and Lund (2005), Dordonnat et. al (2008))
- lack of information about uncertainty (deterministic forecasts)
- usual forecast horizon is hours to days ((very) short term)

Suitable studies of medium term probabilistic models for industrial end customers seem to be rare so far.

Our aim:

Motivation

- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

- load forecasting for companies with respect to business sectors
- medium-term, i.e. year-ahead forecasts
- total system load as an exogenous factor
- SARIMA model for stochastic load component
- challenge: consumption patterns can vary significantly among different sectors

・ロト ・ 同ト ・ ヨト

Outline

Motivation

- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

- 1. Motivation
- 2. Load profiles
- 3. Methodology
- 4. Empirical analysis
- 5. Forecasting
- 6. Comparing Models
- 7. Conclusion

Ξ

Load profiles

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

metering of electricity demand

- apply our model to hourly load data
- the cumulated load of a set of households or the total system load show a quite homogeneous behavior (diversification)
- in contrast, the load of a single industry customer is more heterogeneous
- reason: stochastic events like machine failures have a greater impact on the individual demand profile

Some examples

Motivation

Load profiles

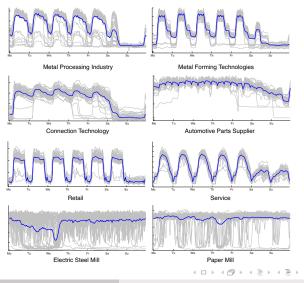
Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion



Kevin Berk and Alfred Müller

Electricity load forecasting

E

Fundamental model equation

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

Let C_t denote the electricity consumption at time t, the model equation has the following form:

$$\log C_t = D_t + u(G_t^*) + R_t$$

Here,

- ► *D_t* is a **deterministic trend**,
- $u(G_t^*)$ is a function of the **residual grid load** G_t^* and
- R_t is a residual time series.

・ロト ・四ト ・ヨト

A similar-day approach for D_t

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

The deterministic trend D_t is given by

$$D_{t} = \beta_{0} + \beta_{1} \sin\{\frac{2\pi t}{365.25 \cdot 24}\} + \beta_{2} \cos\{\frac{2\pi t}{365.25 \cdot 24} + \sum_{j=3}^{16} \beta_{j} \vartheta_{j-2}(t) + \sum_{j=17}^{40} \beta_{j} \varrho_{j-16}(t),$$

where the β_j are determined via OLS (using outlier-cleaned historical data). The dummies ϑ_j , j = 1, ..., 14 are described in table 1 and $\varrho_1, ..., \varrho_{24}$ denote the hours.

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

A similar-day approach for D_t

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

 Table : Overview of dummy variables for D41sincos.

- ϑ_1 Mondays (if not a public holiday or a bridge day)
- ϑ_2 Fridays (if not a public holiday or a bridge day)
- ϑ_3 Tuesdays, Wednesdays and Thursdays (if not a p. hol.)
- ϑ_4 Saturdays (if not a public holiday)
- ϑ_5 Sundays (if not a public holiday)
- θ₆ Winter holiday period
- *θ*₇ Summer holiday period
- ϑ_8 Public holidays
- ϑ_9 Bridge day (Monday before a public holiday)
- ϑ_{10} Bridge day (Friday after a public holiday)
- ϑ_{11} January 1st
- θ₁₂ December 24th
- ϑ_{13} December 25th and 26th
- *θ*₁₄ New Year's Eve

G_t^* as an exogenous factor

Motivation

Load profiles

Methodology

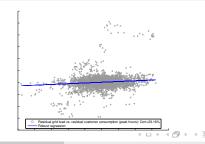
Empirical analysis

Forecasting

Comparing Models

Conclusion

- ► G^{*}_t denotes the residual grid load, i.e. the total system load minus its deterministic part
- maps the stochastic fluctuations of the market
- correlation with a customer's electricity demand can be positive or negative
- ► the function u(G^{*}_t) could be any suitable function, we found a linear approach sufficient



The residual time series R_t

- Motivation
- Load profiles

Methodology

- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

- covers remaining autocorrelations and seasonalities
- often modeled by a Gaussian white noise process (iid normal distributed)
- general assumption of independence and light tails is wrong
- choose a (seasonal) ARIMA model for R_t
- number and choice of parameters depend on business sector

