Some properties of exact approximations of the Metropolis-Hastings algorithm

Christophe Andrieu (joint work with Matti Vihola, University of Jyväskylä)

22nd January 2016
整 U University of

Overview

- Assume we are interested in sampling from a probability distribution of density $\pi(x)$.
- Standard "universal" algorithms require one to evaluate $\pi(x)$.
- Assume for any $x \in X$, "noisy" unbiased measurements of $\pi(x)$ are available.
- In recent years "novel" MCMC algorithms have been proposed in order to sample from $\pi(x)$ in this context.
- The main idea is to replace $\pi(x)$ with a noisy estimator whenever needed.
- A key point is that these algorithms can still be exact, but can be seen as being (random) approximations of algorithms which make us of $\pi(x)$
- Here we focus on the theoretical properties of these noisy algorithms.

Overview

- Assume we are interested in sampling from a probability distribution of density $\pi(x)$.
- Standard "universal" algorithms require one to evaluate $\pi(x)$.
- Assume for any $x \in X$, "noisy" unbiased measurements of $\pi(x)$ are available.
- In recent years "novel" MCMC algorithms have been proposed in order to sample from $\pi(x)$ in this context.
- The main idea is to replace $\pi(x)$ with a noisy estimator whenever needed.
- A key point is that these algorithms can still be exact, but can be seen as being (random) approximations of algorithms which make us of $\pi(x)$
- Here we focus on the theoretical properties of these noisy algorithms.

Overview

- Assume we are interested in sampling from a probability distribution of density $\pi(x)$.
- Standard "universal" algorithms require one to evaluate $\pi(x)$.
- Assume for any $x \in \mathrm{X}$, "noisy" unbiased measurements of $\pi(x)$ are available.
- In recent years "novel" MCMC algorithms have been proposed in order to sample from $\pi(x)$ in this context.
- The main idea is to replace $\pi(x)$ with a noisy estimator whenever needed
- A key point is that these algorithms can still be exact, but can be seen as being (random) approximations of algorithms which make us of $\pi(x)$.
- Here we focus on the theoretical properties of these noisy algorithms.

Overview

- Assume we are interested in sampling from a probability distribution of density $\pi(x)$.
- Standard "universal" algorithms require one to evaluate $\pi(x)$.
- Assume for any $x \in \mathrm{X}$, "noisy" unbiased measurements of $\pi(x)$ are available.
- In recent years "novel" MCMC algorithms have been proposed in order to sample from $\pi(x)$ in this context.
- The main idea is to replace $\pi(x)$ with a noisy estimator whenever needed.
- A key point is that these algorithms can still be exact, but can be seen as being (random) approximations of algorithms which make us of
- Here we focus on the theoretical properties of these noisy algorithms.

Overview

- Assume we are interested in sampling from a probability distribution of density $\pi(x)$.
- Standard "universal" algorithms require one to evaluate $\pi(x)$.
- Assume for any $x \in \mathrm{X}$, "noisy" unbiased measurements of $\pi(x)$ are available.
- In recent years "novel" MCMC algorithms have been proposed in order to sample from $\pi(x)$ in this context.
- The main idea is to replace $\pi(x)$ with a noisy estimator whenever needed.
- A key point is that these algorithms can still be exact, but can be seen as being (random) approximations of algorithms which make us of
- Here we focus on the theoretical properties of these noisy algorithms.

Overview

- Assume we are interested in sampling from a probability distribution of density $\pi(x)$.
- Standard "universal" algorithms require one to evaluate $\pi(x)$.
- Assume for any $x \in \mathrm{X}$, "noisy" unbiased measurements of $\pi(x)$ are available.
- In recent years "novel" MCMC algorithms have been proposed in order to sample from $\pi(x)$ in this context.
- The main idea is to replace $\pi(x)$ with a noisy estimator whenever needed.
- A key point is that these algorithms can still be exact, but can be seen as being (random) approximations of algorithms which make us of $\pi(x)$.
- Here we focus on the theoretical properties of these noisy algorithms.

Overview

- Assume we are interested in sampling from a probability distribution of density $\pi(x)$.
- Standard "universal" algorithms require one to evaluate $\pi(x)$.
- Assume for any $x \in \mathrm{X}$, "noisy" unbiased measurements of $\pi(x)$ are available.
- In recent years "novel" MCMC algorithms have been proposed in order to sample from $\pi(x)$ in this context.
- The main idea is to replace $\pi(x)$ with a noisy estimator whenever needed.
- A key point is that these algorithms can still be exact, but can be seen as being (random) approximations of algorithms which make us of $\pi(x)$.
- Here we focus on the theoretical properties of these noisy algorithms.

Latent variables and pseudo-marginals

- Assume interest is in a posterior distribution

$$
\pi(x)=p(x \mid y) \propto p(x) p(y \mid x)=p(x) \int p(y, z \mid x) d z
$$

where the integral cannot be computed analytically.

- Then with $z_{i} \sim Q_{x}$ and $p(y, z \mid x) / Q_{x}(z)$ well defined, consider an IS approximation of the likelihood

This is a noisy measurement of the intractable "likelihood" $p(y \mid x)$.

- One gets a noisy measurement (up to a constant) of the posterior distribution with

Latent variables and pseudo-marginals

- Assume interest is in a posterior distribution

$$
\pi(x)=p(x \mid y) \propto p(x) p(y \mid x)=p(x) \int p(y, z \mid x) d z
$$

where the integral cannot be computed analytically.

- Then with $z_{i} \stackrel{\text { iid }}{\sim} Q_{x}$ and $p(y, z \mid x) / Q_{x}(z)$ well defined, consider an IS approximation of the likelihood

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{p\left(y, z_{i} \mid x\right)}{Q_{x}\left(z_{i}\right)}
$$

This is a noisy measurement of the intractable "likelihood" $p(y \mid x)$.

Latent variables and pseudo-marginals

- Assume interest is in a posterior distribution

$$
\pi(x)=p(x \mid y) \propto p(x) p(y \mid x)=p(x) \int p(y, z \mid x) d z
$$

where the integral cannot be computed analytically.

- Then with $z_{i} \stackrel{\text { iid }}{\sim} Q_{x}$ and $p(y, z \mid x) / Q_{x}(z)$ well defined, consider an IS approximation of the likelihood

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{p\left(y, z_{i} \mid x\right)}{Q_{x}\left(z_{i}\right)}
$$

This is a noisy measurement of the intractable "likelihood" $p(y \mid x)$.

- One gets a noisy measurement (up to a constant) of the posterior distribution with

$$
\begin{aligned}
\hat{\pi}^{N}(x) & \propto p(x)\left[\int p(y, z \mid x) d z\right] \times \frac{\frac{1}{N} \sum_{i=1}^{N} \frac{p\left(y, z_{i} \mid x\right)}{Q_{x}\left(z_{i}\right)}}{\int p(y, z \mid x) d z} \\
& \propto \pi(x) \times w
\end{aligned}
$$

Modelling of the noisy measurements

- Measurements of the form $\pi(x) \times w$ where
- $w \sim Q_{x}, w \geq 0$, can be thought of as a multiplicative noise,
- and $\mathbb{E}_{Q_{x}}[w]=1$.
- This covers numerous cases of interest
- latent variable setups,
- model selection,
- statistical inference in diffusion models,
- optimal design,
- fixed parameter estimation in dynamical systems with particle filters
- Bayesian inference/ML estimation when the normalising constant of the likelihood is unknown...
- Approximate Bayesian Computation (ABC methods).

Modelling of the noisy measurements

- Measurements of the form $\pi(x) \times w$ where
- $w \sim Q_{x}, w \geq 0$, can be thought of as a multiplicative noise,
- and $\mathbb{E}_{Q_{x}}[w]=1$.
- This covers numerous cases of interest
- latent variable setups,
- model selection,
- statistical inference in diffusion models,
- optimal design,
- fixed parameter estimation in dynamical systems with particle filters...
- Bayesian inference/ML estimation when the normalising constant of the likelihood is unknown...
- Approximate Bayesian Computation (ABC methods).

Noisy measurements and MCMC

- Unbiased measurements $\pi(x) \times w$ where $w \sim Q_{x}, w \geq 0$ and $\mathbb{E}_{Q_{x}}[w]=1$.
- What a standard $M H$ algorithm P would do. Given $x, y \sim q(x, \cdot)$ and use

$$
\alpha(x, y)=\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\}=\min \{1, r(x, y)\}
$$

to accept/reject the transition.

- Naive idea: such measurements could be directly plugged into the standard MH algorithm.
- One could suggest to use the following "noisy" MH algorithm, \tilde{P} : $y \sim q(x, \cdot)$, obtain a measurement $\pi(y) u$ of $\pi(y)$ and evaluate

$$
\tilde{\alpha}(x, y)=\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}=\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

- \tilde{P} approximates P and targets $\pi(x) Q_{x}(w) \times w \Longrightarrow$ "exact approximation"

Noisy measurements and MCMC

- Unbiased measurements $\pi(x) \times w$ where $w \sim Q_{x}, w \geq 0$ and $\mathbb{E}_{Q_{x}}[w]=1$.
- What a standard MH algorithm P would do. Given $x, y \sim q(x, \cdot)$ and use

$$
\alpha(x, y)=\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\}=\min \{1, r(x, y)\}
$$

to accept/reject the transition.

- Naive idea: such measurements could be directly plugged into the standard MH algorithm.
- One could suggest to use the following "noisy" MH algorithm, \tilde{P} $y \sim q(x, \cdot)$, obtain a measurement $\pi(y) u$ of $\pi(y)$ and evaluate

Noisy measurements and MCMC

- Unbiased measurements $\pi(x) \times w$ where $w \sim Q_{x}, w \geq 0$ and $\mathbb{E}_{Q_{x}}[w]=1$.
- What a standard MH algorithm P would do. Given $x, y \sim q(x, \cdot)$ and use

$$
\alpha(x, y)=\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\}=\min \{1, r(x, y)\}
$$

to accept/reject the transition.

- Naive idea: such measurements could be directly plugged into the standard MH algorithm.
- One could suggest to use the following "noisy" MH algorithm, \tilde{P} $y \sim q(x, \cdot)$, obtain a measurement $\pi(y) u$ of $\pi(y)$ and evaluate

Noisy measurements and MCMC

- Unbiased measurements $\pi(x) \times w$ where $w \sim Q_{x}, w \geq 0$ and $\mathbb{E}_{Q_{x}}[w]=1$.
- What a standard MH algorithm P would do. Given $x, y \sim q(x, \cdot)$ and use

$$
\alpha(x, y)=\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\}=\min \{1, r(x, y)\}
$$

to accept/reject the transition.

- Naive idea: such measurements could be directly plugged into the standard MH algorithm.
- One could suggest to use the following "noisy" MH algorithm, \tilde{P} : $y \sim q(x, \cdot)$, obtain a measurement $\pi(y) u$ of $\pi(y)$ and evaluate

$$
\tilde{\alpha}(x, y)=\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}=\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

Noisy measurements and MCMC

- Unbiased measurements $\pi(x) \times w$ where $w \sim Q_{x}, w \geq 0$ and $\mathbb{E}_{Q_{x}}[w]=1$.
- What a standard MH algorithm P would do. Given $x, y \sim q(x, \cdot)$ and use

$$
\alpha(x, y)=\min \left\{1, \frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}\right\}=\min \{1, r(x, y)\}
$$

to accept/reject the transition.

- Naive idea: such measurements could be directly plugged into the standard MH algorithm.
- One could suggest to use the following "noisy" MH algorithm, \tilde{P} : $y \sim q(x, \cdot)$, obtain a measurement $\pi(y) u$ of $\pi(y)$ and evaluate

$$
\tilde{\alpha}(x, y)=\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}=\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

- \tilde{P} approximates P and targets $\pi(x) Q_{x}(w) \times w \Longrightarrow$ "exact approximation".

Exactness

- Consider the probability density

$$
\pi(x, w)=\pi(x) \times w \times Q_{x}(w)
$$

- From the assumed unbiasedness $\left(\mathbb{E}_{Q_{x}}[w]=1\right)$ its marginal is $\pi(x)$.
- Now consider a MH algorithm targeting this density and proposal distribution

$$
q(x, y) \times Q_{y}(u)
$$

- The acceptance probability is

$$
\begin{aligned}
\tilde{\alpha}(x, w ; y, u) & =\min \left\{1, \frac{\pi(y) \times u \times Q_{y}(u)}{\pi(x) \times w \times Q_{x}(w)} \frac{q(y, x) Q_{x}(w)}{q(x, y) Q_{y}(u)}\right\} \\
& =\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}
\end{aligned}
$$

- This is the naive algorithm suggested earlier!

Exactness

- Consider the probability density

$$
\pi(x, w)=\pi(x) \times w \times Q_{x}(w)
$$

- From the assumed unbiasedness $\left(\mathbb{E}_{Q_{x}}[w]=1\right)$ its marginal is $\pi(x)$.
- Now consider a MH algorithm targeting this density and proposal distribution

$$
q(x, y) \times Q_{y}(u)
$$

- The acceptance probability is

- This is the naive algorithm suggested earlier!

Exactness

- Consider the probability density

$$
\pi(x, w)=\pi(x) \times w \times Q_{x}(w)
$$

- From the assumed unbiasedness $\left(\mathbb{E}_{Q_{x}}[w]=1\right)$ its marginal is $\pi(x)$.
- Now consider a MH algorithm targeting this density and proposal distribution

$$
q(x, y) \times Q_{y}(u)
$$

- The acceptance probability is

- This is the naive algorithm suggested earlier!

