Parameter estimation in a subcritical percolation model with colouring

Bence Mélykúti
jointly with Felix Beck; arXiv:1604.08908 [math.ST]
Centre for Biological Systems Analysis (ZBSA) June 2016

Bond percolation

Geoffrey Grimmett; Percolation, Springer, 1999.

Cross-contamination rate estimation for digital PCR

 in lab-on-a-chip microfluidic devices

Hoffmann et al.; Lab on a Chip, 12, 3049-3054, 2012.

Rath; MSc thesis, Univ. of Freiburg, 2014.

Modelling choices

Contamination:
(i) unidirectional (independent, directed edges $\xi_{i \rightarrow j}$ and $\xi_{j \rightarrow i}$ between any two adjacent vertices $i \sim j$), or
(ii) symmetric (undirected edges $\xi_{i j}$).

Open edges:
(1) independent Bernoulli variables, or
(2) locally correlated 0-1 random variables.

Contamination:
(A) confined to neighbours, or
(B) it might propagate via a series of open edges.

Modelling choices

Contamination:
(i) unidirectional (independent, directed edges $\xi_{i \rightarrow j}$ and $\xi_{j \rightarrow i}$ between any two adjacent vertices $i \sim j$), or
(ii) symmetric (undirected edges $\xi_{i j}$).

Open edges:
(1) independent Bernoulli variables, or
(2) locally correlated $0-1$ random variables.

Contamination:
(A) confined to neighbours, or
(B) it might propagate via a series of open edges.

Modelling choices

Contamination:
(i) unidirectional (independent, directed edges $\xi_{i \rightarrow j}$ and $\xi_{j \rightarrow i}$ between any two adjacent vertices $i \sim j$), or
(ii) symmetric (undirected edges $\xi_{i j}$).

Open edges:
(1) independent Bernoulli variables, or
(2) locally correlated $0-1$ random variables.

Contamination:
(A) confined to neighbours, or
(B) it might propagate via a series of open edges.

The process

- Process: index set $I\left(n_{l}:=|I|\right)$, colours $\ell \in\left\{1,2, \ldots, n_{c}\right\}$

$$
Y_{i}^{\ell}:=X_{i}^{\ell} \vee \bigvee_{j: j \leftrightarrow i} X_{j}^{\ell}, \quad Y_{i}^{\ell} \in\{0,1\}
$$

- Goal: estimate $\theta=\left(\lambda^{1}, \ldots, \lambda^{n_{c}}, \mu\right)$ from the data $\left(Y_{i}^{\ell}\right)_{i \in I, \ell \in\left\{1,2, \ldots, n_{c}\right\}}$

1 Objective: the method of simulated moments (MSM) is strongly consistent.
2 We prove a strong law of large numbers (SLLN) with weakly dependent variables.
3 To upper bound dependence (i.e. correlations bw. vertices), we use the FKG and BK inequalities of percolation theory.

The method of simulated moments (MSM)

- Data $\mathscr{Y}=\left(\mathscr{Y}_{i}\right)_{i \in I}$ originates from a distribution which is parameterised by the unknown $\theta_{0} \in \Theta$ (the true parameter value).
- Moments: $\quad K$ is some n_{m}-dimensional function of the individual observations $Y_{i} . \quad k(\theta):=\mathrm{E}_{\theta}\left[K\left(Y_{i}\right)\right]$
- Identifiability: $\quad \mathrm{E}_{\theta_{0}}\left[K\left(\mathscr{Y}_{i}\right)\right]=k(\theta) \quad \Longleftrightarrow \quad \theta=\theta_{0}$
- MSM: $\quad k(\theta)$ is not available in analytical form but there exists an unbiased estimator $\widetilde{k}\left(U_{i}^{s}, \theta\right)$. $\quad\left(U_{i}^{s}\right)_{i \in l, s \in\left\{1, \ldots, n_{s}\right\}}$ is some source of randomness, typically vectors of independent $\mathrm{U}[0,1]$.
$\square \Omega \in \mathbb{R}^{n_{m} \times n_{m}}$ is a symmetric, positive definite matrix; $\alpha(\eta)=\eta^{\mathrm{T}} \Omega \eta$ a quadratic form. The MSM estimator is

$$
\hat{\theta}_{n_{s}, n_{l}}:=\underset{\theta \in \Theta}{\arg \min } \alpha\left(\frac{1}{n_{l}} \sum_{i=1}^{n_{l}}\left(K\left(\mathscr{Y}_{i}\right)-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \widetilde{k}\left(U_{i}^{s}, \theta\right)\right)\right)
$$

The method of simulated moments (MSM)

Proposition

$\Omega \in \mathbb{R}^{n_{m} \times n_{m}}$ is symmetric, positive definite; $\alpha(\eta)=\eta^{\mathrm{T}} \Omega \eta$. The MSM estimator is

$$
\hat{\theta}_{n_{s}, n_{l}}:=\underset{\theta \in \Theta}{\arg \min } \alpha\left(\frac{1}{n_{l}} \sum_{i=1}^{n_{l}}\left(K\left(\mathscr{Y}_{i}\right)-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \widetilde{k}\left(U_{i}^{s}, \theta\right)\right)\right) .
$$

If n_{s} is fixed and n_{l} tends to infinity, and the almost sure convergence guaranteed by the SLLN

$$
\frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \widetilde{k}\left(U_{i}^{s}, \theta\right) \underset{n_{l} \rightarrow \infty}{\longrightarrow} k(\theta)
$$

is uniform in $\theta \in \Theta$ for every s, then $\hat{\theta}_{n_{s}, n_{l}}$ is strongly consistent (i.e. $\hat{\theta}_{n_{s}, n_{l}}$ converges to θ_{0} almost surely).