Database

- Motivation
- Load profiles
- Methodology

Empirical analysis

- Forecasting
- Comparing Models
- Conclusion

- load data of 21 German customers
- each data set includes an hourly profile of two years (17520 data points)
- hourly market and grid load data, provided by EEX and ENTSOE
- customers are divided into three industry sectors
- 1. Retail industry
- 2. Two shift operating industry
- 3. Three shift operating industry

Real consumption vs. D_t

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

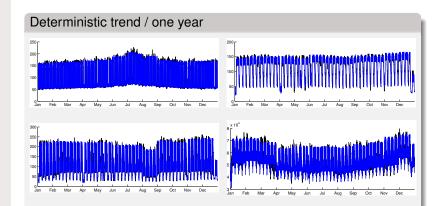


Figure : Retail industry (top left), three shift operating industry (top right), two shift operating industry (bottom left) and grid load (bottom right).

Real consumption vs. D_t

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

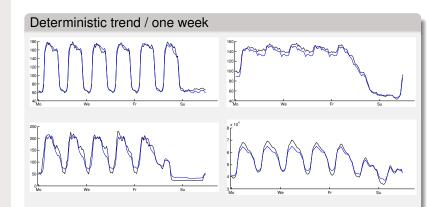


Figure : Retail industry (top left), three shift operating industry (top right), two shift operating industry (bottom left) and grid load (bottom right).

I = I = I = I = I

ъ

Function $u(G_t^*)$

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

 $u(G_t^*) = \lambda_{0,k} + \lambda_{1,k}G_{t,k}^*$ where $k \in \{\text{peak}, \text{off-peak}, \text{weekend}\}$

- dependence between residual demand (stochastic load component) and residual system load
- ► linear approach for peak, off-peak and weekend hours
- negatively correlated for retail industry customers

Industry	$\rho \mathbf{p}$	$\rho_{\rm off}$	ρwe	$\lambda_{0,\mathbf{p}}$	$\lambda_{1,\mathbf{p}}$	$\lambda_{0, \text{off}}$	$\lambda_{1,off}$	$\lambda_{0},$ we	$\lambda_{1,we}$
Retail	-14.1 %	-18.4 %	-25.9 %	16.18	-0.36	-309	-0.46	-420	-0.78
2 Shifts	22.6 %	14.1 %	25.1 %	552.15	0.68	931	0.6	295	2.31
3 Shifts	23.1 %	31.0 %	24.3 %	195.96	0.31	595	0.22	1109	0.55

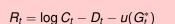
・ロト ・ 同ト ・ ヨト

Motivation Load profiles Methodology Empirical

analysis Forecasting Comparing Models

Conclusion

Residual time series R_t



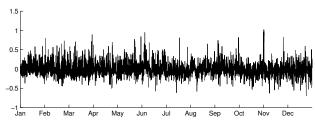


Figure : Residual time series R_t for retail industry

Image: A math and a math a

∃ >

Model choice for R_t

- Motivation
- Load profiles
- Methodology

Empirical analysis

- Forecasting
- Comparing Models
- Conclusion

▶ BIC suggests a SARIMA $(p, 0, q) \times (P, 0, Q)_{24}$ model with

$$(p,0,q) \times (P,0,Q) =$$

- $= \begin{cases} (3,0,3)\times(0,0,2) & \text{for retail customers,} \\ (4,0,4)\times(1,0,1) & \text{for two shift operating customers,} \\ (2,0,0)\times(2,0,2) & \text{for three shift operating customers.} \end{cases}$
- innovations are heavy tailed

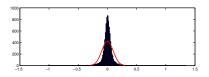


Figure : normal distribution fit for SARIMA model innovations

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト

Model choice for R_t

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

Best fit for innovations given by NIG-distribution.

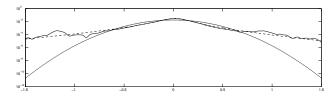


Figure : Fit of a normal distribution (dotted) and a normal inverse Gaussian distribution (dashed) to the kernel density of the empirical innovations (solid) on a semi-logaritmic scale.

