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Pictorial motivation

DLA aggregate formed on electrode in copper sulphate
solution

Photo by Kevin R Johnson
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Pictorial motivation

Dendrite growth formed by mineral deposit in sandstone

Photo by Alan Dickinson
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Pictorial motivation

Eden cluster formed by lichen growth

Photo by James Wearn
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Pictorial motivation

Lightning strike scar on a pavement

Photo by Adam Thompson
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Pictorial motivation

Electrical “tattoo” on survivor of lightning strike

From “Lichtenberg Figures Due to a Lightning Strike” by Yves Domart, MD, and Emmanuel Garet, MD
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Hastings-Levitov planar random growth

Hastings-Levitov planar random growth

Family of models proposed by Hastings and Levitov (1998) for
modelling planar random growth which occurs through the
repeated aggregation of particles.

Special cases include diffusion-limited aggregation (DLA),
dielectric breakdown, and the Eden model for biological cell
growth.

Clusters are formed by iteratively composing conformal
mappings, corresponding to the attachment of particles.

Primary interest is asymptotic behaviour of large clusters.
Natural to consider particle sizes that are very small compared
to the overall size of the cluster and scaling limits where the
particle diameters tend to zero while the number of particles
grows at a rate that tends to infinity.
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Hastings-Levitov planar random growth

Conformal mapping representation of single particle

Let D0 denote the exterior unit disk in the complex plane C and P

denote a particle attached at the point 1.

We typically take P to be the “slit” (1, d ] and use the unique
conformal mapping fP : D0 → D0 \ (1, d ] that fixes ∞ as a
mathematical description of the particle.
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Hastings-Levitov planar random growth

Conformal mapping representation of a cluster

Let P1,P2, . . . be a sequence of particles with diam(Pj) = dj . Let

θ1, θ2, . . . be a sequence of angles. Define rotated copies {f θj
Pj
} of

the maps {fPj
} so that f

θj
Pj
(z) = e iθj fPj

(e−iθj z). Take Φ0(z) = z ,

and recursively define

Φn(z) = Φn−1 ◦ f θnPn
(z), n = 1, 2, . . . .

This generates a sequence of conformal maps
Φn : D0 → Dn = C \ Kn, where Kn−1 ⊂ Kn are growing compact
sets, or clusters.
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Hastings-Levitov planar random growth

Cluster formed by iteratively composing slit mappings
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Hastings-Levitov planar random growth

Hastings-Levitov family of clusters

By choosing the sequences {θj} and {dj} in different ways, it is
possible to describe a wide class of growth models.

In the Hastings-Levitov family of models HL(α), α ∈ [0, 2], the θj
are chosen to be independent uniform random variables on the unit
circle which corresponds to the attachment point at the nth step
being distributed according to harmonic measure at infinity for
Kn−1; the diameters are taken as dj = d/|Φ′

j−1(e
iθj )|α/2.

Heuristically, the case α = 1 corresponds to the Eden model and
the case α = 2 is a candidate for off-lattice DLA.

Although α = 0 is not physical, it is mathematically the most
tractable and a detailed study of scaling limits was carried out by
Norris and T. (2012).
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Hastings-Levitov planar random growth

HL(0) cluster with 25,000 particles for d = 0.02
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Hastings-Levitov planar random growth

HL(2) cluster with 25,000 particles for d = 0.02
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Summary of results for HL(0)

Scaling limits for HL(0)

Let c = log f ′P(∞) be the logarithmic capacity of a single particle.
For slit maps, this relates to the diameter d by

ec = 1 +
d2

4(1 + d)

so c ≍ d2/4.

In the limit as d → 0,

sup
n≤d−6

|Φn(z)− ecnz | → 0.

Geometrically, the cluster after n arrivals approximates a ball of
radius ecn and the nth particle is located close to ecn+iθn .
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Summary of results for HL(0)

HL(0) cluster after 800 arrivals with d = 0.1
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Summary of results for HL(0)

HL(0) cluster after 5,000 arrivals with d = 0.04
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Summary of results for HL(0)

HL(0) cluster after 20,000 arrivals with d = 0.02
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Summary of results for HL(0)

The harmonic measure flow

For the mapping associated to a particle P , write gP for the
inverse mapping from D1 → D0. Set Γn = gPn

◦ · · · ◦ gP1
, where

gPn
= (f θn

Pn
)−1, so that Γn : Dn → D0.