Application to our percolation model

- Variables $\left(Y_{i}^{\ell}\right)$ are neither identically distributed (boundary!) nor independent. - SLLN is not a given.
- Moments we use: $\quad Y_{i}^{\ell}, \quad Y_{i}^{\ell} Y_{j}^{\ell}$ for $i \sim j$
- Identifiability:

If $\left(\lambda^{1}, \ldots, \lambda^{n_{c}}\right)=h \in\{0,1\}^{n_{c}}$, then for any choice of $\mu,\left(Y_{i}\right)_{i \in 1}$ is identically h.
Similarly, if ($\mu=1$ and ($\lambda^{\ell}>0 \Longleftrightarrow h_{\ell}=1$), then $\left(Y_{i}\right)_{i \in I}$ is identically h (with high probability as $n_{l} \rightarrow \infty$).

MSM for the percolation model

Theorem (Main result)

$I_{2}:=\{(i, j) \in I \times I \mid i \sim j, i<j\} ;$
$\Omega \in \mathbb{R}^{2 n_{c} \times 2 n_{c}}$ is symmetric, positive definite; $\alpha(\eta)=\eta^{\mathrm{T}} \Omega \eta$ a quadratic form.
For triangular lattice: Θ a compact subset of $\left([0,1]^{n_{c}} \backslash\{0,1\}^{n_{c}}\right) \times[0,1 / 5[$. (For the square lattice case, replace $1 / 5$ with $1 / 3$.)
When n_{s} is fixed and $n_{l} \rightarrow \infty$, then

$$
\begin{aligned}
\hat{\theta}_{n_{s}, n_{l}} & :=\underset{\theta \in \Theta}{\arg \min } \alpha\binom{\left(\frac{1}{n_{l}} \sum_{i \in 1}\left(\mathscr{Y}_{i}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} Y_{i}^{\ell, s}\right)\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}{\left(\frac{1}{T_{2} \mid} \sum_{(i, j) \in I_{2}}\left(\mathscr{\mathscr { Y }}_{i}^{\ell} \mathscr{Y}_{j}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} Y_{i}^{\ell, s} Y_{j}^{\ell, s}\right)\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}} \\
& =\underset{\theta \in \Theta}{\arg \min } \alpha\binom{\left(\overline{\mathscr{Y}}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Y}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}{\left(\overline{\mathscr{Z}}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Z}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}
\end{aligned}
$$

is strongly consistent.

Goal: strong law of large numbers (SLLN)

Goal: as $n_{l} \rightarrow \infty$, for $i \sim j$, almost surely, uniformly in $\theta \in \Theta$,

$$
\begin{gathered}
\frac{1}{n_{l}} \sum_{i \in I} Y_{i}^{\ell} \longrightarrow \mathrm{E}_{\theta} Y_{i}^{\ell} \\
\frac{1}{\left|I_{2}\right|} \sum_{(i, j) \in I_{2}} Y_{i}^{\ell} Y_{j}^{\ell} \longrightarrow \mathrm{E}_{\theta}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right]
\end{gathered}
$$

and

This would ensure that almost surely, uniformly in $\theta \in \Theta$,

$$
\alpha\binom{\left(\overline{\mathscr{Y}}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Y}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}{\left(\mathscr{\mathscr { Z }}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Z}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}} \underset{n_{l} \rightarrow \infty}{\longrightarrow} \alpha\binom{\left(\mathrm{E}_{\theta_{0}} Y_{i}^{\ell}-\mathrm{E}_{\theta} Y_{i}^{\ell}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}{\left(\mathrm{E}_{\theta_{0}}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right]-\mathrm{E}_{\theta}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right]\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}
$$

Goal: strong law of large numbers (SLLN)

Goal: as $n_{l} \rightarrow \infty$, for $i \sim j$, almost surely, uniformly in $\theta \in \Theta$,

$$
\frac{1}{n_{l}} \sum_{i \in I} Y_{i}^{\ell}-\frac{1}{n_{l}} \sum_{i \in I} \mathrm{E}_{\theta} Y_{i}^{\ell} \longrightarrow 0
$$

and $\frac{1}{\left|I_{2}\right|} \sum_{(i, j) \in I_{2}} Y_{i}^{\ell} Y_{j}^{\ell}-\frac{1}{\left|I_{2}\right|} \sum_{(i, j) \in I_{2}} \mathrm{E}_{\theta}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right] \longrightarrow 0$.
This would ensure that almost surely, uniformly in $\theta \in \Theta$,