Image: A math and a math a

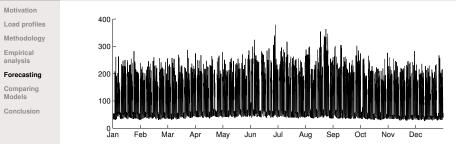
Medium-term forecasts

- Motivation
- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

- year ahead forecast scenarios
- Monte-Carlo approach for retail pricing (see Burger and Müller (2012))
- trading strategy evaluation
- investment appraisal (thermal power station, photovoltaic system)
- peak load management
- strategic planning

・ロト ・ 同ト ・ ヨト

Real load vs one-year forecast scenarios



< ∃⇒

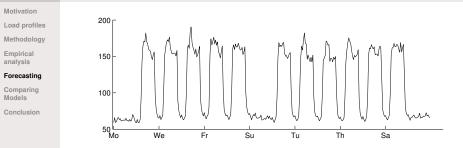
E

Motivation

Real load vs one-year forecast scenarios

400 r Load profiles Methodology 300 Empirical analysis 200 Forecasting Comparing Models 100 Conclusion 0∟ Jan Feb Mar Apr Mav Jun Jul Aug Sep Oct Nov Dec 400 r 300 200 100 0∟ Jan Feb Mar Jun Jul Aug Apr May Sep Oct Nov Dec < 61

Real load vs expected consumption / forecast scenarios



< 17 ▶

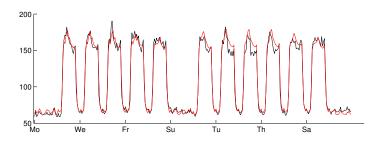
< 문→ 문

Real load vs expected consumption / forecast scenarios

- Load profiles
- Methodology
- Empirical analysis

Forecasting

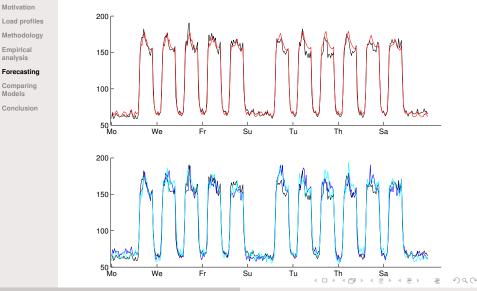
- Comparing Models
- Conclusion



< 17 ▶

< 문→ 문

Real load vs expected consumption / forecast scenarios



Kevin Berk and Alfred Müller

Electricity load forecasting

Comparing Models

- Motivation
- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

Comparing different variants of the model:

- different number of parameters for seasonal patterns
- monthly dummies, sin-cos, area-preserving splines of order 4
- innovations normal, t or NIG

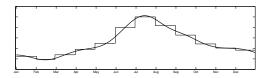


Figure : Regression coefficients of monthly dummy variables and fitted spline of order four.

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

For a given observation \tilde{x} let $\tilde{F}(z) = \mathbf{1}_{[z \ge \tilde{x}]}$ be the empirical cdf. We use the *continuous ranked probability score* (CPRS), which is defined for a probabilistic forecast with cdf *F* and an observation \tilde{x} as

$$CRPS(F, \tilde{x}) = \int_{-\infty}^{\infty} (F(z) - \tilde{F}(z))^2 dz$$
$$= \int_{0}^{1} QS_{\alpha}(F^{-1}(\alpha), \tilde{x}) d\alpha$$

with

$$\mathsf{QS}_{\alpha}(q, \tilde{x}) = 2(\mathbf{1}_{[\tilde{x} < q]} - \alpha)(q - \tilde{x})$$

the quantile score.

We estimate F via Monte-Carlo simulation.

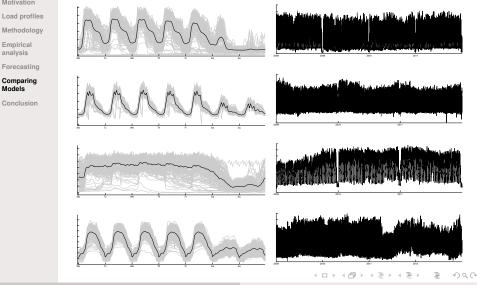
We compute this for every point of time *t* and add up over *t* (of one year).

Motivation

Empirical analysis

Comparing Models

Data of four companies



- Motivation
- Load profiles
- Methodology
- Empirical analysis
- Forecasting

Comparing Models

Conclusion

 Table : CRPS of different models for customer I to II. Absolute value and percentage deviation from benchmark. Rank in brackets, best values in bold.