Exactness

- Consider the probability density

$$
\pi(x, w)=\pi(x) \times w \times Q_{x}(w)
$$

- From the assumed unbiasedness $\left(\mathbb{E}_{Q_{x}}[w]=1\right)$ its marginal is $\pi(x)$.
- Now consider a MH algorithm targeting this density and proposal distribution

$$
q(x, y) \times Q_{y}(u)
$$

- The acceptance probability is

$$
\begin{aligned}
\tilde{\alpha}(x, w ; y, u) & =\min \left\{1, \frac{\pi(y) \times u \times Q_{y}(u)}{\pi(x) \times w \times Q_{x}(w)} \frac{q(y, x) Q_{x}(w)}{q(x, y) Q_{y}(u)}\right\} \\
& =\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}
\end{aligned}
$$

Exactness

- Consider the probability density

$$
\pi(x, w)=\pi(x) \times w \times Q_{x}(w)
$$

- From the assumed unbiasedness $\left(\mathbb{E}_{Q_{x}}[w]=1\right)$ its marginal is $\pi(x)$.
- Now consider a MH algorithm targeting this density and proposal distribution

$$
q(x, y) \times Q_{y}(u)
$$

- The acceptance probability is

$$
\begin{aligned}
\tilde{\alpha}(x, w ; y, u) & =\min \left\{1, \frac{\pi(y) \times u \times Q_{y}(u)}{\pi(x) \times w \times Q_{x}(w)} \frac{q(y, x) Q_{x}(w)}{q(x, y) Q_{y}(u)}\right\} \\
& =\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}
\end{aligned}
$$

- This is the naive algorithm suggested earlier!

Exact approximation

- \tilde{P} approximates P.
- the more w is concentrated on 1 the better the approximation looks,
- for example if for $x \in X$ we have N (say independent) noisy measurements of $\pi(x) w_{i}$ then one could use the following (better) estimator

- Question: is it important to average, or more generally use better approximations of the algorithm we cannot implement?

Exact approximation

- \tilde{P} approximates P.
- the more w is concentrated on 1 the better the approximation looks,
- for example if for $x \in X$ we have N (say independent) noisy measurements of $\pi(x) w_{i}$ then one could use the following (better) estimator

- Question: is it important to average, or more generally use better approximations of the algorithm we cannot implement?

Exact approximation

- \tilde{P} approximates P.
- the more w is concentrated on 1 the better the approximation looks,
- for example if for $x \in X$ we have N (say independent) noisy measurements of $\pi(x) w_{i}$ then one could use the following (better) estimator

$$
\pi(x) \frac{1}{N} \sum_{i=1}^{N} w_{i}
$$

- Question: is it important to average, or more generally use better approximations of the algorithm we cannot implement?

Exact approximation

- \tilde{P} approximates P.
- the more w is concentrated on 1 the better the approximation looks,
- for example if for $x \in X$ we have N (say independent) noisy measurements of $\pi(x) w_{i}$ then one could use the following (better) estimator

$$
\pi(x) \frac{1}{N} \sum_{i=1}^{N} w_{i}
$$

- Question: is it important to average, or more generally use better approximations of the algorithm we cannot implement?

Toy latent variables example

- We consider here a simple example where the target distribution is

$$
\pi(x, z)=\mathcal{N}\left(\binom{x}{z} ;\binom{0}{0},\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right]\right)
$$

- Marginal is $\pi(x)=\mathcal{N}(x ; 0,1)$
- Sample with random walk Metropolis algorithm
- with $a(x, y)=\mathcal{N}\left(y ; x, 2 \cdot 4^{2}\right)$ and $Q_{x}(7)=\Pi_{i=1}^{N} \mathcal{N}\left(z_{i} ; 0,1\right)$ for IS.
 variance.

Toy latent variables example

- We consider here a simple example where the target distribution is

$$
\pi(x, z)=\mathcal{N}\left(\binom{x}{z} ;\binom{0}{0},\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right]\right)
$$

- Marginal is $\pi(x)=\mathcal{N}(x ; 0,1)$
- Sample with random walk Metropolis algorithm
- with $q(x, y)=\mathcal{N}\left(y ; x, 2.4^{2}\right)$ and $Q_{x}(Z)=\prod_{i=1}^{N} \mathcal{N}\left(z_{i} ; 0,1\right)$ for IS.
- $q(x, y)=\mathcal{N}\left(y ; x, 2.4^{2}\right)$ is known to be optimal in terms of asymptotic variance.

Toy latent variables example

- We consider here a simple example where the target distribution is

$$
\pi(x, z)=\mathcal{N}\left(\binom{x}{z} ;\binom{0}{0},\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right]\right)
$$

- Marginal is $\pi(x)=\mathcal{N}(x ; 0,1)$
- Sample with random walk Metropolis algorithm

Toy latent variables example

- We consider here a simple example where the target distribution is

$$
\pi(x, z)=\mathcal{N}\left(\binom{x}{z} ;\binom{0}{0},\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right]\right)
$$

- Marginal is $\pi(x)=\mathcal{N}(x ; 0,1)$
- Sample with random walk Metropolis algorithm
- with $q(x, y)=\mathcal{N}\left(y ; x, 2.4^{2}\right)$ and $Q_{x}(Z)=\prod_{i=1}^{N} \mathcal{N}\left(z_{i} ; 0,1\right)$ for IS.

Toy latent variables example

- We consider here a simple example where the target distribution is

$$
\pi(x, z)=\mathcal{N}\left(\binom{x}{z} ;\binom{0}{0},\left[\begin{array}{cc}
1 & -0.9 \\
-0.9 & 1
\end{array}\right]\right)
$$

- Marginal is $\pi(x)=\mathcal{N}(x ; 0,1)$
- Sample with random walk Metropolis algorithm
- with $q(x, y)=\mathcal{N}\left(y ; x, 2.4^{2}\right)$ and $Q_{x}(Z)=\prod_{i=1}^{N} \mathcal{N}\left(z_{i} ; 0,1\right)$ for IS.
- $q(x, y)=\mathcal{N}\left(y ; x, 2.4^{2}\right)$ is known to be optimal in terms of asymptotic variance.

Standard AV

Beaumont"s algorithm with $\mathrm{N}=1$

$N=5$

Beaumont"s algorithm with $\mathrm{N}=5$

$N=10$

$N=20$

Beaumont"s algorithm with $\mathrm{N}=20$

Intuition

- The acceptance probability of the algorithm is

$$
\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

- The probability of escaping (x, w) can be made arbitrarily small by increasing w.
- The Markov chain becomes "sticky"

Intuition

- The acceptance probability of the algorithm is

$$
\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

- The probability of escaping (x, w) can be made arbitrarily small by increasing w...

Intuition

- The acceptance probability of the algorithm is

$$
\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

- The probability of escaping (x, w) can be made arbitrarily small by increasing w...
- The Markov chain becomes "sticky".

Asymptotic variance and expected acceptance probability

- With $П$ a Markov transition kernel with invariant distribution μ, letting $X_{1} \sim \mu$ and $X_{n} \sim \Pi\left(X_{n-1}, \cdot\right)$,

$$
\operatorname{var}(f, \Pi):=\lim _{T \rightarrow \infty} T \mathbb{E}\left(\frac{1}{T} \sum_{k=1}^{T} f\left(X_{k}\right)-\mu(f)\right)^{2} \in[0, \infty]
$$

- The expected acceptance probability of a MH algorithm with invariant distribution π is

Asymptotic variance and expected acceptance probability

- With $П$ a Markov transition kernel with invariant distribution μ, letting $X_{1} \sim \mu$ and $X_{n} \sim \Pi\left(X_{n-1}, \cdot\right)$,

$$
\operatorname{var}(f, \Pi):=\lim _{T \rightarrow \infty} T \mathbb{E}\left(\frac{1}{T} \sum_{k=1}^{T} f\left(X_{k}\right)-\mu(f)\right)^{2} \in[0, \infty]
$$

- The expected acceptance probability of a MH algorithm with invariant distribution π is

$$
\int \alpha(x, y) \pi(d x) q(x, d y)
$$

Performance as a function of N

Comparing pseudo-marginal algorithms?

- A natural question is whether the performance of the algorithm indeed always improves as we increase N ?
- Our work is concerned with developing tools for the comparison of the performance of pseudo-marginal algorithms in terms of the choice of Qx.
- Let $\left\{Q_{x}^{(1)}\right\}$ and $\left\{Q_{x}^{(2)}\right\}$ be two families of distributions corresponding to two possible approximations of the marginal density.
 implementations of the MH algorithm
- targeting $\pi(\cdot)$ marginally
- sharing the same family of proposal distributions $\{q(x,),. x \in X\}$

Comparing pseudo-marginal algorithms?

- A natural question is whether the performance of the algorithm indeed always improves as we increase N ?
- Our work is concerned with developing tools for the comparison of the performance of pseudo-marginal algorithms in terms of the choice of Q_{x}.
- Let $\left\{Q_{x}^{(1)}\right\}$ and $\left\{Q_{x}^{(2)}\right\}$ be two families of distributions corresponding to two possible approximations of the marginal density. implementations of the MH algorithm
- targeting $\pi(\cdot)$ marginally
- sharing the same family of proposal distributions $\{q(x,),. x \in X\}$

Comparing pseudo-marginal algorithms?

- A natural question is whether the performance of the algorithm indeed always improves as we increase N ?
- Our work is concerned with developing tools for the comparison of the performance of pseudo-marginal algorithms in terms of the choice of Q_{x}.
- Let $\left\{Q_{X}^{(1)}\right\}$ and $\left\{Q_{x}^{(2)}\right\}$ be two families of distributions corresponding to two possible approximations of the marginal density.
implementations of the MH algorithm
- targeting $\pi(\cdot)$ marginally
- sharing the same family of proposal distributions $\{q(x, \cdot), x \in X\}$

Comparing pseudo-marginal algorithms?

- A natural question is whether the performance of the algorithm indeed always improves as we increase N ?
- Our work is concerned with developing tools for the comparison of the performance of pseudo-marginal algorithms in terms of the choice of Q_{x}.
- Let $\left\{Q_{X}^{(1)}\right\}$ and $\left\{Q_{x}^{(2)}\right\}$ be two families of distributions corresponding to two possible approximations of the marginal density.
- Let $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ be the corresponding competing pseudo-marginal implementations of the MH algorithm
\Rightarrow targeting $\pi(\cdot)$ marginally
- sharing the same family of proposal distributions $\{q(x, \cdot), x \in X\}$

Comparing pseudo-marginal algorithms?

- A natural question is whether the performance of the algorithm indeed always improves as we increase N ?
- Our work is concerned with developing tools for the comparison of the performance of pseudo-marginal algorithms in terms of the choice of Q_{x}.
- Let $\left\{Q_{X}^{(1)}\right\}$ and $\left\{Q_{x}^{(2)}\right\}$ be two families of distributions corresponding to two possible approximations of the marginal density.
- Let $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ be the corresponding competing pseudo-marginal implementations of the MH algorithm
- targeting $\pi(\cdot)$ marginally

Comparing pseudo-marginal algorithms?

- A natural question is whether the performance of the algorithm indeed always improves as we increase N ?
- Our work is concerned with developing tools for the comparison of the performance of pseudo-marginal algorithms in terms of the choice of Q_{x}.
- Let $\left\{Q_{X}^{(1)}\right\}$ and $\left\{Q_{x}^{(2)}\right\}$ be two families of distributions corresponding to two possible approximations of the marginal density.
- Let $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ be the corresponding competing pseudo-marginal implementations of the MH algorithm
- targeting $\pi(\cdot)$ marginally
- sharing the same family of proposal distributions $\{q(x, \cdot), x \in \mathrm{X}\}$.

Comparison of pseudo-marginal algorithms

- The transition probabilities are, for $i \in\{1,2\}$,

$$
\begin{aligned}
\tilde{P}^{(i)}(x, w ; \mathrm{d} y \times \mathrm{d} u):=q(x, \mathrm{~d} y) Q_{y}^{(i)}(\mathrm{d} u) & \min \left\{1, r(x, y) \frac{u}{w}\right\} \\
+ & \delta_{x, w}(\mathrm{~d} y \times \mathrm{d} u) \tilde{\rho}^{(i)}(x, w)
\end{aligned}
$$

- They target different distributions, $\tilde{\pi}^{(i)}(\mathrm{d} \times \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w$,
- The natural question we are interested in is to find a useful characterization of $\left\{Q_{X}^{(1)}\right\}$ and $\left\{Q_{X}^{(2)}\right\}$ which implies that for $\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \leq \operatorname{var}\left(f, \tilde{P}^{(2)}\right)$ or $\operatorname{Gap}_{R}\left(\tilde{P}^{(1)}\right) \leq \operatorname{Gap}_{R}\left(\tilde{P}^{(2)}\right)$

Comparison of pseudo-marginal algorithms

- The transition probabilities are, for $i \in\{1,2\}$,

$$
\begin{aligned}
\tilde{P}^{(i)}(x, w ; \mathrm{d} y \times \mathrm{d} u):=q(x, \mathrm{~d} y) Q_{y}^{(i)}(\mathrm{d} u) & \min \left\{1, r(x, y) \frac{u}{w}\right\} \\
+ & \delta_{x, w}(\mathrm{~d} y \times \mathrm{d} u) \tilde{\rho}^{(i)}(x, w)
\end{aligned}
$$

- They target different distributions, $\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w$,
- The natural question we are interested in is to find a useful characterization of $\left\{Q_{X}^{(1)}\right\}$ and $\left\{Q_{X}^{(2)}\right\}$ which implies that for $\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \leq \operatorname{var}\left(f, \tilde{P}^{(2)}\right)$ or $\operatorname{Gap}_{R}\left(\tilde{P}^{(1)}\right) \leq \operatorname{Gap}_{R}\left(\tilde{P}^{(2)}\right)$

Comparison of pseudo-marginal algorithms

- The transition probabilities are, for $i \in\{1,2\}$,

$$
\begin{aligned}
\tilde{P}^{(i)}(x, w ; \mathrm{d} y \times \mathrm{d} u):=q(x, \mathrm{~d} y) Q_{y}^{(i)}(\mathrm{d} u) & \min \left\{1, r(x, y) \frac{u}{w}\right\} \\
+ & \delta_{x, w}(\mathrm{~d} y \times \mathrm{d} u) \tilde{\rho}^{(i)}(x, w)
\end{aligned}
$$

- They target different distributions, $\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w$,
- The natural question we are interested in is to find a useful characterization of $\left\{Q_{X}^{(1)}\right\}$ and $\left\{Q_{X}^{(2)}\right\}$ which implies that for $f: X \rightarrow \mathbb{R}$,

$$
\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \leq \operatorname{var}\left(f, \tilde{P}^{(2)}\right) \text { or } \operatorname{Gap}_{R}\left(\tilde{P}^{(1)}\right) \leq \operatorname{Gap}_{R}\left(\tilde{P}^{(2)}\right)
$$

Standard ordering of MH algorithms—Peskun

- Let $\Pi^{(1)}$ and $\Pi^{(2)}$ be two Markov kernel reversible with respect to some common invariant distribution μ on $(\mathrm{E}, \mathcal{B}(\mathrm{E}))$.
- A well known result due originally to Peskun states that

- therefore leading to a simple and intuitive criterion for the comparison of performance of algorithms.
- Peskun's result is not an "iff" statement (more later), but it is practically useful
- Clearly Peskun's result does not apply to the comparison of pseudo-marginal algorithms since $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ do not share the same invariant distribution.