Goal: strong law of large numbers (SLLN)

Goal: as $n_{l} \rightarrow \infty$, for $i \sim j$, almost surely, uniformly in $\theta \in \Theta$,

$$
\frac{1}{n_{l}} \sum_{i \in I} Y_{i}^{\ell}-\frac{1}{n_{l}} \sum_{i \in I} \mathrm{E}_{\theta} Y_{i}^{\ell} \longrightarrow 0
$$

and $\frac{1}{\left|I_{2}\right|} \sum_{(i, j) \in I_{2}} Y_{i}^{\ell} Y_{j}^{\ell}-\frac{1}{\left|I_{2}\right|} \sum_{(i, j) \in I_{2}} \mathrm{E}_{\theta}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right] \longrightarrow 0$.
This would ensure that almost surely, uniformly in $\theta \in \Theta$,

$$
\begin{aligned}
& \alpha\binom{\left(\overline{\mathscr{Y}}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Y}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}{\left(\overline{\mathscr{Z}}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Z}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}- \\
& \quad \alpha\binom{\left(\frac{1}{n_{l}} \sum_{i \in I}\left(\mathrm{E}_{\theta_{0}} Y_{i}^{\ell}-\mathrm{E}_{\theta} Y_{i}^{\ell}\right)\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}{\left(\frac{1}{\left|n_{2}\right|} \sum_{(i, j) \in I_{2}}\left(\mathrm{E}_{\theta_{0}}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right]-\mathrm{E}_{\theta}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right]\right)\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}} \underset{n_{l} \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

Strong law of large numbers (SLLN)

Proposition (SLLN for our percolation model)

Let Θ be a compact subset of $[0,1]^{n_{c}} \times[0,1 / 5[$ (triangular lattice: $\mu<1 / 5$; square lattice: $\mu<1 / 3$). If Y is generated with parameter value $\theta \in \Theta$, then

$$
\frac{1}{n_{l}}\left(\sum_{i \in I} Y_{i}^{\ell}-\sum_{i \in I} \mathrm{E}_{\theta} Y_{i}^{\ell}\right) \underset{n_{l} \rightarrow \infty}{\longrightarrow} 0
$$

almost surely, uniformly in $\theta \in \Theta$.
Proof
Let $Y_{i}:=Y_{i}^{\ell}$ for fixed $\ell \in\left\{1, \ldots, n_{c}\right\}$
Let $a>1$. Define the lacunary sequence $k_{n}:=\left[a^{n}\right]$.
Let $S_{k}:=\sum_{i=1}^{k} Y_{i}$.

Strong law of large numbers (SLLN)

Proposition (SLLN for our percolation model)

Let Θ be a compact subset of $[0,1]^{n_{c}} \times[0,1 / 5[$ (triangular lattice: $\mu<1 / 5$; square lattice: $\mu<1 / 3$). If Y is generated with parameter value $\theta \in \Theta$, then

$$
\frac{1}{n_{l}}\left(\sum_{i \in I} Y_{i}^{\ell}-\sum_{i \in I} \mathrm{E}_{\theta} Y_{i}^{\ell}\right) \underset{n_{l} \rightarrow \infty}{\longrightarrow} 0
$$

almost surely, uniformly in $\theta \in \Theta$.
Proof
Let $Y_{i}:=Y_{i}^{\ell}$ for fixed $\ell \in\left\{1, \ldots, n_{c}\right\}$.
Let $a>1$. Define the lacunary sequence $k_{n}:=\left[a^{n}\right]$.
Let $S_{k}:=\sum_{i=1}^{k} Y_{i}$.

Strong law of large numbers (SLLN)

By Chebyshov's inequality for the $\theta\left(k_{n}\right)$ for every $k_{n}=\left[a^{n}\right]$ where the supremum on the compact set Θ is achieved, for every $\varepsilon>0$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mathrm{P}\left(\sup _{\theta \in \Theta}\left|\frac{S_{k_{n}}-\mathrm{E}_{k_{n}}}{k_{n}}\right|>\varepsilon\right)= & \sum_{n=1}^{\infty} \mathrm{P}\left(\left|\frac{S_{k_{n}}\left(\theta\left(k_{n}\right)\right)-\mathrm{E}_{\theta\left(k_{n}\right)} S_{k_{n}}}{k_{n}}\right|>\varepsilon\right) \\
\leq & \sum_{n=1}^{\infty} \frac{\sup _{\theta \in \Theta} \operatorname{Var} S_{k_{n}}}{\varepsilon^{2} k_{n}^{2}} \\
\leq & \frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} \sup _{\theta \in \Theta} \sum_{i=1}^{k_{n}} \operatorname{Var} Y_{i} \\
& +\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{2}{k_{n}^{2}} \sup _{\theta \in \Theta} \sum_{1 \leq i<j \leq k_{n}}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right)
\end{aligned}
$$