The map Γn extends continuously to the boundary ∂Dn and gives a
natural parametrization of the boundary by the unit circle. It has
the property that, for ξ, η ∈ ∂Dn, the normalized harmonic
measure ω (from ∞) of the positively oriented boundary segment
from ξ to η is given by Γn(η)/Γn(ξ) = e2πiω.

Loosely speaking, the lifting of this extension to the real line is the
‘harmonic measure flow’ on the unit circle and this flow describes
the evolution of the harmonic measure on the cluster boundary, as
particles are added to the cluster.
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Summary of results for HL(0)

Convergence to the coalescing Brownian flow

The ‘harmonic measure flow’ arising from the HL(0) model cluster
with particles of diameters d arriving at rate

ρ(P) =
(∫ 1

0 (γP(x)− x)2
)−1

= Θ(d−3) can be shown to converge

to the coalescing Brownian flow (also called the Brownian web) on
the circle.

In particular, if x1, . . . , xn is a positively oriented set of points on
the circle with x0 = xn, then in the limit as d → 0, the harmonic
measure of the boundary segment of all fingers attached between
xk−1 and xk evolves like Bk

t − Bk
t , where (B1

t , . . . ,B
n
t )t≥0 is a

family of coalescing Brownian motions on the circle starting from
(x1, . . . , xn).
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Summary of results for HL(0)

Harmonic measure flow for HL(0) with d = 0.02
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Summary of results for HL(0)

Fine scale structure of the cluster

A finer scale analysis of the fingers and gaps in the cluster can be
carried out by working in logarithmic space:

K̃n = {z ∈ C : ez ∈ Kn} ⊆ R+ × R (time-space).

For Re(z) ≥ 0, let finger(z) be the nearest particle to z in K̃n,
together with all its “parent” particles.

Let gap(z) denote the unique minimal length path from the

nearest point to z in K̃ c
n to ∞ that does not leave K̃ c

n .
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Summary of results for HL(0)

Diagram illustrating fingers and gap paths
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Summary of results for HL(0)

Global limit result

For any fixed T > 0 and finite E ⊂ [0,T ] × R, let N = ⌊(cd)−1T ⌋
so that KN is approximately a disc of radius eT/d . Under a
rescaling of “time” by d , the gap paths in K̃N starting from points
in E converge to coalescing periodic Brownian motions starting
from E and the fingers converge to coalescing periodic backwards
Brownian motions starting from E .
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Summary of results for HL(0)

Global limit approximation of fingers and gap paths for
T = 1 and d = 0.05
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Summary of results for HL(0)

Infinite branches

As all (backward) Brownian motions on the circle starting at a fixed
time coalesce into a single Brownian motion, the HL(0) cluster has
a single infinite finger, or equivalently one common ancestor.

An open question is

“What is the smallest value of α for which HL(α) has more than
one infinite branch?”

We shall give a partial answer to this question.
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Regularized Hastings-Levitov growth model

Regularized Hastings-Levitov growth model

For α > 0, we construct a regularized version of HL(α), which we
call HL(α, σ), by chosing the θj to be independent uniform
random variables on the unit circle as above, but

cj = c/|Φ′
j−1(e

σ+iθj )|α.

Setting σ = 0 recovers the original Hastings-Levitov models.

Setting σ = ∞ results in a deterministic sequence of diameters,
whose capacities are given to leading order by
cj = c/(1 + αc(j − 1)).