Model	CRPS	pct.	CRPS	pct.
	customer I		customer II	
Benchmark	28.59 (10)	100%	14.24 (10)	100%
D31sincos-Normal	23.43 (9)	-18.03%	9.01 (9)	-36.77%
D35-SARIMA-Normal	23.26 (8)	-18.62%	8.95 (8)	-37.13%
D35-SARIMA-NIG	22.84 (7)	-20.12%	8.89 (5)	-37.6%
D35spline-SARIMA-NIG	22.78 (6)	-20.33%	8.93 (7)	-37.33%
D41sincos-SARIMA-NIG	21.29 (3)	-25.53%	8.83 (3)	-38.03%
D41sincos-GL-SARIMA-NIG	20.57 (1)	-28.03%	8.72 (1)	-38.8%
D51-SARIMA-Normal	21.96 (5)	-23.19%	8.89 (6)	-37.56%
D51-SARIMA-NIG	21.57 (4)	-24.55%	8.86 (4)	-37.78%
D51spline-GL-SARIMA-NIG	20.87 (2)	-27%	8.73 (2)	-38.68%

・ロト ・ 同ト ・ ヨト

- Motivation
- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

 Table : CRPS of different models for customer III and IV. Absolute value and percentage deviation from benchmark. Rank in brackets, best values in bold.

Model	CRPS	pct.	CRPS	pct.
	customer III		customer IV	
Benchmark	888.78 (10)	100%	45.33 (10)	100%
D31sincos-Normal	830.72 (6)	-6.53%	27.46 (3)	-39.43%
D35-SARIMA-Normal	848.54 (9)	-4.53%	27.44 (2)	-39.47%
D35-SARIMA-NIG	844.13 (8)	-5.02%	27.59 (7)	-39.14%
D35spline-SARIMA-NIG	841.13 (7)	-5.36%	27.56 (6)	-39.21%
D41sincos-SARIMA-NIG	771.95 (1)	-13.14%	27.51 (5)	-39.31%
D41sincos-GL-SARIMA-NIG	774.24 (2)	-12.89%	27.97 (8)	-38.3%
D51-SARIMA-Normal	792.51 (3)	-10.83%	27.39 (1)	-39.58%
D51-SARIMA-NIG	792.53 (4)	-10.83%	27.49 (4)	-39.37%
D51spline-GL-SARIMA-NIG	795.26 (5)	-10.52%	28.14 (9)	-37.91%

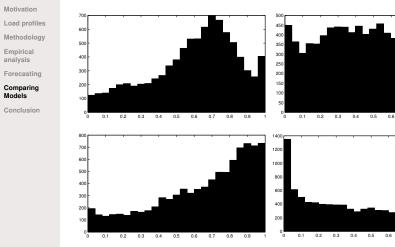


Figure : Rank histograms of the empirical PITs for the best ranked models. Top row: customer I and II. Bottom row: customer III and IV.

Image: A matrix

0.7 0.8 0.9

0.7 0.8 0.9

Conclusion

- Motivation
- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

- model choice justified by data
- in-sample fit superior to other models (e.g. white noise residuals)
- innovations non-normal
- captures peak behavior well
- out-of sample backtesting supports the model
- good performance in risk management

Outlook

- Current research: Model extension to regime-switching load profiles
- ARMA model with regime dependent coefficients
- time-varying transition probabilities
- evaluating dependence modeling of probabilistic forecasts

Literature I

Motivation

Load profiles

Methodology

Empirical analysis

Forecasting

Comparing Models

Conclusion

R. Weron.

Modeling and Forecasting Electricity Loads and Prices. *Chichester: Wiley*, 2006.

K. Berk.

Modeling and Forecasting Electricity demand: A Risk Management Perspective Springer Spektrum, 2015.

K. Berk and A. Müller. Probabilistic Forecasting of Medium-Term Electricity Demand: A Comparison of Time Series Models. submitted, 2015.

M. Burger and J. Müller. Risk-adequate pricing of retail power contracts. *The Journal of Energy Markets*, 4:53-75, 2012.

Literature II

	iv		

- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

 M. Burger, B. Klar, A. Müller, G. Schindlmayr.
 A spot market model for pricing derivatives in electricity markets.

Quantitative Finance, 4:109-122, 2004.

・ロト ・ 同ト ・ ヨト

- Motivation
- Load profiles
- Methodology
- Empirical analysis
- Forecasting
- Comparing Models
- Conclusion

Thank you for your attention!

Ξ

< □ > < □ > < □ > < □ > < □ > <