If this is finite, then by the Borel-Cantelli lemma, as $n \rightarrow \infty$,

$$
\sup _{\theta \in \Theta}\left|\frac{S_{k_{n}}-\mathrm{E} S_{k_{n}}}{k_{n}}\right| \rightarrow 0 \quad \text { a.s. }
$$

Strong law of large numbers (SLLN)

$$
\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} \sup _{\theta \in \Theta} \sum_{i=1}^{k_{n}} \operatorname{Var} Y_{i}+\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{2}{k_{n}^{2}} \sup _{\theta \in \Theta} \sum_{1 \leq i<j \leq k_{n}}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right) \quad \overline{\mathrm{Z}} \overline{\underline{\Psi}}
$$

Lemma

If $1<a, k_{n}=$ |an], then

Lemma

As $n \rightarrow \infty$, it holds

Strong law of large numbers (SLLN)

$$
\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} \underbrace{\sup _{\theta \in \Theta}^{k_{i=1}} \underbrace{\operatorname{Var} Y_{i}}_{\leq 1}}_{\leq k_{n}}+\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{2}{k_{n}^{2}} \sup _{\theta \in \Theta} \sum_{1 \leq i<j \leq k_{n}}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right)
$$

Lemma

If $1<a, k_{n}=\left[a^{n}\right]$, then

$$
\sum_{n=1}^{\infty} \frac{1}{k_{n}}<\infty .
$$

Lemma

As $n \rightarrow \infty$, it holds

Strong law of large numbers (SLLN)

$$
\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} \underbrace{\sup _{\theta \in \Theta} \sum_{i=1}^{k_{n}} \underbrace{\operatorname{Var} Y_{i}}_{\leq 1}}_{\leq k_{n}}+\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{2}{k_{n}^{2}} \underbrace{\sup _{\theta \in \Theta} \sum_{1 \leq i<j \leq k_{n}}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right)}_{\theta\left(k_{n}\right)}
$$

Lemma
If $1<a, k_{n}=\left[a^{n}\right]$, then

$$
\sum_{n=1}^{\infty} \frac{1}{k_{n}}<\infty .
$$

Lemma

As $n \rightarrow \infty$, it holds

$$
\sup _{\theta \in \Theta}\left|\sum_{1 \leq i<j \leq n}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right)\right|=\mathscr{O}(n)
$$

Quantifying (in)dependence of faraway vertices

Probability space $\left(\{0,1\}^{S}, \mathscr{F}, \mathrm{P}\right)\left(|S| \leq \aleph_{0}\right)$;
events $\mathscr{F}: \sigma$-algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $\mathrm{P}=\prod_{s \in S} v_{s}$,
v_{s} is given by $(p(s))_{s \in S} \in[0,1]^{S}$ via

$$
v_{s}(\omega(s)=1)=p(s), \quad v_{s}(\omega(s)=0)=1-p(s)
$$

for sample vectors $(\omega(s))_{s \in S} \in\{0,1\}^{S}$.
A colour $\ell \in\left\{1, \ldots, n_{c}\right\}$ is already fixed.
Insert a loop edge for every vertex, $p(s):=\lambda$
For edges of the lattice, $p(s):=\mu$.
An event $A \in \mathscr{F}$ is increasing $: \Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$

FKG inequality
 \square

If $\wedge B \subset$ Tr am increasing events, then $P(A \cap B)>D / \Lambda) D(B)$

Quantifying (in)dependence of faraway vertices

Probability space $\left(\{0,1\}^{S}, \mathscr{F}, \mathrm{P}\right)\left(|S| \leq \aleph_{0}\right)$;
events $\mathscr{F}: \sigma$-algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $\mathrm{P}=\prod_{s \in S} v_{s}$,
v_{s} is given by $(p(s))_{s \in S} \in[0,1]^{S}$ via

$$
v_{s}(\omega(s)=1)=p(s), \quad v_{s}(\omega(s)=0)=1-p(s)
$$

for sample vectors $(\omega(s))_{s \in S} \in\{0,1\}^{S}$.
A colour $\ell \in\left\{1, \ldots, n_{c}\right\}$ is already fixed. Insert a loop edge for every vertex, $p(s):=\lambda^{\ell}$.
For edges of the lattice, $p(s):=\mu$.
An event $A \in \mathscr{F}$ is increasing : $\Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

Quantifying (in)dependence of faraway vertices

Probability space $\left(\{0,1\}^{S}, \mathscr{F}, \mathrm{P}\right)\left(|S| \leq \aleph_{0}\right)$;
events $\mathscr{F}: \sigma$-algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $\mathrm{P}=\prod_{s \in S} v_{s}$,
v_{s} is given by $(p(s))_{s \in S} \in[0,1]^{S}$ via

$$
v_{s}(\omega(s)=1)=p(s), \quad v_{s}(\omega(s)=0)=1-p(s)
$$

for sample vectors $(\omega(s))_{s \in S} \in\{0,1\}^{S}$.
A colour $\ell \in\left\{1, \ldots, n_{c}\right\}$ is already fixed.
Insert a loop edge for every vertex, $p(s):=\lambda^{\ell}$.
For edges of the lattice, $p(s):=\mu$.
An event $A \in \mathscr{F}$ is increasing $: \Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$.