Models retain the complicated long range dependencies of the
non-regularized models, however the regularization makes it easier
to control the effects of these dependencies.
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Regularized Hastings-Levitov growth model

HL(2,1) cluster with 25,000 particles for d = 0.02

Amanda Turner Department of Mathematics and Statistics Lancaster University

Small-particle limits in a regularized Laplacian random growth model



Regularized Hastings-Levitov growth model

HL(2,0.02) cluster with 25,000 particles for c = 10−4
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Scaling limits of HL(α, σ)

Convergence of capacities

Let
c∗n =

c

1 + αc(n − 1)

be the capacity corresponding to σ = ∞.

Suppose that σ ≫ (log 1/c)−1/2. Then, for all T > 0,

sup
n≤T/c

| log(cn/c∗n )| → 0

in probability as c → 0.

This enables an analysis of HL(α, σ) through coupling with
“semi-deterministic” clusters corresponding to particles with
capacities c∗n which can be studied using the same techniques as
HL(0).
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Scaling limits of HL(α, σ)

Capacity sequence for HL(0.5,0.2) cluster with 25,000
particles for c = 10−4
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Scaling limits of HL(α, σ)

Convergence of clusters

For all T > 0, as c → 0,

sup
n<T/c

|Φn(z)− (1 + αcn)1/αz | → 0.

Geometrically the HL(α, σ) cluster after n arrivals approximates a
ball of radius (1 + αcn)1/α.

Note that, as α → 0, the result for HL(0) is recovered.
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Scaling limits of HL(α, σ)

Convergence of the harmonic measure flow

Rescale the harmonic measure flow to correspond to particles
arriving at rate c−3/2.

If αc−1/2 → 0 then the limit is the coalescing Brownian flow
on the circle with diffusivity 16/(3π).

If αc−1/2 → a ∈ (0,∞) then the limit is a time change of the
coalescing Brownian flow on the circle stopped at 32/(3πa)
with time change given by

t 7→ 32

3πa

(
1− 1√

1 + at

)
.

If αc−1/2 → ∞ (sufficiently slowly) then the limit is the
identity.
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Scaling limits of HL(α, σ)

Harmonic measure flow for HL(10−4
,∞) with c = 10−4
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Scaling limits of HL(α, σ)

Harmonic measure flow for HL(10−2
,∞) with c = 10−4
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Scaling limits of HL(α, σ)

Coalescing Brownian motions and Kingman’s coalscent

The following result is due to Bertoin and Le Gall (2005).

Suppose that X 1
0 , . . . ,X

p
0 are uniformly distributed on the unit

circle (identified with [0, 1)) and suppose that X 1
t , . . . ,X

p
t are

coalescing Brownian motions with diffusion coefficient
√

1/12
starting from X 1

0 , . . . ,X
p
0 . Define a partition Πp

t on {1, 2, . . . , p}
by i ∼ j if and only if X i

t = X
j
t . Then the process Πp

t is Kingman’s
coalescent.
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Scaling limits of HL(α, σ)

Numbers of common ancestors

Suppose that σ ≫ (log c−1)−1/2 and αc−1/2 → a for some
a ∈ [0,∞). Let B be the number of common ancestors in the limit
HL(α, σ) cluster as c → 0.

If a = 0, then B = 1 a.s.

Suppose a > 0 and let τj be the time of coalescence into j

partitions in Kingman’s coalescent. Then,

P(B ≤ j) = P(τj ≤ 8/(9πa)),

and, in particular, the distribution of B is stochastically increasing
in a.
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Scaling limits of HL(α, σ)

Numbers of common ancestors

Furthermore, the distribution of τj can be explicitly calculated by

τj ∼
∞∑

k=j+1

Ek

where Ek are independent exponential random variables with rates
k(k − 1)/2. Conditional on B = j , the positions of the j common
ancestors are that of j independent uniform points on [0, 2π).
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Scaling limits of HL(α, σ)

Summary of scaling limits of HL(α, σ)

Suppose that σ ≫ (log c−1)−1/2. Then in the limit as c → 0, the
HL(α, σ) cluster is a disk with internal structure consisting of

one infinite branch if α ≪ c1/2;

a random number of infinite branches, whose distribution is
stochastically increasing in a, if αc−1/2 → a ∈ (0,∞);

deterministic radial growth if α ≫ c1/2.
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