Standard ordering of MH algorithms-Peskun

- Let $\Pi^{(1)}$ and $\Pi^{(2)}$ be two Markov kernel reversible with respect to some common invariant distribution μ on ($\mathrm{E}, \mathcal{B}(\mathrm{E})$).
- A well known result due originally to Peskun states that

Theorem (Peskun)

Whenever for any $x \in \mathrm{E}$ and $A \in \mathcal{B}(\mathrm{E})$ such that $x \notin A$, $\Pi^{(1)}(x, A) \geq \Pi^{(2)}(x, A)$ then for any $f: E \rightarrow \mathbb{R}$ such that $\operatorname{var}_{\mu}(f)<\infty$ then

$$
\operatorname{var}\left(f, \Pi^{(1)}\right) \leq \operatorname{var}\left(f, \Pi^{(2)}\right) \text { and } \operatorname{Gap}_{R}\left(\Pi^{(1)}\right) \geq \operatorname{Gap}_{R}\left(\Pi^{(2)}\right)
$$

- therefore leading to a simple and intuitive criterion for the comparison of performance of algorithms.
- Peskun's result is not an "iff" statement (more later), but it is practically useful.
- Clearly Peskun's result does not apply to the comparison of
pseudo-marginal algorithms since $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ do not share the same invariant distribution.

Standard ordering of MH algorithms—Peskun

- Let $\Pi^{(1)}$ and $\Pi^{(2)}$ be two Markov kernel reversible with respect to some common invariant distribution μ on ($\mathrm{E}, \mathcal{B}(\mathrm{E})$).
- A well known result due originally to Peskun states that

Theorem (Peskun)

Whenever for any $x \in \mathrm{E}$ and $A \in \mathcal{B}(\mathrm{E})$ such that $x \notin A$, $\Pi^{(1)}(x, A) \geq \Pi^{(2)}(x, A)$ then for any $f: \mathrm{E} \rightarrow \mathbb{R}$ such that $\operatorname{var}_{\mu}(f)<\infty$ then

$$
\operatorname{var}\left(f, \Pi^{(1)}\right) \leq \operatorname{var}\left(f, \Pi^{(2)}\right) \text { and } \operatorname{Gap}_{R}\left(\Pi^{(1)}\right) \geq \operatorname{Gap}_{R}\left(\Pi^{(2)}\right)
$$

- therefore leading to a simple and intuitive criterion for the comparison of performance of algorithms.

Standard ordering of MH algorithms—Peskun

- Let $\Pi^{(1)}$ and $\Pi^{(2)}$ be two Markov kernel reversible with respect to some common invariant distribution μ on ($\mathrm{E}, \mathcal{B}(\mathrm{E})$).
- A well known result due originally to Peskun states that

Theorem (Peskun)

Whenever for any $x \in \mathrm{E}$ and $A \in \mathcal{B}(\mathrm{E})$ such that $x \notin A$, $\Pi^{(1)}(x, A) \geq \Pi^{(2)}(x, A)$ then for any $f: \mathrm{E} \rightarrow \mathbb{R}$ such that $\operatorname{var}_{\mu}(f)<\infty$ then

$$
\operatorname{var}\left(f, \Pi^{(1)}\right) \leq \operatorname{var}\left(f, \Pi^{(2)}\right) \text { and } \operatorname{Gap}_{R}\left(\Pi^{(1)}\right) \geq \operatorname{Gap}_{R}\left(\Pi^{(2)}\right)
$$

- therefore leading to a simple and intuitive criterion for the comparison of performance of algorithms.
- Peskun's result is not an "iff" statement (more later), but it is practically useful.

invariant distribution.

Standard ordering of MH algorithms—Peskun

- Let $\Pi^{(1)}$ and $\Pi^{(2)}$ be two Markov kernel reversible with respect to some common invariant distribution μ on ($\mathrm{E}, \mathcal{B}(\mathrm{E})$).
- A well known result due originally to Peskun states that

Theorem (Peskun)

Whenever for any $x \in \mathrm{E}$ and $A \in \mathcal{B}(\mathrm{E})$ such that $x \notin A$, $\Pi^{(1)}(x, A) \geq \Pi^{(2)}(x, A)$ then for any $f: \mathrm{E} \rightarrow \mathbb{R}$ such that $\operatorname{var}_{\mu}(f)<\infty$ then

$$
\operatorname{var}\left(f, \Pi^{(1)}\right) \leq \operatorname{var}\left(f, \Pi^{(2)}\right) \text { and } \operatorname{Gap}_{R}\left(\Pi^{(1)}\right) \geq \operatorname{Gap}_{R}\left(\Pi^{(2)}\right)
$$

- therefore leading to a simple and intuitive criterion for the comparison of performance of algorithms.
- Peskun's result is not an "iff" statement (more later), but it is practically useful.
- Clearly Peskun's result does not apply to the comparison of pseudo-marginal algorithms since $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ do not share the same invariant distribution.

An order for variability

- Intuitively performance of pseudo-marginal algorithms should depend on the variability of the approximation.
- Considering the variance is not sufficient : one can construct counterexamples where $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ but $\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \geq \operatorname{var}\left(f, \tilde{P}^{(2)}\right)$ [CA \& Vihola, 2015]
- The convex order is a natural way to compare the "variability" or "dispersion" of two random variables or distributions.

Definition

The random variables W_{1} and W_{2} are convex ordered $W_{1} \leq_{c x} W_{2}$ if for any convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[\phi\left(W_{1}\right)\right] \leq \mathbb{E}\left[\phi\left(W_{2}\right)\right]
$$

whenever the expectations are well-defined

- Note that $W_{1} \leq_{c x} W_{2}$ implies $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ i.e. an observed order in terms of variance will be a by-product of the cenvere order.

An order for variability

- Intuitively performance of pseudo-marginal algorithms should depend on the variability of the approximation.
- Considering the variance is not sufficient : one can construct counterexamples where $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ but $\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \geq \operatorname{var}\left(f, \tilde{P}^{(2)}\right)$ [CA \& Vihola, 2015].
"clispersion" of two random variables or distributions.

The random variables W_{1} and W_{2} are convex ordered $W_{1} \leq_{c x} W_{2}$ if for any convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[\phi\left(W_{1}\right)\right] \leq \mathbb{E}\left[\phi\left(W_{2}\right)\right],
$$

whenever the expectations are well-defined

- Note that $W_{1} \leq c x W_{2}$ implies $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ i.e. an observed order in terms of variance will be a by-product of the cenvere order.

An order for variability

- Intuitively performance of pseudo-marginal algorithms should depend on the variability of the approximation.
- Considering the variance is not sufficient : one can construct counterexamples where $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ but $\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \geq \operatorname{var}\left(f, \tilde{P}^{(2)}\right)$ [CA \& Vihola, 2015].
- The convex order is a natural way to compare the "variability" or "dispersion" of two random variables or distributions.

whenever the expectations are well-defined.
- Note that $W_{1} \leq c x W_{2}$ implies $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ i.e. an observed order in terms of variance will be a by-product of the cenvere order.

An order for variability

- Intuitively performance of pseudo-marginal algorithms should depend on the variability of the approximation.
- Considering the variance is not sufficient : one can construct counterexamples where $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ but $\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \geq \operatorname{var}\left(f, \tilde{P}^{(2)}\right)$ [CA \& Vihola, 2015].
- The convex order is a natural way to compare the "variability" or "dispersion" of two random variables or distributions.

Definition

The random variables W_{1} and W_{2} are convex ordered $W_{1} \leq_{c x} W_{2}$ if for any convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[\phi\left(W_{1}\right)\right] \leq \mathbb{E}\left[\phi\left(W_{2}\right)\right]
$$

whenever the expectations are well-defined.

An order for variability

- Intuitively performance of pseudo-marginal algorithms should depend on the variability of the approximation.
- Considering the variance is not sufficient : one can construct counterexamples where $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ but $\operatorname{var}\left(f, \tilde{P}^{(1)}\right) \geq \operatorname{var}\left(f, \tilde{P}^{(2)}\right)$ [CA \& Vihola, 2015].
- The convex order is a natural way to compare the "variability" or "dispersion" of two random variables or distributions.

Definition

The random variables W_{1} and W_{2} are convex ordered $W_{1} \leq_{c x} W_{2}$ if for any convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[\phi\left(W_{1}\right)\right] \leq \mathbb{E}\left[\phi\left(W_{2}\right)\right]
$$

whenever the expectations are well-defined.

- Note that $W_{1} \leq_{c x} W_{2}$ implies $\operatorname{var}\left(W_{1}\right) \leq \operatorname{var}\left(W_{2}\right)$ i.e. an observed order in terms of variance will be a by-product of the convex order.

Relevance of the convex order?

- An equivalent characterization of the convex order is possible by restricting the subset of convex functions to $t \mapsto-\min \{a, t\}$ for $a \in \mathbb{R}$,
- The algorithm's acceptance ratio is

$$
\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

and at a superficial level one may suspect a link...

- Except for a very specific scenario we do not claim that this is the optimal way of ordering algorithms.
- Importantly it allows us to establish practically relevant results.

Relevance of the convex order?

- An equivalent characterization of the convex order is possible by restricting the subset of convex functions to $t \mapsto-\min \{a, t\}$ for $a \in \mathbb{R}$,
- The algorithm's acceptance ratio is

$$
\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

and at a superficial level one may suspect a link...

- Except for a very specific scenario we do not claim that this is the optimal way of ordering algorithms.
- Importantly it allows us to establish practically relevant results.

Relevance of the convex order?

- An equivalent characterization of the convex order is possible by restricting the subset of convex functions to $t \mapsto-\min \{a, t\}$ for $a \in \mathbb{R}$,
- The algorithm's acceptance ratio is

$$
\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

and at a superficial level one may suspect a link...

- Except for a very specific scenario we do not claim that this is the optimal way of ordering algorithms.
- Importantly it allows us to establish practically relevant results.

Relevance of the convex order?

- An equivalent characterization of the convex order is possible by restricting the subset of convex functions to $t \mapsto-\min \{a, t\}$ for $a \in \mathbb{R}$,
- The algorithm's acceptance ratio is

$$
\min \left\{1, r(x, y) \frac{u}{w}\right\}
$$

and at a superficial level one may suspect a link...

- Except for a very specific scenario we do not claim that this is the optimal way of ordering algorithms.
- Importantly it allows us to establish practically relevant results.

Main result

Theorem

Let π be a probability distribution on some measurable space $(\mathrm{X}, \mathcal{B}(\mathrm{X}))$ and \tilde{P}_{1} and \tilde{P}_{2} be two implementations of pseudo-marginal algorithms to sample from π sharing the family of proposal distributions $\{q(x, \cdot), x \in X\}$ but noise distributions $\left\{Q_{X}^{(1)}, x \in X\right\}$ and $\left\{Q_{X}^{(2)}, x \in X\right\}$ such that for any $x \in X W_{x}^{(1)} \leq_{c x} W_{x}^{(2)}$. Then for any $f \in L^{2}(X, \pi)$ we have the following orders for the
(1) asymptotic variances: $\operatorname{var}\left(f, \tilde{P}_{2}\right) \geq \operatorname{var}\left(f, \tilde{P}_{1}\right)$,
(2) spectral gaps: $\operatorname{Gap}_{R}\left(\tilde{P}_{i}\right) \leq \operatorname{Gap}_{R}(P)$ and more...

Extremal distributions (I)

Theorem

For $\mu, a, b \in \mathbb{R}(a \leq \mu \leq b)$ let $\mathscr{P}(\mu,[a, b])$ be the set of probability distributions Q on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for $W \sim Q, \mathbb{E}_{Q}[W]=\mu$ and $Q(W \in[a, b])=1$. Then for any $Q \in \mathscr{P}(\mu,[a, b])$

$$
Q^{\min } \leq_{c x} Q \leq_{c x} Q^{\max }
$$

$$
\begin{aligned}
Q^{\min }(\mathrm{d} w) & :=\delta_{\mu}(\mathrm{d} w) \\
Q^{\max }(\mathrm{d} w) & :=\frac{b-\mu}{b-a} \delta_{a}(\mathrm{~d} w)+\frac{\mu-a}{b-a} \delta_{b}(\mathrm{~d} w)
\end{aligned}
$$

Extremal distributions (II)

Theorem

Let $a_{x}, b_{x}: X^{2} \rightarrow[0, \infty)\left(a_{x} \leq 1 \leq b_{x}\right)$. Consider the class of pseudo marginal algorithms \tilde{P} such that for any $x \in X$ the weight distribution Q_{x} is such that $Q_{x} \in \mathscr{P}\left(1,\left[a_{x}, b_{x}\right]\right)$. Then for any $f \in L^{2}(X, \pi)$,

$$
\operatorname{var}(P, f) \leq \operatorname{var}(\tilde{P}, f) \leq \operatorname{var}\left(\tilde{P}_{\max }, f\right)
$$

where $\tilde{P}_{\max }$ is the pseudo-marginal algorithm with distribution

$$
Q_{x}^{\max }(\mathrm{d} w)=\frac{1-a_{x}}{b_{x}-a_{x}} \delta_{a_{x}}(\mathrm{~d} w)+\frac{b_{x}-1}{b_{x}-a_{x}} \delta_{b_{x}}(\mathrm{~d} w)
$$

Furthermore

$$
\operatorname{var}\left(\tilde{P}_{\max }, f\right) \leq \sup _{x \in \mathrm{X}} b_{x} \operatorname{var}(P, f)+\left(\sup _{x \in \mathrm{X}} b_{x}-1\right) \operatorname{var}_{\pi}(f)
$$

Every sample counts in pseudo-marginal MCMC

- As mentioned earlier a suggestion in order to improve the performance of such algorithms one can suggest averaging, i.e. use an average of (say independent) estimates of the density

$$
\pi(x) W^{N}:=\pi(x) \frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

- Intuitively this should help since we are reducing the variance. But we know that the variance is not necessarily a good indicator (counterexample)
- However... for exchangeable random variables, it is known that for any $N \geq 1$

- Which from our results immediately implies that for any $f \in L^{2}(X, \pi)$ and any $N \geq 2$

Every sample counts in pseudo-marginal MCMC

- As mentioned earlier a suggestion in order to improve the performance of such algorithms one can suggest averaging, i.e. use an average of (say independent) estimates of the density

$$
\pi(x) W^{N}:=\pi(x) \frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

- Intuitively this should help since we are reducing the variance. But we know that the variance is not necessarily a good indicator (counterexample).