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

Quantifying (in)dependence of faraway vertices

Probability space $\left(\{0,1\}^{S}, \mathscr{F}, \mathrm{P}\right)\left(|S| \leq \mathbb{N}_{0}\right)$;
events $\mathscr{F}: ~ \sigma$-algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $\mathrm{P}=\prod_{s \in S} v_{s}$,
v_{s} is given by $(p(s))_{s \in S} \in[0,1]^{S}$ via

$$
v_{s}(\omega(s)=1)=p(s), \quad v_{s}(\omega(s)=0)=1-p(s)
$$

for sample vectors $(\omega(s))_{s \in S} \in\{0,1\}^{S}$.
A colour $\ell \in\left\{1, \ldots, n_{c}\right\}$ is already fixed.
Insert a loop edge for every vertex, $p(s):=\lambda^{\ell}$.
For edges of the lattice, $p(s):=\mu$.
An event $A \in \mathscr{F}$ is increasing $: \Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$.

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

If $A, B \in \mathscr{F}$ are increasing events, then $\mathrm{P}(A \cap B) \geq \mathrm{P}(A) \mathrm{P}(B)$.

Some percolation theory

An event $A \in \mathscr{F}$ is increasing $: \Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$.
Let $e_{1}, e_{2}, \ldots, e_{N}$ be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega=\left(\omega\left(e_{1}\right), \ldots, \omega\left(e_{N}\right)\right)$ only.

$$
J(\omega):=\left\{e_{i} \mid i \in\{1, \ldots, N\}, \omega\left(e_{i}\right)=1\right\}
$$

For A, B increasing,
$A \circ B:=\left\{\omega \in\{0,1\}^{S} \mid\right.$ there exists an $H \subset J(\omega)$ such that ω^{\prime} determined by $J\left(\omega^{\prime \prime}\right)=H$ beiongs to A, and $\omega^{\prime \prime}$ determined by $J\left(\omega^{\prime \prime}\right)=J(\omega) \backslash H$ belongs to B
$A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathscr{F}$ are increasing events, then $\mathrm{P}(A \circ B) \leq \mathrm{P}(A) \mathrm{P}(B)$

Some percolation theory

An event $A \in \mathscr{F}$ is increasing $: \Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$.
Let $e_{1}, e_{2}, \ldots, e_{N}$ be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega=\left(\omega\left(e_{1}\right), \ldots, \omega\left(e_{N}\right)\right)$ only.

$$
J(\omega):=\left\{e_{i} \mid i \in\{1, \ldots, N\}, \omega\left(e_{i}\right)=1\right\}
$$

For A, B increasing, A and B occur disjointly:
$A \circ B:=\left\{\omega \in\{0,1\}^{S} \mid\right.$ there exists an $H \subseteq J(\omega)$ such that ω^{\prime} determined by $J\left(\omega^{\prime}\right)=H$ belongs to A, and $\omega^{\prime \prime}$ determined by $J\left(\omega^{\prime \prime}\right)=J(\omega) \backslash H$ belongs to $\left.B\right\}$.
$A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

\square

Some percolation theory

An event $A \in \mathscr{F}$ is increasing $: \Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$.
Let $e_{1}, e_{2}, \ldots, e_{N}$ be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega=\left(\omega\left(e_{1}\right), \ldots, \omega\left(e_{N}\right)\right)$ only.

$$
J(\omega):=\left\{e_{i} \mid i \in\{1, \ldots, N\}, \omega\left(e_{i}\right)=1\right\}
$$

For A, B increasing, A and B occur disjointly:
$A \circ B:=\left\{\omega \in\{0,1\}^{S} \mid\right.$ there exists an $H \subseteq J(\omega)$ such that ω^{\prime} determined by $J\left(\omega^{\prime}\right)=H$ belongs to A, and $\omega^{\prime \prime}$ determined by $J\left(\omega^{\prime \prime}\right)=J(\omega) \backslash H$ belongs to $\left.B\right\}$.
$A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

\square

Some percolation theory

An event $A \in \mathscr{F}$ is increasing : $\Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$.
Let $e_{1}, e_{2}, \ldots, e_{N}$ be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega=\left(\omega\left(e_{1}\right), \ldots, \omega\left(e_{N}\right)\right)$ only.

$$
J(\omega):=\left\{e_{i} \mid i \in\{1, \ldots, N\}, \omega\left(e_{i}\right)=1\right\}
$$

For A, B increasing, A and B occur disjointly:
$A \circ B:=\left\{\omega \in\{0,1\}^{S} \mid\right.$ there exists an $H \subseteq J(\omega)$ such that ω^{\prime} determined by $J\left(\omega^{\prime}\right)=H$ belongs to A, and $\omega^{\prime \prime}$ determined by $J\left(\omega^{\prime \prime}\right)=J(\omega) \backslash H$ belongs to $\left.B\right\}$.
$A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathscr{F}$ are increasing events, then $\mathrm{P}(A \circ B) \leq \mathrm{P}(A) \mathrm{P}(B)$.

Some percolation theory

An event $A \in \mathscr{F}$ is increasing $: \Longleftrightarrow\left(\left(\omega \leq \omega^{\prime}, \omega \in A\right) \Rightarrow \omega^{\prime} \in A\right)$.

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

If $A, B \in \mathscr{F}$ are increasing events, then $\mathrm{P}(A \cap B) \geq \mathrm{P}(A) \mathrm{P}(B)$.

$$
J(\omega):=\left\{e_{i} \mid i \in\{1, \ldots, N\}, \omega\left(e_{i}\right)=1\right\}
$$

For A, B increasing, A and B occur disjointly:
$A \circ B:=\left\{\omega \in\{0,1\}^{S} \mid\right.$ there exists an $H \subseteq J(\omega)$ such that ω^{\prime} determined by $J\left(\omega^{\prime}\right)=H$ belongs to A, and $\omega^{\prime \prime}$ determined by $J\left(\omega^{\prime \prime}\right)=J(\omega) \backslash H$ belongs to $\left.B\right\}$.
$A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathscr{F}$ are increasing events, then $\mathrm{P}(A \circ B) \leq \mathrm{P}(A) \mathrm{P}(B)$.

Quantifying (in)dependence of faraway vertices

Lemma

As $n \rightarrow \infty$, it holds

$$
\sup _{\theta \in \Theta}\left|\sum_{1 \leq i<j \leq n}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right)\right|=\mathscr{O}(n)
$$

In the lattice graph extended with loop edges, the event $\left\{Y_{i}=1\right\}$ is increasing.

By the FKG inequality

If $A, B \in \mathscr{F}$ are increasing events, then $\mathrm{P}(A \cap B) \geq \mathrm{P}(A) \mathrm{P}(B)$.

$$
\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}=\mathrm{P}\left(Y_{i} Y_{j}=1\right)-\mathrm{P}\left(Y_{i}=1\right) \mathrm{P}\left(Y_{j}=1\right) \geq 0
$$

Quantifying (in)dependence of faraway vertices

We have

$$
\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}=\mathrm{P}\left(Y_{i} Y_{j}=1\right)-\mathrm{P}\left(Y_{i}=1\right) \mathrm{P}\left(Y_{j}=1\right) \stackrel{\mathrm{FKG}}{\geq} 0
$$

By the

BK inequality

If $A, B \in \mathscr{F}$ are increasing events, then $\mathrm{P}(A \circ B) \leq \mathrm{P}(A) \mathrm{P}(B)$.

$$
\begin{aligned}
\mathrm{P}\left(Y_{i} Y_{j}=1\right)-\mathrm{P}\left(Y_{i}=1\right) \mathrm{P}\left(Y_{j}=1\right) & =\mathrm{P}\left(\left\{Y_{i}=1\right\} \circ\left\{Y_{j}=1\right\}\right)-\mathrm{P}\left(Y_{i}=1\right) \mathrm{P}\left(Y_{j}=1\right) \\
& +\mathrm{P}\left(\left\{Y_{i} Y_{j}=1\right\} \backslash\left\{Y_{i}=1\right\} \circ\left\{Y_{j}=1\right\}\right) \\
& \stackrel{\mathrm{BK}}{\leq} \mathrm{P}\left(\left\{Y_{i} Y_{j}=1\right\} \backslash\left\{Y_{i}=1\right\} \circ\left\{Y_{j}=1\right\}\right) .
\end{aligned}
$$

Cooccurrence of $\left\{Y_{i}=1\right\}$ and $\left\{Y_{j}=1\right\}$ which is not disjoint is one where i and j are in the same component:

$$
\left\{Y_{i} Y_{j}=1\right\} \backslash\left\{Y_{i}=1\right\} \circ\left\{Y_{j}=1\right\} \subseteq\{i \leftrightarrow j\}
$$

Quantifying (in)dependence of faraway vertices

Goal: on the triangular lattice, for every $\varepsilon>0$, uniformly for $\mu \in[0,1 / 5-\varepsilon]$,

$$
\sum_{1 \leq i<j \leq n} \mathrm{P}(i \leftrightarrow j)=\mathscr{O}(n)
$$

$\mathscr{W}_{k}:=$ \{paths (i.e. self-avoiding walks) on the triangular lattice with length k and beginning in a fixed vertex $i\}$

$$
\left|W_{k}\right| \leq 6 \times 5^{k-1}
$$

$\mathrm{E}[\#$ paths from $i]=\sum_{k=1}^{\infty} \sum_{\gamma \in \mathscr{W}_{k}} \mu^{k}=\sum_{k=1}^{\infty}\left|\mathscr{W}_{k}\right| \mu^{k} \leq \sum_{k=1}^{\infty} 6 \times 5^{k-1} \mu^{k}=6 \mu \frac{1}{1-5 \mu}<\infty$
By allowing any paths on the infinite lattice $\supseteq I$,