- Which from our results immediately implies that for any $f \in L^{2}(X, \pi)$
and any $N>2$

Every sample counts in pseudo-marginal MCMC

- As mentioned earlier a suggestion in order to improve the performance of such algorithms one can suggest averaging, i.e. use an average of (say independent) estimates of the density

$$
\pi(x) W^{N}:=\pi(x) \frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

- Intuitively this should help since we are reducing the variance. But we know that the variance is not necessarily a good indicator (counterexample).
- However... for exchangeable random variables, it is known that for any $N \geq 1$

$$
\frac{1}{N+1} \sum_{i=1}^{N+1} W_{i} \leq_{c x} \frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

Every sample counts in pseudo-marginal MCMC

- As mentioned earlier a suggestion in order to improve the performance of such algorithms one can suggest averaging, i.e. use an average of (say independent) estimates of the density

$$
\pi(x) W^{N}:=\pi(x) \frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

- Intuitively this should help since we are reducing the variance. But we know that the variance is not necessarily a good indicator (counterexample).
- However... for exchangeable random variables, it is known that for any $N \geq 1$

$$
\frac{1}{N+1} \sum_{i=1}^{N+1} W_{i} \leq_{c x} \frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

- Which from our results immediately implies that for any $f \in L^{2}(X, \pi)$ and any $N \geq 2$

$$
\operatorname{var}\left(f, \tilde{P}_{N-1}\right) \geq \operatorname{var}\left(f, \tilde{P}_{N}\right) \ldots
$$

Éléments de preuve

- As pointed out earlier the main difficulty when trying to establish an order here stems from the fact that \tilde{P}_{1} and \tilde{P}_{2} do not share the same invariant distribution since for $i \in\{1,2\}$

$$
\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w
$$

- The central idea of the proof is to embed these two probability distributions into one, $\breve{\pi}$
- With this idea in mind (and say, $W_{x}^{(1)}$ "less noisy" than $W_{x}^{(2)}$) we consider

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

where we have the properties

- m can be thought of as a Martingale multiplicative increment which

Éléments de preuve

- As pointed out earlier the main difficulty when trying to establish an order here stems from the fact that \tilde{P}_{1} and \tilde{P}_{2} do not share the same invariant distribution since for $i \in\{1,2\}$

$$
\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w
$$

- The central idea of the proof is to embed these two probability distributions into one, $\breve{\pi}$
- With this idea in mind (and say
consider

$$
\breve{\neq}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

where we have the properties

Éléments de preuve

- As pointed out earlier the main difficulty when trying to establish an order here stems from the fact that \tilde{P}_{1} and \tilde{P}_{2} do not share the same invariant distribution since for $i \in\{1,2\}$

$$
\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w
$$

- The central idea of the proof is to embed these two probability distributions into one, $\breve{\pi}$
- With this idea in mind (and say, $W_{x}^{(1)}$ "less noisy" than $W_{x}^{(2)}$) we consider

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

where we have the properties

Éléments de preuve

- As pointed out earlier the main difficulty when trying to establish an order here stems from the fact that \tilde{P}_{1} and \tilde{P}_{2} do not share the same invariant distribution since for $i \in\{1,2\}$

$$
\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w
$$

- The central idea of the proof is to embed these two probability distributions into one, $\breve{\pi}$
- With this idea in mind (and say, $W_{x}^{(1)}$ "less noisy" than $W_{x}^{(2)}$) we consider

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

where we have the properties
(1) $\int Q_{x}^{(1)}(\mathrm{d} w) K_{x, w}(\mathrm{~d} m) \mathbb{I}\{w \times m \in A\}=Q_{x}^{(2)}(A)$ for all $(x, A) \in \mathrm{X} \times \mathcal{B}\left(\mathbb{R}_{+}\right)$

Éléments de preuve

- As pointed out earlier the main difficulty when trying to establish an order here stems from the fact that \tilde{P}_{1} and \tilde{P}_{2} do not share the same invariant distribution since for $i \in\{1,2\}$

$$
\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w
$$

- The central idea of the proof is to embed these two probability distributions into one, $\breve{\pi}$
- With this idea in mind (and say, $W_{x}^{(1)}$ "less noisy" than $W_{x}^{(2)}$) we consider

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

where we have the properties
(1) $\int Q_{x}^{(1)}(\mathrm{d} w) K_{x, w}(\mathrm{~d} m) \mathbb{I}\{w \times m \in A\}=Q_{x}^{(2)}(A)$ for all $(x, A) \in \mathrm{X} \times \mathcal{B}\left(\mathbb{R}_{+}\right)$
(2) $\int K_{x, w}(\mathrm{~d} m) m=1$

Éléments de preuve

- As pointed out earlier the main difficulty when trying to establish an order here stems from the fact that \tilde{P}_{1} and \tilde{P}_{2} do not share the same invariant distribution since for $i \in\{1,2\}$

$$
\tilde{\pi}^{(i)}(\mathrm{d} x \times \mathrm{d} w)=\pi(\mathrm{d} x) Q_{x}^{(i)}(\mathrm{d} w) w
$$

- The central idea of the proof is to embed these two probability distributions into one, $\breve{\pi}$
- With this idea in mind (and say, $W_{x}^{(1)}$ "less noisy" than $W_{x}^{(2)}$) we consider

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

where we have the properties
(1) $\int Q_{\times}^{(1)}(\mathrm{d} w) K_{x, w}(\mathrm{~d} m) \mathbb{I}\{w \times m \in A\}=Q_{\times}^{(2)}(A)$ for all $(x, A) \in \mathrm{X} \times \mathcal{B}\left(\mathbb{R}_{+}\right)$
(2) $\int K_{x, w}(\mathrm{~d} m) m=1$

- m can be thought of as a Martingale multiplicative increment which "adds" noise to w

Strassen's characterisation

- One of the miracles in this work is that Strassen's characterisation of the convex order tells us that for $x \in X, W_{x}^{(1)} \leq_{c x} W_{x}^{(2)}$ "less noisy" then

Theorem (Strassen)

Suppose that $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{2}\right]$ are well-defined. Then, $W_{1} \leq_{c x} W_{2}$ if and only if there exists a probability space with random variables W_{1} and W_{2} coinciding with W_{1} and W_{2} in distribution, respectively, such that $\left(\breve{W}_{1}, \mathscr{W}_{2}\right)$ is a martingale pair, that is, $\mathbb{E}\left[\check{W}_{2} \mid \breve{W}_{1}\right]=\breve{W}_{1}$ (a.s.).

- Here there are some subtle measurability issues since Strassen's theorem can be applied for any $x \in X$ but we require

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

to define a probability distribution.

- An extension of Strassen's theorem is required in practice. This is possible, highly technical and skipped here.

Strassen's characterisation

- One of the miracles in this work is that Strassen's characterisation of the convex order tells us that for $x \in X, W_{x}^{(1)} \leq_{c x} W_{x}^{(2)}$ "less noisy" then

Theorem (Strassen)

Suppose that $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{2}\right]$ are well-defined. Then, $W_{1} \leq_{c x} W_{2}$ if and only if there exists a probability space with random variables \check{W}_{1} and \mathscr{W}_{2} coinciding with W_{1} and W_{2} in distribution, respectively, such that $\left(\check{W}_{1}, \breve{W}_{2}\right)$ is a martingale pair, that is, $\mathbb{E}\left[\check{W}_{2} \mid \check{W}_{1}\right]=\check{W}_{1}$ (a.s.).

- Here there are some subtle measurability issues since Strassen's theorem can be applied for any $x \in X$ but we require $\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m$ to define a probability distribution.
- An extension of Strassen's theorem is required in practice. This is possible, highly technical and skipped here.

Strassen's characterisation

- One of the miracles in this work is that Strassen's characterisation of the convex order tells us that for $x \in X, W_{x}^{(1)} \leq_{c x} W_{x}^{(2)}$ "less noisy" then

Theorem (Strassen)

Suppose that $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{2}\right]$ are well-defined. Then, $W_{1} \leq_{c x} W_{2}$ if and only if there exists a probability space with random variables \check{W}_{1} and \mathscr{W}_{2} coinciding with W_{1} and W_{2} in distribution, respectively, such that $\left(\check{W}_{1}, \check{W}_{2}\right)$ is a martingale pair, that is, $\mathbb{E}\left[\check{W}_{2} \mid \check{W}_{1}\right]=\check{W}_{1}$ (a.s.).

- Here there are some subtle measurability issues since Strassen's theorem can be applied for any $x \in X$ but we require

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

to define a probability distribution...

- An extension of Strassen's theorem is required in practice. This is possible, highly technical and skipped here.

Strassen's characterisation

- One of the miracles in this work is that Strassen's characterisation of the convex order tells us that for $x \in X, W_{x}^{(1)} \leq_{c x} W_{x}^{(2)}$ "less noisy" then

Theorem (Strassen)

Suppose that $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{2}\right]$ are well-defined. Then, $W_{1} \leq_{c x} W_{2}$ if and only if there exists a probability space with random variables \check{W}_{1} and \mathscr{W}_{2} coinciding with W_{1} and W_{2} in distribution, respectively, such that $\left(\check{W}_{1}, \check{W}_{2}\right)$ is a martingale pair, that is, $\mathbb{E}\left[\check{W}_{2} \mid \check{W}_{1}\right]=\check{W}_{1}$ (a.s.).

- Here there are some subtle measurability issues since Strassen's theorem can be applied for any $x \in X$ but we require

$$
\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}^{(1)}(\mathrm{d} w) w \times K_{x, w}(\mathrm{~d} m) m
$$

to define a probability distribution...

- An extension of Strassen's theorem is required in practice. This is possible, highly technical and skipped here.

Working on the embedding space

- Now we consider two Markov transition probabilities $\breve{P}^{(1)}$ and $\breve{P}^{(2)}$ reversible with respect to $\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m)$
- For $f, g \in L^{2}(E, \mu)$ define $\langle f, g\rangle_{\mu}:=\int f(z) g(z) \mu(\mathrm{d} z)$
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle\bar{f}, \Pi^{k} \bar{f}\right\rangle_{\mu}$,
- We aim to construct $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ such that for $k \geq 0$ and $g: X \rightarrow \mathbb{R}$

- So $\operatorname{var}\left(g, \breve{P}^{(1)}\right)=\operatorname{var}\left(g, \tilde{P}^{(1)}\right) \operatorname{var}\left(g, \breve{P}^{(2)}\right)=\operatorname{var}\left(g, \tilde{P}^{(2)}\right)$ and it is sufficient to establish the sought result on the "fictitious" kernels in order to deduce the result on the kernels of interest.

Working on the embedding space

- Now we consider two Markov transition probabilities $\breve{P}^{(1)}$ and $\breve{P}^{(2)}$ reversible with respect to $\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m)$
- For $f, g \in L^{2}(\mathrm{E}, \mu)$ define $\langle f, g\rangle_{\mu}:=\int f(z) g(z) \mu(\mathrm{d} z)$

- We aim to construct $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ such that for $k \geq 0$ and $g: X \rightarrow \mathbb{R}$

- So $\operatorname{var}\left(g, \breve{P}^{(1)}\right)=\operatorname{var}\left(g, \tilde{P}^{(1)}\right) \operatorname{var}\left(g, \breve{P}^{(2)}\right)=\operatorname{var}\left(g, \tilde{P}^{(2)}\right)$ and it is sufficient to establish the sought result on the "fictitious" kernels in order to deduce the result on the kernels of interest.