$$
\begin{aligned}
\sum_{1 \leq i<j \leq n} \mathrm{P}(i \leftrightarrow j) & \leq \sum_{1 \leq i \leq n} \sum_{k=1}^{\infty} \sum_{\substack{j \text { is endpoint } \\
\text { of } \gamma \in \mathscr{W}_{k}}} \mu^{k} \\
& \leq \sum_{1 \leq i \leq n} \frac{6 \mu}{1-5 \mu}=\frac{6 \mu}{1-5 \mu} n .
\end{aligned}
$$

In summary

As $n \rightarrow \infty$, by the FKG and BK inequalities,

$$
\sup _{\theta \in \Theta}\left|\sum_{1 \leq i<j \leq n}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right)\right|=\mathscr{O}(n) .
$$

Hence for $k_{n}=\left[a^{n}\right]$,

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(\sup _{\theta \in \Theta}\left|\frac{S_{k_{n}}-\mathrm{E} S_{k_{n}}}{k_{n}}\right|>\varepsilon\right)<\infty .
$$

Further, consider $k_{n} \leq n_{l}<k_{n+1}$. Then

$$
\frac{1}{n_{l}}\left(\sum_{i \in I} Y_{i}^{\ell}-\sum_{i \in I} \mathrm{E}_{\theta} Y_{i}^{\ell}\right) \underset{n_{l} \rightarrow \infty}{\longrightarrow} 0
$$

almost surely, uniformly in $\theta \in \Theta$, where Θ is a compact subset of $[0,1]^{n_{c}} \times[0,1 / 5[$ ($\mu<1 / 3$ for the square lattice).

In summary

As $n \rightarrow \infty$, by the FKG and BK inequalities,

$$
\sup _{\theta \in \Theta}\left|\sum_{1 \leq i<j \leq n}\left(\mathrm{E}\left[Y_{i} Y_{j}\right]-\mathrm{E} Y_{i} \mathrm{E} Y_{j}\right)\right|=\mathscr{O}(n) .
$$

Hence for $k_{n}=\left[a^{n}\right]$,

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(\sup _{\theta \in \Theta}\left|\frac{S_{k_{n}}-\mathrm{E} S_{k_{n}}}{k_{n}}\right|>\varepsilon\right)<\infty .
$$

Further, consider $k_{n} \leq n_{l}<k_{n+1}$. Then

$$
\frac{1}{n_{l}}\left(\sum_{i \in I} Y_{i}^{\ell}-\sum_{i \in I} \mathrm{E}_{\theta} Y_{i}^{\ell}\right) \underset{n_{l} \rightarrow \infty}{\longrightarrow} 0
$$

almost surely, uniformly in $\theta \in \Theta$, where Θ is a compact subset of $[0,1]^{n_{c}} \times[0,1 / 5[$ ($\mu<1 / 3$ for the square lattice). For the strong consistence of $\hat{\theta}_{n_{s}, n_{l}}$, repeat for

$$
\frac{1}{\left|I_{2}\right|}\left(\sum_{(i, j) \in I_{2}} Y_{i}^{\ell} Y_{j}^{\ell}-\sum_{(i, j) \in I_{2}} \mathrm{E}_{\theta}\left[Y_{i}^{\ell} Y_{j}^{\ell}\right]\right) \underset{n_{I} \rightarrow \infty}{\longrightarrow} 0
$$

Implementation

$n_{c}=3$ colours. Set $\alpha(\eta)=\eta^{\mathrm{T}} \Omega \eta$ by

$$
\Omega=\operatorname{diag}\left(\left(\mathscr{\mathscr { Y }}^{-1}\right)^{-2}, \ldots,\left(\overline{\mathscr{Y}}^{n_{c}}\right)^{-2},\left(\overline{\mathscr{Z}}^{-1}\right)^{-2}, \ldots,\left(\overline{\mathscr{Z}}^{-n_{c}}\right)^{-2}\right) .
$$

$$
\alpha\binom{\left(\overline{\mathscr{Y}}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Y}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}}{\left(\mathscr{\mathcal { Z }}^{\ell}-\frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \bar{Z}^{\ell, s}\right)_{\ell \in\left\{1, \ldots, n_{c}\right\}}} \rightarrow \min
$$

Common random numbers for different $\theta=\left(\lambda^{1}, \ldots, \lambda^{n_{c}}, \mu\right) \in \Theta$.
Method 1: $\left(U_{i}^{\ell, s}\right),\left(V_{i j}^{s}\right) \sim U[0,1] \quad\left(\ell \in\left\{1, \ldots, n_{c}\right\}, s \in\left\{1, \ldots, n_{s}\right\}, i \in I,(i, j) \in I_{2}\right)$

$$
X_{i}^{\ell, s}:=\left\{\begin{array}{ll}
1 & \text { if } U_{i}^{\ell, s}<\lambda^{\ell}, \\
0 & \text { otherwise },
\end{array} \quad \xi_{i j}^{s}:= \begin{cases}1 & \text { if } V_{i j}^{s}<\mu, \\
0 & \text { otherwise } .\end{cases}\right.
$$