Working on the embedding space

- Now we consider two Markov transition probabilities $\breve{P}^{(1)}$ and $\breve{P}^{(2)}$ reversible with respect to $\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m)$
- For $f, g \in L^{2}(\mathrm{E}, \mu)$ define $\langle f, g\rangle_{\mu}:=\int f(z) g(z) \mu(\mathrm{d} z)$
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle\bar{f}, \Pi^{k} \bar{f}\right\rangle_{\mu}$,

- So $\operatorname{var}\left(g, \breve{P}^{(1)}\right)=\operatorname{var}\left(g, \tilde{P}^{(1)}\right) \operatorname{var}\left(g, \breve{P}^{(2)}\right)=\operatorname{var}\left(g, \tilde{P}^{(2)}\right)$ and it is

Working on the embedding space

- Now we consider two Markov transition probabilities $\breve{P}^{(1)}$ and $\breve{P}^{(2)}$ reversible with respect to $\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m)$
- For $f, g \in L^{2}(\mathrm{E}, \mu)$ define $\langle f, g\rangle_{\mu}:=\int f(z) g(z) \mu(\mathrm{d} z)$
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle\bar{f}, \Pi^{k} \bar{f}\right\rangle_{\mu}$,
- We aim to construct $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ such that for $k \geq 0$ and $g: X \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \left\langle g,\left[\breve{P}^{(1)}\right]^{k} g\right\rangle_{\breve{\pi}}=\left\langle g,\left[\tilde{P}^{(1)}\right]^{k} g\right\rangle_{\tilde{\pi}^{(1)}} \\
& \left\langle g,\left[\breve{P}^{(2)}\right]^{k} g\right\rangle_{\breve{\pi}}=\left\langle g,\left[\tilde{P}^{(2)}\right]^{k} g\right\rangle_{\tilde{\pi}^{(2)}}
\end{aligned}
$$

Working on the embedding space

- Now we consider two Markov transition probabilities $\breve{P}^{(1)}$ and $\breve{P}^{(2)}$ reversible with respect to $\breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m)$
- For $f, g \in L^{2}(\mathrm{E}, \mu)$ define $\langle f, g\rangle_{\mu}:=\int f(z) g(z) \mu(\mathrm{d} z)$
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle\bar{f}, \Pi^{k} \bar{f}\right\rangle_{\mu}$,
- We aim to construct $\tilde{P}^{(1)}$ and $\tilde{P}^{(2)}$ such that for $k \geq 0$ and $g: X \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \left\langle g,\left[\breve{P}^{(1)}\right]^{k} g\right\rangle_{\breve{\pi}}=\left\langle g,\left[\tilde{P}^{(1)}\right]^{k} g\right\rangle_{\tilde{\pi}^{(1)}} \\
& \left\langle g,\left[\breve{P}^{(2)}\right]^{k} g\right\rangle_{\breve{\pi}}=\left\langle g,\left[\tilde{P}^{(2)}\right]^{k} g\right\rangle_{\tilde{\pi}^{(2)}}
\end{aligned}
$$

- So $\operatorname{var}\left(g, \breve{P}^{(1)}\right)=\operatorname{var}\left(g, \tilde{P}^{(1)}\right) \operatorname{var}\left(g, \breve{P}^{(2)}\right)=\operatorname{var}\left(g, \tilde{P}^{(2)}\right)$ and it is sufficient to establish the sought result on the "fictitious" kernels in order to deduce the result on the kernels of interest.

Sampling in two different ways

- Two ways to think about the target

$$
\begin{aligned}
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) w \times K_{x, w}(\mathrm{~d} m) m \text { or } \\
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) K_{x, w}(\mathrm{~d} m)(w \times m)
\end{aligned}
$$

- The transitions are defined as follows
(1) $\breve{P}^{(1)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$ $q(x, d y) Q_{y}(d u) \min \left\{1, r(x, y) \frac{u}{w}\right\}$
(1) $\breve{P}^{(2)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$

- It should be at least believable that there is a correspondence between $\breve{P}^{(1)}, \breve{P}^{(2)}$ and $\tilde{P}^{(1)}, \tilde{P}^{(2)}$

Sampling in two different ways

- Two ways to think about the target

$$
\begin{aligned}
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) w \times K_{x, w}(\mathrm{~d} m) m \text { or } \\
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) K_{x, w}(\mathrm{~d} m)(w \times m)
\end{aligned}
$$

- The transitions are defined as follows
(1) $\breve{P}^{(1)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$

$$
\begin{aligned}
q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) \min \left\{1, r(x, y) \frac{u}{w}\right\} & K_{y, u}\left(\mathrm{~d} m_{u}\right) m_{u} \\
& +\delta_{x, w, m_{w}}\left(\mathrm{~d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right) \breve{\rho}^{(1)}(x, w)
\end{aligned}
$$

(1) $\breve{P}^{(2)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$

- It should be at least believable that there is a correspondence between $\breve{P}^{(1)}, \breve{P}^{(2)}$ and $\tilde{P}^{(1)}, \tilde{P}^{(2)}$

Sampling in two different ways

- Two ways to think about the target

$$
\begin{aligned}
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) w \times K_{x, w}(\mathrm{~d} m) m \text { or } \\
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) K_{x, w}(\mathrm{~d} m)(w \times m)
\end{aligned}
$$

- The transitions are defined as follows
(1) $\breve{P}^{(1)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$

$$
\begin{aligned}
q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) \min \left\{1, r(x, y) \frac{u}{w}\right\} & K_{y, u}\left(\mathrm{~d} m_{u}\right) m_{u} \\
& +\delta_{x, w, m_{w}}\left(\mathrm{~d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right) \breve{\rho}^{(1)}(x, w)
\end{aligned}
$$

(1) $\breve{P}^{(2)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$

$$
\begin{aligned}
q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) K_{y, u}\left(\mathrm{~d} m_{u}\right) \min & \left\{1, r(x, y) \frac{u m_{u}}{w m_{w}}\right\} \\
& +\delta_{x, w, m_{w}}\left(\mathrm{~d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right) \breve{\rho}^{(2)}\left(x, w m_{w}\right)
\end{aligned}
$$

Sampling in two different ways

- Two ways to think about the target

$$
\begin{aligned}
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) w \times K_{x, w}(\mathrm{~d} m) m \text { or } \\
& \breve{\pi}(\mathrm{d} x, \mathrm{~d} w, \mathrm{~d} m):=\pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) K_{x, w}(\mathrm{~d} m)(w \times m)
\end{aligned}
$$

- The transitions are defined as follows
(1) $\breve{P}^{(1)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$

$$
\begin{aligned}
q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) \min \left\{1, r(x, y) \frac{u}{w}\right\} & K_{y, u}\left(\mathrm{~d} m_{u}\right) m_{u} \\
& +\delta_{x, w, m_{w}}\left(\mathrm{~d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right) \breve{\rho}^{(1)}(x, w)
\end{aligned}
$$

(1) $\breve{P}^{(2)}\left(x, w, m_{w} ; \mathrm{d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right)=$

$$
\begin{aligned}
q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) K_{y, u}\left(\mathrm{~d} m_{u}\right) \min & \left\{1, r(x, y) \frac{u m_{u}}{w m_{w}}\right\} \\
& +\delta_{x, w, m_{w}}\left(\mathrm{~d} y, \mathrm{~d} u, \mathrm{~d} m_{u}\right) \breve{\rho}^{(2)}\left(x, w m_{w}\right)
\end{aligned}
$$

- It should be at least believable that there is a correspondence between $\breve{P}^{(1)}, \breve{P}^{(2)}$ and $\tilde{P}^{(1)}, \tilde{P}^{(2)}$.

Hilbert space techniques I

- Let μ be a probability distribution on ($\mathrm{E}, \mathcal{B}(\mathrm{E})$) and Π a Markov kernel reversible w.r.t. μ.
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle f, \Pi^{k} f\right\rangle_{\mu}$,
- Then for $\lambda \in[0.1)$

- Define the "Dirichlet forms" $\mathcal{E}_{\lambda \Pi}(f):=\langle f,(I-\lambda \Pi) f\rangle_{\mu}$ [related to the first order autocovariance coefficient of the chain]
- Now for Π_{1} and Π_{2} reversible w.r.t μ the property underpinning Peskun's result is essentially

$$
\begin{aligned}
& {\left[\forall f \in L^{2}(E, \mu) \quad\left\langle f,\left(l-\lambda \Pi_{2}\right)^{-1} f\right\rangle_{\mu} \geq\left\langle f,\left(l-\lambda \Pi_{1}\right)^{-1} f\right\rangle_{\mu}\right]} \\
& \\
& \Longleftrightarrow\left[\begin{array}{ll}
\forall g \in L^{2}(E, \mu) \quad\left\langle g,\left(l-\lambda \Pi_{2}\right) g\right\rangle_{\mu} \leq\left\langle g,\left(l-\lambda \Pi_{1}\right) g\right\rangle_{\mu}
\end{array}\right]
\end{aligned}
$$

Hilbert space techniques I

- Let μ be a probability distribution on $(\mathrm{E}, \mathcal{B}(\mathrm{E}))$ and Π a Markov kernel reversible w.r.t. μ.
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle f, \Pi^{k} f\right\rangle_{\mu}$,
- Then for $\lambda \in[0,1)$

where $(I-\lambda \Pi)^{-1}:=\sum_{k=0}^{\infty} \lambda^{k} \Pi^{k}$
- Define the "Dirichlet forms" $\mathcal{E}_{\lambda \Pi}(f):=\left\langle f_{\mathrm{f}}(/-\lambda \Pi) f\right\rangle_{\mu}[$ related to the first order autocovariance coefficient of the chain]
- Now for Π_{1} and Π_{2} reversible w.r.t μ the property underpinning Peskun's result is essentially
 $\Longleftrightarrow\left[\forall g \in L^{2}(E, \mu)\right.$

Hilbert space techniques I

- Let μ be a probability distribution on $(\mathrm{E}, \mathcal{B}(\mathrm{E}))$ and Π a Markov kernel reversible w.r.t. μ.
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle f, \Pi^{k} f\right\rangle_{\mu}$,
- Then for $\lambda \in[0,1)$

$$
\operatorname{var}(f, \lambda \Pi):=2\left\langle f,(I-\lambda \Pi)^{-1} f\right\rangle_{\mu}-\|f\|_{\mu}^{2}
$$

where $(I-\lambda \Pi)^{-1}:=\sum_{k=0}^{\infty} \lambda^{k} \Pi^{k}$.

- Define the "Dirichlet forms" $\mathcal{E}_{\lambda \Pi}(f):=\langle f,(I-\lambda \Pi) f\rangle_{\mu}$ [related to the first order autocovariance coefficient of the chain]
- Now for Π_{1} and Π_{2} reversible w.r. μ the pronerty underpinning Peskun's result is essentially

Hilbert space techniques I

- Let μ be a probability distribution on (E, $\mathcal{B}(\mathrm{E}))$ and Π a Markov kernel reversible w.r.t. μ.
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle f, \Pi^{k} f\right\rangle_{\mu}$,
- Then for $\lambda \in[0,1)$

$$
\operatorname{var}(f, \lambda \Pi):=2\left\langle f,(I-\lambda \Pi)^{-1} f\right\rangle_{\mu}-\|f\|_{\mu}^{2}
$$

where $(I-\lambda \Pi)^{-1}:=\sum_{k=0}^{\infty} \lambda^{k} \Pi^{k}$.

- Define the "Dirichlet forms" $\mathcal{E}_{\lambda \Pi}(f):=\langle f,(I-\lambda \Pi) f\rangle_{\mu}$ [related to the first order autocovariance coefficient of the chain]
- Now for Π_{1} and Π_{2} reversible w.r.t μ the property underpinning Peskun's result is essentially

Hilbert space techniques I

- Let μ be a probability distribution on ($\mathrm{E}, \mathcal{B}(\mathrm{E})$) and Π a Markov kernel reversible w.r.t. μ.
- One can establish that with $\bar{f}=f-\mu(f)$, $\operatorname{var}(f, \Pi)=\operatorname{var}_{\mu}(f)+2 \sum_{k=1}^{\infty}\left\langle f, \Pi^{k} f\right\rangle_{\mu}$,
- Then for $\lambda \in[0,1)$

$$
\operatorname{var}(f, \lambda \Pi):=2\left\langle f,(I-\lambda \Pi)^{-1} f\right\rangle_{\mu}-\|f\|_{\mu}^{2}
$$

where $(I-\lambda \Pi)^{-1}:=\sum_{k=0}^{\infty} \lambda^{k} \Pi^{k}$.

- Define the "Dirichlet forms" $\mathcal{E}_{\lambda \Pi}(f):=\langle f,(I-\lambda \Pi) f\rangle_{\mu}$ [related to the first order autocovariance coefficient of the chain]
- Now for Π_{1} and Π_{2} reversible w.r.t μ the property underpinning Peskun's result is essentially

$$
\left.\begin{array}{l}
{\left[\forall f \in L^{2}(\mathrm{E}, \mu) \quad\left\langle f,\left(I-\lambda \Pi_{2}\right)^{-1} f\right\rangle_{\mu} \geq\left\langle f,\left(I-\lambda \Pi_{1}\right)^{-1} f\right\rangle_{\mu}\right.}
\end{array}\right] \quad\left[\begin{array}{lll}
\forall g \in L^{2}(\mathrm{E}, \mu) \quad\left\langle g,\left(I-\lambda \Pi_{2}\right) g\right\rangle_{\mu} \leq\left\langle g,\left(I-\lambda \Pi_{1}\right) g\right\rangle_{\mu}
\end{array}\right] .
$$

Explicit bounds

Theorem (Tierney)

Let Π_{1} and Π_{2} be two Markov transition probabilities defined on some measurable space $(\mathrm{E}, \mathcal{B}(\mathrm{E}))$ and reversible with respect to some common invariant distribution μ. Then for any $f \in L^{2}(E, \mu)$ and any $\lambda \in[0,1)$

$$
\begin{aligned}
\mathcal{E}_{\lambda \Pi_{1}}\left(\hat{f}_{1}^{\lambda}\right)-\mathcal{E}_{\lambda \Pi_{2}}\left(\hat{f}_{1}^{\lambda}\right) \leq \frac{1}{2}\left[\operatorname{var}\left(f, \lambda \Pi_{2}\right)-\right. & \left.\operatorname{var}\left(f, \lambda \Pi_{1}\right)\right] \\
& \leq \mathcal{E}_{\lambda \Pi_{1}}\left(\hat{f}_{2}^{\lambda}\right)-\mathcal{E}_{\lambda \Pi_{2}}\left(\hat{f}_{2}^{\lambda}\right)
\end{aligned}
$$

where $\hat{f}_{i}^{\lambda}:=\left(I-\lambda \Pi_{i}\right)^{-1} f$.

Back to \breve{P}_{i}

- The important point for us is that

$$
\mathcal{E}_{\breve{P}^{(1)}}\left(\hat{f}_{1}\right)-\mathcal{E}_{\breve{P}^{(2)}}\left(\hat{f}_{1}\right) \leq \frac{1}{2}\left[\operatorname{var}\left(f, \breve{P}^{(2)}\right)-\operatorname{var}\left(f, \breve{P}^{(1)}\right)\right] .
$$

- And

$$
\mathcal{E}_{\breve{尸}^{(1)}}(g) \geq \mathcal{E}_{\breve{P}^{(2)}}(g)
$$

Back to \breve{P}_{i}

- The important point for us is that

$$
\mathcal{E}_{\breve{P}^{(1)}}\left(\hat{f}_{1}\right)-\mathcal{E}_{\breve{P}^{(2)}}\left(\hat{f}_{1}\right) \leq \frac{1}{2}\left[\operatorname{var}\left(f, \breve{P}^{(2)}\right)-\operatorname{var}\left(f, \breve{P}^{(1)}\right)\right] .
$$

- And
(1) $\hat{f}_{1}:=\left(I-\breve{P}^{(1)}\right)^{-1} f$ is a function of $x, w($ not m) only if $f: X \rightarrow \mathbb{R}$
(2) it is easy to show (Jensen's inequality) that for $g(x, w): X \times \mathbb{R}_{+} \rightarrow \mathbb{R}$

$$
\mathcal{E}_{\breve{P}^{(1)}}(g) \geq \mathcal{E}_{\breve{P}^{(2)}}(g)
$$

Ordering of Dirichlet forms

- The Dirichlet form for $\breve{P}^{(2)}$ and $g(x, w)$ [NOT dependent on m] is

$$
\begin{aligned}
& \int\left\{[g(x, w)-g(y, u)]^{2} \min \left\{1, r(x, y) \frac{u \times m_{u}}{w \times m_{w}}\right\} \times\right. \\
&\left.\times \pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) K_{x, w}\left(\mathrm{~d} m_{w}\right) m_{w} q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) K_{y, u}\left(\mathrm{~d} m_{u}\right)\right\}
\end{aligned}
$$

- For $x, y \in X$ and $w, u \in \mathbb{R}_{+}$we have from Jensen's inequality,

- So $\mathcal{E}_{\breve{P}^{(1)}}(g) \geq \mathcal{E}_{\breve{P}^{(2)}}(g)$ and the conclusion follows.

Ordering of Dirichlet forms

- The Dirichlet form for $\breve{P}^{(2)}$ and $g(x, w)$ [NOT dependent on m] is

$$
\begin{aligned}
& \int\left\{[g(x, w)-g(y, u)]^{2} \min \left\{1, r(x, y) \frac{u \times m_{u}}{w \times m_{w}}\right\} \times\right. \\
&\left.\times \pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) K_{x, w}\left(\mathrm{~d} m_{w}\right) m_{w} q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) K_{y, u}\left(\mathrm{~d} m_{u}\right)\right\}
\end{aligned}
$$

- For $x, y \in X$ and $w, u \in \mathbb{R}_{+}$we have from Jensen's inequality,

$$
\begin{aligned}
& \int \min \left\{1, r(x, y) \frac{u \times m_{u}}{w \times m_{w}}\right\} K_{x, w}\left(\mathrm{~d} m_{w}\right) m_{w} K_{y, u}\left(\mathrm{~d} m_{u}\right) \\
& \quad \leq \min \left\{1, r(x, y) \int \frac{u \times m_{u}}{w \times m_{w}} K_{x, w}\left(\mathrm{~d} m_{w}\right) m_{w} K_{y, u}\left(\mathrm{~d} m_{u}\right)\right\} \\
& \quad=\min \left\{1, r(x, y) \frac{u}{w}\right\}
\end{aligned}
$$

Ordering of Dirichlet forms

- The Dirichlet form for $\breve{P}^{(2)}$ and $g(x, w)$ [NOT dependent on m] is

$$
\begin{aligned}
& \int\left\{[g(x, w)-g(y, u)]^{2} \min \left\{1, r(x, y) \frac{u \times m_{u}}{w \times m_{w}}\right\} \times\right. \\
&\left.\times \pi(\mathrm{d} x) Q_{x}(\mathrm{~d} w) K_{x, w}\left(\mathrm{~d} m_{w}\right) m_{w} q(x, \mathrm{~d} y) Q_{y}(\mathrm{~d} u) K_{y, u}\left(\mathrm{~d} m_{u}\right)\right\}
\end{aligned}
$$

- For $x, y \in X$ and $w, u \in \mathbb{R}_{+}$we have from Jensen's inequality,

$$
\begin{aligned}
& \int \min \left\{1, r(x, y) \frac{u \times m_{u}}{w \times m_{w}}\right\} K_{x, w}\left(\mathrm{~d} m_{w}\right) m_{w} K_{y, u}\left(\mathrm{~d} m_{u}\right) \\
& \quad \leq \min \left\{1, r(x, y) \int \frac{u \times m_{u}}{w \times m_{w}} K_{x, w}\left(\mathrm{~d} m_{w}\right) m_{w} K_{y, u}\left(\mathrm{~d} m_{u}\right)\right\} \\
& \quad=\min \left\{1, r(x, y) \frac{u}{w}\right\}
\end{aligned}
$$

- So $\mathcal{E}_{\breve{P}^{(1)}}(g) \geq \mathcal{E}_{\breve{P}^{(2)}}(g)$ and the conclusion follows.

Conclusion

- Developed tools to compare pseudo-marginal and related MCMC algorithms,
- The convex order seems to be natural order + literature on the topic is rich,
- Effectively develop some sort of extension of Peskun's result...
- Other applications of these ideas.

Conclusion

- Developed tools to compare pseudo-marginal and related MCMC algorithms,
- The convex order seems to be natural order + literature on the topic is rich,
- Effectively develop some sort of extension of Peskun's result...
- Other applications of these ideas.

Conclusion

- Developed tools to compare pseudo-marginal and related MCMC algorithms,
- The convex order seems to be natural order + literature on the topic is rich,
- Effectively develop some sort of extension of Peskun's result...
- Other applications of these ideas.

Conclusion

- Developed tools to compare pseudo-marginal and related MCMC algorithms,
- The convex order seems to be natural order + literature on the topic is rich,
- Effectively develop some sort of extension of Peskun's result...
- Other applications of these ideas.

Rates of convergence of Markov chains

- Denote by $\mathcal{L}_{x}\left(\Phi_{n}\right)$ the law of a Markov chain Φ_{n} with
(1) transition probability Π and invariant distribution $\mu \Pi=\mu$,
(2) initial state $\Phi_{0} \equiv x$.
- Recall the Markov chain convergence rates

$$
\left\|\mathcal{L}_{x}\left(\Phi_{n}\right)-\mu\right\|_{*} \leq \begin{cases}M \rho^{n} & \text { if uniformly ergodic } \\ M V(x) \rho^{n} & \text { if geometrically ergodic } \\ M V(x) n^{-p} & \text { if polynomially ergodic } \\ r^{-1}(n) & r(n) \rightarrow \text { oif ergodic }\end{cases}
$$

Some negative results

Theorem (CA and Roberts, 2009)

If the weight distributions are not (essentially) bounded, then the pseudo-marginal algorithm cannot be geometrically ergodic.
[The pseudo-marginal algorithm has a zero spectral gap if the set below has a positive π-mass,

Some negative results

Theorem (CA and Roberts, 2009)

If the weight distributions are not (essentially) bounded, then the pseudo-marginal algorithm cannot be geometrically ergodic.
[The pseudo-marginal algorithm has a zero spectral gap if the set below has a positive π-mass,

$$
\left\{x \in X: \int_{M}^{\infty} Q_{x}(w) \mathrm{d} w>0 \text { for all } M<\infty\right\}
$$

Corollary

Even when P is geometrically ergodic if
(1) the noise is unbounded the approximation cannot be geometric,

$\left\{x \in X: \int_{M}^{\infty} Q_{X}^{N}(w) d w>0\right.$ for all $\left.M<\infty\right\}$has a positive π-mass, then \tilde{P}_{N} cannot be geometrically ergodic for

Some negative results

Theorem (CA and Roberts, 2009)

If the weight distributions are not (essentially) bounded, then the pseudo-marginal algorithm cannot be geometrically ergodic.
[The pseudo-marginal algorithm has a zero spectral gap if the set below has a positive π-mass,

$$
\left\{x \in X: \int_{M}^{\infty} Q_{x}(w) \mathrm{d} w>0 \text { for all } M<\infty\right\}
$$

Corollary

Even when P is geometrically ergodic if
(1) the noise is unbounded the approximation cannot be geometric,
(2) for any $N \in \mathbb{N} \backslash\{0\},\left\{x \in X: \int_{M}^{\infty} Q_{X}^{N}(w) \mathrm{d} w>0\right.$ for all $\left.M<\infty\right\}$
has a positive π-mass, then \tilde{P}_{N} cannot be geometrically ergodic for any $N \in \mathbb{N} \backslash\{0\}$.

Intuition

- The acceptance probability of the algorithm is

$$
\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}
$$

- The probability of escaping (x, w) can be made arbitrarily small..
- The Markov chain becomes "sticky".

Intuition

- The acceptance probability of the algorithm is

$$
\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}
$$

- The probability of escaping (x, w) can be made arbitrarily small...
- The Markov chain becomes "sticky",

Intuition

- The acceptance probability of the algorithm is

$$
\min \left\{1, \frac{\pi(y) \times u q(y, x)}{\pi(x) \times w q(x, y)}\right\}
$$

- The probability of escaping (x, w) can be made arbitrarily small...
- The Markov chain becomes "sticky".

Bounded weights

- One may wonder what happens when the support W of the weights is bounded?
- One can consider the spectral gaps of P and \tilde{P} (remember that 1 - Gap(П) is the second largest eigenvalue of Π).

Theorem (CA and M. Vihola, 2012)

With P the idealised algorithm and \tilde{P} its exact approximation, if the support of the weights is $W=[0, \bar{w}]$ for some $\bar{w}>1$ and $\pi(\{x\})=0$ for all $x \in X$ then

Remark

Say that we have a sequence $W^{N} \sim Q_{x}^{N}$ and that for all $N \in \mathbb{N} \backslash\{0\}$ and any $x \in X, \epsilon>0, \int_{\bar{w}-\epsilon}^{w} Q_{X}^{N}(w) \mathrm{d} w>0$ then it is not possible in general to achieve the rate of convergence of the marginal chain P, even though we may have $\operatorname{var}_{Q^{N}}\left(W^{N}\right) \rightarrow 0$ as $N \rightarrow \infty$ for all $x \in X$ (counter-example)

Bounded weights

- One may wonder what happens when the support W of the weights is bounded?
- One can consider the spectral gaps of P and \tilde{P} (remember that $1-\operatorname{Gap}(\Pi)$ is the second largest eigenvalue of Π).

Bounded weights

- One may wonder what happens when the support W of the weights is bounded?
- One can consider the spectral gaps of P and \tilde{P} (remember that $1-\operatorname{Gap}(\Pi)$ is the second largest eigenvalue of Π).

Theorem (CA and M. Vihola, 2012)

With P the idealised algorithm and \tilde{P} its exact approximation, if the support of the weights is $W=[0, \bar{w}]$ for some $\bar{w}>1$ and $\pi(\{x\})=0$ for all $x \in X$ then

$$
1-\operatorname{Gap}(\tilde{P}) \leq 1-\bar{w}^{-1} \operatorname{Gap}(P)
$$

Bounded weights

- One may wonder what happens when the support W of the weights is bounded?
- One can consider the spectral gaps of P and \tilde{P} (remember that 1 - Gap(Π) is the second largest eigenvalue of Π).

Theorem (CA and M. Vihola, 2012)

With P the idealised algorithm and \tilde{P} its exact approximation, if the support of the weights is $\mathrm{W}=[0, \bar{w}]$ for some $\bar{w}>1$ and $\pi(\{x\})=0$ for all $x \in X$ then

$$
1-\operatorname{Gap}(\tilde{P}) \leq 1-\bar{w}^{-1} \operatorname{Gap}(P)
$$

Remark

Say that we have a sequence $W^{N} \sim Q_{X}^{N}$ and that for all $N \in \mathbb{N} \backslash\{0\}$ and any $x \in X, \epsilon>0, \int_{\bar{w}-\epsilon}^{\bar{w}} Q_{x}^{N}(w) \mathrm{d} w>0$ then it is not possible in general to achieve the rate of convergence of the marginal chain P, even though we may have $\operatorname{var}_{Q_{x}^{N}}\left(W^{N}\right) \rightarrow 0$ as $N \rightarrow \infty$ for all $x \in X$ (counter-example).

Bounded weights-asymptotic variance

Proposition (CA \& Vihola, 2012)

Assume the marginal algorithm is geometrically ergodic, the weights of the pseudo-marginal algorithm are upper-bounded by \bar{w} and $\int f^{2}(x) \pi(x) \mathrm{d} x<\infty$. Then,

$$
\begin{equation*}
\operatorname{var}(f, \tilde{P}) \leq \bar{w} \operatorname{var}(f, P)+(\bar{w}-1) \operatorname{var}_{\pi}(f) \tag{1}
\end{equation*}
$$

Assume $\operatorname{Gap}(P)>0$ and

Bounded weights—asymptotic variance

Proposition (CA \& Vihola, 2012)

Assume the marginal algorithm is geometrically ergodic, the weights of the pseudo-marginal algorithm are upper-bounded by \bar{w} and $\int f^{2}(x) \pi(x) \mathrm{d} x<\infty$. Then,

$$
\begin{equation*}
\operatorname{var}(f, \tilde{P}) \leq \bar{w} \operatorname{var}(f, P)+(\bar{w}-1) \operatorname{var}_{\pi}(f) \tag{1}
\end{equation*}
$$

Assume $\operatorname{Gap}(P)>0$ and

$$
\int_{0}^{\bar{w}} Q_{x}(w) \mathrm{d} w=1 \quad \text { for } \pi \text {-almost all } x \in \mathrm{X}
$$

then (1) holds, where $\operatorname{var}_{\pi}(f)=\pi\left((f-\pi(f))^{2}\right)$.

Ordering of the variances

Theorem (CA \& Vihola, 2012)

The pseudo-marginal algorithm is never more efficient than the corresponding marginal algorithm (in terms of the asymptotic variance).