Method 2: $\left(\sigma^{\ell, s}\right) \sim U\left[S_{n_{1}}\right],\left(\tau^{s}\right) \sim U\left[S_{\left.\right|_{2}}\right]$

$$
\left(\ell \in\left\{1, \ldots, n_{c}\right\}, s \in\left\{1, \ldots, n_{s}\right\}\right)
$$

$$
X_{i}^{\ell, s}:=\left\{\begin{array}{ll}
1 & \text { if } \sigma^{\ell, s}(i) \leq\left\lfloor\lambda^{\ell} n_{l}\right\rceil, \\
0 & \text { otherwise, }
\end{array} \quad \xi_{i j}^{s}:= \begin{cases}1 & \text { if } \tau^{s}((i, j)) \leq\left\lfloor\mu\left|I_{2}\right|\right\rceil, \\
0 & \text { otherwise. }\end{cases}\right.
$$

Results

$1 n_{l}=25 \times 25=625$ vertices $\left(\left|I_{2}\right|=1776\right)$

n_{s}	$n_{\text {opt }}$	$\mu_{\max }$	θ_{0}	$\hat{\theta}_{n_{s}, n_{l}}^{(\mathrm{M} 1)}$	$d^{(\mathrm{M} 1)}$	$\hat{\theta}_{n_{s}, n_{l}}^{(\mathrm{M} 2)}$	$d^{(\mathrm{M} 2)}$	$\alpha_{\hat{\theta}_{n_{s}, n_{l}}^{(\mathrm{M} 2)}}$
10	10	0.1	0.1	0.1287	28.7%	0.1223	22.3%	0.0126
			0.05	0.0597	19.4%	0.0605	21%	
			0.07	0.0614	12.29%	0.0587	16.14%	
			0.06	0.0428	28.67%	0.0436	27.33%	

$2 n_{l}=500 \times 500=250,000$ vertices $\left(\left|I_{2}\right|=748,001\right)$

n_{s}	$n_{\text {opt }}$	$\mu_{\max }$	θ_{0}	$\hat{\theta}_{n_{s}, n_{l}}^{(\mathrm{M} 1)}$	$d^{(\mathrm{M} 1)}$	$\hat{\theta}_{n_{s}, n_{l}}^{(\mathrm{M} 2)}$	$d^{(\mathrm{M} 2)}$	$\alpha_{\hat{\theta}_{n_{s}, n_{1}}^{(\mathrm{M} 2)}}$
2	3	0.04	0.03	0.0295	1.67%	0.0293	2.33%	0.0011
			0.04	0.0402	0.5%	0.0401	0.25%	
			0.05	0.0522	4.4%	0.0520	4%	
			0.02	0.0192	4%	0.0195	2.5%	

d is the relative bias: $\left|1-\hat{\theta}_{n_{s}, n_{l}} / \theta_{0}\right| \times 100 \%$

Summary

- Model chosen: symmetric (undirected edges $\xi_{i j}$); edges are independent Bernoulli variables; contamination propagates via a series of open edges.
- Method of simulated moments is strongly consistent as $n_{l} \rightarrow \infty$ but n_{s} bounded.
- Unusual: sample is large but neither independent nor identically distributed.
- Proof method:

1 The method of simulated moments (MSM) is strongly consistent.
2 Proved a strong law of large numbers (SLLN) with weakly dependent variables.
3 FKG and BK inequalities of percolation theory used to upper bound dependence (i.e. correlations bw. vertices).

Open problems

1 Confidence intervals? Under regularity conditions (the estimator is continuously differentiable with respect to θ), $\sqrt{n_{l}}\left(\hat{\theta}_{n_{s}, n_{l}}-\theta_{0}\right)$ is asymptotically normal with known limiting variance.

- It is possible to choose Ω optimally, i.e. to minimise this asymptotic variance.
2 Beyond estimating μ, estimate the proportion of vertices which are in a non-trivial component.
3 Largest μ for which SLLN holds? (cf. $1 / 5$ for triangular, $1 / 3$ for square lattice) Will this MSM work in the entire subcritical regime?
4 Maximum likelihood estimation; computing the probability of a configuration (and esp. of an animal).
5 Model fit? Locally positively correlated open edges might be needed; e.g. Ising model for the edges (increases degrees of freedom by 1).

1 Beck, Mélykúti; arXiv:1604.08908 [math.ST]
2 Gouriéroux, Monfort; Simulation-based econometric methods, Oxford University Press, Oxford, UK, 2002.
3 Gouriéroux, Monfort; Simulation based inference in models with heterogeneity. Annales d'Économie et de Statistique, 20-21:69-107, 1991.

```
http://research.melykuti.be
```


Through Research, Protection