Assume $f: X \rightarrow \mathbb{R}$ satisfies $\pi\left(f^{2}\right)<\infty$. The asymptotic variances of f with respect to the pseudo-marginal algorithm \tilde{P} and the marginal algorithm P always satisfy
\square

Remark
The result above is general and does not assume that the weights are bounded.

Remark

Note that although not unexpected, the result requires a non-trivial extension of Peskun's result

Ordering of the variances

Theorem (CA \& Vihola, 2012)

The pseudo-marginal algorithm is never more efficient than the corresponding marginal algorithm (in terms of the asymptotic variance).

Assume $f: X \rightarrow \mathbb{R}$ satisfies $\pi\left(f^{2}\right)<\infty$. The asymptotic variances of f with respect to the pseudo-marginal algorithm \tilde{P} and the marginal algorithm P always satisfy

$$
\operatorname{var}(f, P) \leq \operatorname{var}(f, \tilde{P})
$$

Ordering of the variances

Theorem (CA \& Vihola, 2012)

The pseudo-marginal algorithm is never more efficient than the corresponding marginal algorithm (in terms of the asymptotic variance).

Assume $f: X \rightarrow \mathbb{R}$ satisfies $\pi\left(f^{2}\right)<\infty$. The asymptotic variances of f with respect to the pseudo-marginal algorithm \tilde{P} and the marginal algorithm P always satisfy

$$
\operatorname{var}(f, P) \leq \operatorname{var}(f, \tilde{P})
$$

Remark

The result above is general and does not assume that the weights are bounded.

Remark

Note that although not unexpected, the result requires a non-trivial extension of Peskun's result.

Convergence in terms of variance

- If we combine the last two results, if the weights are upper-bounded by \bar{w} then

$$
\operatorname{var}(f, P) \leq \operatorname{var}(f, \tilde{P}) \leq \bar{w} \operatorname{var}(f, P)+(\bar{w}-1) \operatorname{var}_{\pi}(f)
$$

- If we have a sequence $W^{N} \sim Q_{x}^{N}$ and the corresponding supports are $\mathrm{W}_{N}=\left[0, \bar{w}^{N}\right]$ and $\bar{w}^{N} \downarrow 1$ then the pseudo-marginal algorithm approaches P in terms of asymptotic variance i.e.

- In what follows we show how to extend these results to the (more realistic) case where the weights are unbounded

Convergence in terms of variance

- If we combine the last two results, if the weights are upper-bounded by \bar{w} then

$$
\operatorname{var}(f, P) \leq \operatorname{var}(f, \tilde{P}) \leq \bar{w} \operatorname{var}(f, P)+(\bar{w}-1) \operatorname{var}_{\pi}(f)
$$

- If we have a sequence $W^{N} \sim Q_{X}^{N}$ and the corresponding supports are $W_{N}=\left[0, \bar{w}^{N}\right]$ and $\bar{w}^{N} \downarrow 1$ then the pseudo-marginal algorithm approaches P in terms of asymptotic variance i.e.

$$
\lim _{N \rightarrow \infty} \operatorname{var}\left(f, \tilde{P}_{N}\right)=\operatorname{var}(f, P)
$$

- In what follows we show how to extend these results to the (more realistic) case where the weights are unbounded.

Convergence in terms of variance

- If we combine the last two results, if the weights are upper-bounded by \bar{w} then

$$
\operatorname{var}(f, P) \leq \operatorname{var}(f, \tilde{P}) \leq \bar{w} \operatorname{var}(f, P)+(\bar{w}-1) \operatorname{var}_{\pi}(f)
$$

- If we have a sequence $W^{N} \sim Q_{X}^{N}$ and the corresponding supports are $W_{N}=\left[0, \bar{w}^{N}\right]$ and $\bar{w}^{N} \downarrow 1$ then the pseudo-marginal algorithm approaches P in terms of asymptotic variance i.e.

$$
\lim _{N \rightarrow \infty} \operatorname{var}\left(f, \tilde{P}_{N}\right)=\operatorname{var}(f, P)
$$

- In what follows we show how to extend these results to the (more realistic) case where the weights are unbounded.

Rates with w unbounded

- If P is geometric and w unbounded, what rates can one expect for \tilde{P} ?
- It depends on the tail behaviour of $Q_{x}(W \geq w)$,
- The "practical" approach developed relies on the drift/minorization approach.
- Establishing these rates of convergence turns out to be essential to characterise the behaviour of \tilde{P}_{N} as a function of N.

Rates with w unbounded

- If P is geometric and w unbounded, what rates can one expect for \tilde{P} ?
- It depends on the tail behaviour of $Q_{x}(W \geq w)$,
- The "practical" approach developed relies on the drift/minorization approach.
- Establishing these rates of convergence turns out to be essential to characterise the behaviour of \tilde{P}_{N} as a function of N.

Rates with w unbounded

- If P is geometric and w unbounded, what rates can one expect for \tilde{P} ?
- It depends on the tail behaviour of $Q_{x}(W \geq w)$,
- The "practical" approach developed relies on the drift/minorization approach.
- Establishing these rates of convergence turns out to be essential to characterise the behaviour of \tilde{P}_{N} as a function of N.

Rates with w unbounded

- If P is geometric and w unbounded, what rates can one expect for \tilde{P} ?
- It depends on the tail behaviour of $Q_{x}(W \geq w)$,
- The "practical" approach developed relies on the drift/minorization approach.
- Establishing these rates of convergence turns out to be essential to characterise the behaviour of \tilde{P}_{N} as a function of N.

A paedagogical example

- The independent Metropolis-Hastings (IMH) algorithm, albeit of limited practical interest, is relatively easy to analyse.
- If we target $\pi(\mathrm{dx})$ with a proposal distribution $q(d x)$, the rate of convergence depends on the behaviour of $\mu(x):=\pi(\mathrm{d} x) / q(\mathrm{~d} x)$
(1) the IMH is geometric iff. $\sup _{x \in x} \mu(x)<\infty$ [Mengersen and Tweedie 1996]
 Roberts 2002]
(3) if $\int \phi(\mu(x)) \pi(\mathrm{d} x)<\infty($ e.g. $\phi(x)=\exp (x))$ then the IMH is sub-geometric... [Douc Moulines Soulier 2007]
- We simply exploit that the pseudo-approximation of an IMH is an IMH algorithm (target is $\tilde{\pi}(d x \times d w)$ and the proposal is $q(\mathrm{~d} x) Q_{x}(\mathrm{~d} w)$.

A paedagogical example

- The independent Metropolis-Hastings (IMH) algorithm, albeit of limited practical interest, is relatively easy to analyse.
- If we target $\pi(\mathrm{d} x)$ with a proposal distribution $q(d x)$, the rate of convergence depends on the behaviour of $\mu(x):=\pi(\mathrm{d} x) / q(\mathrm{~d} x)$

- We simply exploit that the pseudo-approximation of an IMH is an IMH algorithm (target is $\tilde{\pi}(d x \times d w)$ and the proposal is $q(\mathrm{~d} x) Q_{x}(\mathrm{~d} w)$

A paedagogical example

- The independent Metropolis-Hastings (IMH) algorithm, albeit of limited practical interest, is relatively easy to analyse.
- If we target $\pi(\mathrm{d} x)$ with a proposal distribution $q(d x)$, the rate of convergence depends on the behaviour of $\mu(x):=\pi(\mathrm{d} x) / q(\mathrm{~d} x)$
(1) the IMH is geometric iff. $\sup _{x \in \mathrm{X}} \mu(x)<\infty$ [Mengersen and Tweedie 1996],

- We simply exploit that the pseudo-approximation of an IMH is an IMH algorithm (target is $\tilde{\pi}(d x \times d w)$ and the proposal is $q(\mathrm{~d} x) Q_{x}(\mathrm{~d} w)$

A paedagogical example

- The independent Metropolis-Hastings (IMH) algorithm, albeit of limited practical interest, is relatively easy to analyse.
- If we target $\pi(\mathrm{d} x)$ with a proposal distribution $q(d x)$, the rate of convergence depends on the behaviour of $\mu(x):=\pi(\mathrm{d} x) / q(\mathrm{~d} x)$
(1) the IMH is geometric iff. $\sup _{x \in \mathrm{X}} \mu(x)<\infty$ [Mengersen and Tweedie 1996],
(2) if $\int \mu^{\beta}(x) \pi(\mathrm{d} x)<\infty$ then the IMH is polynomially ergodic [Jarner and Roberts 2002],
© if $\int \phi(\mu(x)) \pi(\mathrm{dx})<\infty$ (e.g. $\left.\phi(x)=\exp (x)\right)$
sub-geometric... [Douc Moulines Soulier 2007]

A paedagogical example

- The independent Metropolis-Hastings (IMH) algorithm, albeit of limited practical interest, is relatively easy to analyse.
- If we target $\pi(\mathrm{d} x)$ with a proposal distribution $q(d x)$, the rate of convergence depends on the behaviour of $\mu(x):=\pi(\mathrm{d} x) / q(\mathrm{~d} x)$
(1) the IMH is geometric iff. $\sup _{x \in \mathrm{X}} \mu(x)<\infty$ [Mengersen and Tweedie 1996],
(2) if $\int \mu^{\beta}(x) \pi(\mathrm{d} x)<\infty$ then the IMH is polynomially ergodic [Jarner and Roberts 2002],
(3) if $\int \phi(\mu(x)) \pi(\mathrm{d} x)<\infty$ (e.g. $\left.\phi(x)=\exp (x)\right)$ then the IMH is sub-geometric... [Douc Moulines Soulier 2007].

A paedagogical example

- The independent Metropolis-Hastings (IMH) algorithm, albeit of limited practical interest, is relatively easy to analyse.
- If we target $\pi(\mathrm{d} x)$ with a proposal distribution $q(d x)$, the rate of convergence depends on the behaviour of $\mu(x):=\pi(\mathrm{d} x) / q(\mathrm{~d} x)$
(1) the IMH is geometric iff. $\sup _{x \in \mathrm{X}} \mu(x)<\infty$ [Mengersen and Tweedie 1996],
(2) if $\int \mu^{\beta}(x) \pi(\mathrm{d} x)<\infty$ then the IMH is polynomially ergodic [Jarner and Roberts 2002],
(3) if $\int \phi(\mu(x)) \pi(\mathrm{d} x)<\infty$ (e.g. $\left.\phi(x)=\exp (x)\right)$ then the IMH is sub-geometric... [Douc Moulines Soulier 2007].
- We simply exploit that the pseudo-approximation of an IMH is an IMH algorithm (target is $\tilde{\pi}(d x \times d w)$ and the proposal is $q(\mathrm{~d} x) Q_{x}(\mathrm{~d} w)$.

Drift approach

Proposition

Denote $\mu(x)=\pi(\mathrm{d} x) / q(\mathrm{~d} x)$. Suppose that there exists a strictly increasing $\phi:(0, \infty) \rightarrow[1, \infty)$ with $\lim \inf _{t \rightarrow \infty} \phi(t) / t>0$, such that

$$
\begin{equation*}
\int \tilde{\pi}(\mathrm{d} x, \mathrm{~d} w) \phi(\mu(x) w)<\infty \tag{2}
\end{equation*}
$$

Then, there exists constants $M, c, \epsilon \in(0, \infty)$ and a probability measure ν on $(\mathrm{X} \times \mathrm{W}, \mathcal{B}(\mathrm{X}) \times \mathcal{B}(\mathrm{W}))$ such that for all $(x, w) \in \mathrm{X} \times \mathrm{W}$,

$$
\begin{array}{ll}
\tilde{P} V(x, w) \leq V(x, w)-c \frac{V(x, w)}{\phi^{-1}(V(x, w))}, &
\end{array} \quad \mu(x) w>M,
$$

and $\nu(V)<\infty$, where $V(x, w)=\phi(\mu(x) w)$.

Corollary: polynomial

Corollary

If for some $\beta \geq 1$

$$
\int \tilde{\pi}(\mathrm{d} x \times \mathrm{d} w)(\mu(x) w)^{\beta}<\infty
$$

then there exist constants $M, c, c_{V} \in(0, \infty)$ such that for $\mu(x) w \geq M$, we have the polynomial drift

$$
\tilde{P} V(x, w) \leq V(x, w)-c V^{\alpha}(x, w)
$$

where $V(x, w)=(\mu(x) w)^{\beta}+1$ and $\alpha=1-1 / \beta$. We have for $\xi \in[0,1]$

$$
\left\|\mathcal{L}_{x}\left(\Phi_{n}\right)-\mu\right\|_{V^{(1-\xi) \alpha}} \leq C_{\xi} V(x) n^{-\frac{\xi \alpha}{1-\alpha}}
$$

Corollary: sub-exponential

Corollary

If for some $\gamma>0$,

$$
\int \tilde{\pi}(\mathrm{d} x \times \mathrm{d} w) \exp \left[(\mu(x) w)^{\gamma}\right]<\infty
$$

then there exist constants $M, c, c_{V} \in(0, \infty)$ such that for $\mu(x) w \geq M$, we have the drift

$$
\tilde{P} V(x, w) \leq V(x, w)-c \kappa(V(x, w)),
$$

where $V(x, w)=\exp \left((\mu(x) w)^{\gamma}\right)$ and $\kappa(t)=t(\log t)^{-1 / \gamma}$. We have for $\xi \in(0,1)$ and $b \in \mathbb{R}$

$$
\begin{aligned}
\| \mathcal{L}_{x}\left(\Phi_{n}\right)- & \mu \|_{V^{\xi} /(1+\log V)^{b}} \\
& \leq C_{\xi} n^{\left(b+\gamma^{-1}\right) /\left(1+\gamma^{-1}\right)} \exp \left(-c(1-\xi)\left\{\left(1+\gamma^{-1}\right) n^{\gamma /(1+\gamma)}\right\}\right)
\end{aligned}
$$

Uniform marginal algorithm

Proposition (CA and Vihola 2012)

Suppose that the one-step expected acceptance probability of the marginal algorithm is bounded away from zero,

$$
\alpha_{0}:=\inf _{x \in \mathrm{X}} \int q(x, \mathrm{~d} y) \min \{1, r(x, y)\}>0
$$

and there exists a non-decreasing convex function $\phi:[0, \infty) \rightarrow[1, \infty)$ satisfying

$$
\liminf _{t \rightarrow \infty} \frac{\phi(t)}{t}=\infty \quad \text { and } \quad M_{W}:=\sup _{x \in \mathrm{X}} \int \phi(w) Q_{x}(\mathrm{~d} w)<\infty .
$$

Then, there exist constants $\delta>0$ and $\bar{w} \in(1, \infty)$ such that

$$
\tilde{P} V(x, w) \leq V(w)-\delta \frac{V(w)}{w} \mathbb{I}\{w \in[\bar{w}, \infty)\}+M_{w} \mathbb{I}\{w \in(0, \bar{w})\}
$$

where $V(x, w)=V(w):=\phi(w)\left(\delta\right.$ and \bar{w} depend only on α_{0}, ϕ and $\left.M_{W}\right)$.

Marginal RWM-uniform moments

- We consider the situation where the marginal algorithm is geometrically convergent Random Walk Metropolis.
- It is known that this is the case when [Jarner \& Hansen, 2000] see also [Roberts\& Tweedie, 1996]
(1) π has a density which is continuously differentiable and supported on $X=\mathbb{R}^{d}$,
(2) the tails of π are super-exponentially decaying and have regular contours, that is,

(3) the proposal distribution satisfies $q(x, A)=q(A-x)=\int_{A} q(y-x) d y$ with a symmetric density q bounded away from zero in some neighbourhood of the origin.

Marginal RWM-uniform moments

- We consider the situation where the marginal algorithm is geometrically convergent Random Walk Metropolis.
- It is known that this is the case when [Jarner \& Hansen, 2000] see also [Roberts\& Tweedie, 1996].
(1) π has a density which is continuously differentiable and supported on $\mathrm{X}=\mathbb{R}^{d}$,
(2) the tails of π are super-exponentially decaying and have regular contours, that is,

$$
\lim _{|x| \rightarrow \infty} \frac{x}{|x|} \cdot \nabla \log \pi(x)=-\infty \quad \text { and } \quad \lim _{|x| \rightarrow \infty} \frac{x}{|x|} \cdot \frac{\nabla \pi(x)}{|\nabla \pi(x)|}<0
$$

(3) the proposal distribution satisfies $q(x, A)=q(A-x)=\int_{A} q(y-x) \mathrm{d} y$ with a symmetric density q bounded away from zero in some neighbourhood of the origin.

Marginal RWM-uniform moments

- We consider the situation where the marginal algorithm is geometrically convergent Random Walk Metropolis.
- It is known that this is the case when [Jarner \& Hansen, 2000] see also [Roberts\& Tweedie, 1996].
(1) π has a density which is continuously differentiable and supported on $\mathrm{X}=\mathbb{R}^{d}$,
(2) the tails of π are super-exponentially decaying and have regular contours, that is,

$$
\lim _{|x| \rightarrow \infty} \frac{x}{|x|} \cdot \nabla \log \pi(x)=-\infty \quad \text { and } \quad \lim _{|x| \rightarrow \infty} \sup \frac{x}{|x|} \cdot \frac{\nabla \pi(x)}{|\nabla \pi(x)|}<0
$$

(3) the proposal distribution satisfies $q(x, A)=q(A-x)=\int_{A} q(y-x) \mathrm{d} y$ with a symmetric density q bounded away from zero in some neighbourhood of the origin.

- "Strongly super-exponential condition".

Marginal RWM-uniform moments

- If in addition to the condition on the marginal algorithm we have a uniform moment condition on the distributions $\left\{Q_{x}\right\}_{x \in X}$: there exist constants $\alpha^{\prime}>0$ and $\beta^{\prime}>1$ such that

$$
\begin{equation*}
M_{W}:=\operatorname{esssup}_{x \in \mathrm{X}} \int \max \left\{w^{-\alpha^{\prime}} \vee w^{\beta^{\prime}}\right\} Q_{x}(\mathrm{~d} w)<\infty \tag{5}
\end{equation*}
$$

(the essential supremum is taken with respect to the Lebesgue measure).

- Then one can establish polynomial drift condition and conclude about the polynomial convergence of the pseudo-marginal algorithm,
- In fact one can replace the condition with more general moments and obtain other sub-geometric rates.
- What about non-uniform moments...?

Marginal RWM-uniform moments

- If in addition to the condition on the marginal algorithm we have a uniform moment condition on the distributions $\left\{Q_{x}\right\}_{x \in X}$: there exist constants $\alpha^{\prime}>0$ and $\beta^{\prime}>1$ such that

$$
\begin{equation*}
M_{W}:=\operatorname{esssup}_{x \in \mathrm{X}} \int \max \left\{w^{-\alpha^{\prime}} \vee w^{\beta^{\prime}}\right\} Q_{x}(\mathrm{~d} w)<\infty \tag{5}
\end{equation*}
$$

(the essential supremum is taken with respect to the Lebesgue measure).

- Then one can establish polynomial drift condition and conclude about the polynomial convergence of the pseudo-marginal algorithm,
- In fact one can replace the condition with more general moments and obtain other sub-geometric rates.
- What about non-uniform moments...?

Marginal RWM-uniform moments

- If in addition to the condition on the marginal algorithm we have a uniform moment condition on the distributions $\left\{Q_{x}\right\}_{x \in X}$: there exist constants $\alpha^{\prime}>0$ and $\beta^{\prime}>1$ such that

$$
\begin{equation*}
M_{W}:=\operatorname{esssup}_{x \in \mathrm{X}} \int \max \left\{w^{-\alpha^{\prime}} \vee w^{\beta^{\prime}}\right\} Q_{x}(\mathrm{~d} w)<\infty \tag{5}
\end{equation*}
$$

(the essential supremum is taken with respect to the Lebesgue measure).

- Then one can establish polynomial drift condition and conclude about the polynomial convergence of the pseudo-marginal algorithm,
- In fact one can replace the condition with more general moments and obtain other sub-geometric rates.
- What about non-uniform moments...?

Marginal RWM-uniform moments

- If in addition to the condition on the marginal algorithm we have a uniform moment condition on the distributions $\left\{Q_{x}\right\}_{x \in X}$: there exist constants $\alpha^{\prime}>0$ and $\beta^{\prime}>1$ such that

$$
\begin{equation*}
M_{W}:=\operatorname{esssup}_{x \in \mathrm{X}} \int \max \left\{w^{-\alpha^{\prime}} \vee w^{\beta^{\prime}}\right\} Q_{x}(\mathrm{~d} w)<\infty \tag{5}
\end{equation*}
$$

(the essential supremum is taken with respect to the Lebesgue measure).

- Then one can establish polynomial drift condition and conclude about the polynomial convergence of the pseudo-marginal algorithm,
- In fact one can replace the condition with more general moments and obtain other sub-geometric rates.
- What about non-uniform moments...?

Ajelehtia Rambo pohjoisesta "drift Rambo from the North".

 Let $\hat{w}: X \rightarrow[1, \infty)$ be a function bounded on compact sets and tending to infinity as $|x| \rightarrow \infty$. Let $\psi:(0, \infty) \rightarrow[1, \infty)$ be a non-increasing function such that $\psi(t) \rightarrow \infty$ as $t \rightarrow 0$, and define $g(x):=\psi(\pi(x))$.(1) There exist constants $\alpha^{\prime}>0$ and $\beta^{\prime}>1$ such that

$$
\operatorname{esssup}_{x \in \mathrm{X}} g^{-1}(x) \int u^{-\alpha^{\prime}} \vee u^{\beta^{\prime}} Q_{x}(\mathrm{~d} u) \leq 1
$$

(2) There exist constants $\xi_{w} \in\left(0, \beta^{\prime}-1\right)$ and $\xi_{\pi} \in\left(0, \beta^{\prime}-1-\xi_{w}\right)$,

$$
\begin{equation*}
\sup _{x \in \mathrm{X}} \frac{g(x)}{\hat{w}^{\xi_{\pi}}(x)} \sup _{z \in R_{x}}\left[\left(\frac{\pi(x+z)}{\pi(x)}\right)^{\xi_{\pi}} \frac{g(x+z)}{g(x)}\right]<\infty \tag{6}
\end{equation*}
$$

where $R_{x}:=\left\{z: \frac{\pi(x+z)}{\pi(x)}<1\right\}$ is the set of possible rejection for the marginal random-walk Metropolis algorithm.
(3) For any $b>1$, one must have $\sup _{x \in \mathrm{X}} M_{W}(b(|x| \vee 1)) / \hat{w}^{\xi_{w}}(x)<\infty$

$$
M_{W}(r):=\operatorname{esssup}_{|x| \leq r} \int u^{-\alpha^{\prime}} \vee u^{\beta^{\prime}} Q_{x}(\mathrm{~d} u) \leq \operatorname{esssup}_{|x| \leq r} g(x)
$$

More

Surprisingly these conditions are implied by the simpler conditions...

Theorem

Suppose π is strongly super-exponential and q regular, and that there exist $\alpha^{\prime}>0, \beta^{\prime}>1, c<\infty$ and $\rho^{\prime} \in[0, \rho-1)$ such that

$$
\int \max \left\{w^{-\alpha^{\prime}}, w^{\beta^{\prime}}\right\} Q_{x}(w) \mathrm{d} w \leq c \max \left\{1,|x|^{\rho^{\prime}}\right\}
$$

Then, defining $V(x, w):=\|\pi\|_{\infty}^{\eta} \pi^{-\eta}(x) \max \left\{w^{-\alpha}, w^{\beta}\right\}$ for any

$$
\eta \in\left(0, \alpha^{\prime} \wedge\left(\beta^{\prime}-1\right) \wedge 1\right), \quad \alpha \in\left(\eta, \alpha^{\prime}\right], \quad \beta \in\left(1-\eta, \beta^{\prime}-\eta\right),
$$

then there exist $\bar{w}, M, b \in[1, \infty), \underline{w} \in(0,1]$ and $\delta_{V}>0$ such that

$$
\tilde{P} V(x, w) \leq \begin{cases}V(x, w)-\delta_{V} V^{\frac{\beta-1}{\beta}}(x, w), & \text { for all }(x, w) \notin \mathrm{C}, \\ b, & \text { for all }(x, w) \in \mathrm{C},\end{cases}
$$

where $C:=\{(x, w):|x| \leq M, w \in[\underline{w}, \bar{w}]\}$.

Uniform vanishing of the IA's tails

- Showing that $\lim _{N \rightarrow \infty} \operatorname{var}\left(f, \tilde{P}_{N}\right)=\operatorname{var}(f, P)$ seem to require a fundamental property.
- Denote by \tilde{X}_{n}^{N} the stationary pseudo-marginal chain with weight distribution Q_{X}^{N}. We require that for $f: X \rightarrow \mathbb{R}$, denoting $\bar{f}=f-\pi(f)$,

- The drift conditions established earlier allow us to verify these conditions, and in fact one can even obtain cuantitative bounds.

Uniform vanishing of the IA's tails

- Showing that $\lim _{N \rightarrow \infty} \operatorname{var}\left(f, \tilde{P}_{N}\right)=\operatorname{var}(f, P)$ seem to require a fundamental property.
- Denote by \tilde{X}_{n}^{N} the stationary pseudo-marginal chain with weight distribution Q_{X}^{N}. We require that for $f: X \rightarrow \mathbb{R}$, denoting $\bar{f}=f-\pi(f)$,

$$
\lim _{n \rightarrow \infty} \sup _{N \in \mathbb{N}}\left|\sum_{k=n}^{\infty} \mathbb{E}\left[\bar{f}\left(\tilde{X}_{0}^{N}\right) \bar{f}\left(\tilde{X}_{k}^{N}\right)\right]\right|=0
$$

- The drift conditions established earlier allow us to verify these conditions, and in fact one can even obtain quantitative bounds.

Uniform vanishing of the IA's tails

- Showing that $\lim _{N \rightarrow \infty} \operatorname{var}\left(f, \tilde{P}_{N}\right)=\operatorname{var}(f, P)$ seem to require a fundamental property.
- Denote by \tilde{X}_{n}^{N} the stationary pseudo-marginal chain with weight distribution Q_{X}^{N}. We require that for $f: X \rightarrow \mathbb{R}$, denoting $\bar{f}=f-\pi(f)$,

$$
\lim _{n \rightarrow \infty} \sup _{N \in \mathbb{N}}\left|\sum_{k=n}^{\infty} \mathbb{E}\left[\bar{f}\left(\tilde{X}_{0}^{N}\right) \bar{f}\left(\tilde{X}_{k}^{N}\right)\right]\right|=0
$$

- The drift conditions established earlier allow us to verify these conditions, and in fact one can even obtain quantitative bounds.

Convergence of the variance

Theorem (CA \& Vihola, 2012)

Under general technical conditions, the asymptotic variance of the pseudo-marginal algorithm converges to the asymptotic variance of the marginal algorithm.

Convergence of the variance

Theorem (CA \& Vihola, 2012)

Under general technical conditions, the asymptotic variance of the pseudo-marginal algorithm converges to the asymptotic variance of the marginal algorithm.

Assume that $\int|f(x)|^{2+\delta} \pi(x) \mathrm{d} x<\infty$ for some $\delta>0$, $\sum_{k=1}^{\infty} \mathbb{E}\left[\bar{f}\left(X_{0}\right) \bar{f}\left(X_{k}\right)\right]=c \in \mathbb{R}$ and the Uniform IA vanishing assumption. Suppose also that,

$$
\lim _{N \rightarrow \infty} \int Q_{x}^{N}(w)|1-w| \mathrm{d} w=0 \quad \text { for all } x \in X
$$

Then,

$$
\lim _{N \rightarrow \infty} \operatorname{var}\left(f, \tilde{P}_{N}\right)=\operatorname{var}(f, P)
$$

Explicit bounds

- As a by-product of the proof one can get an "explicit" upper bound

$$
\operatorname{var}\left(\tilde{P}_{N}\right)-\operatorname{var}(P) \leq C\left(S_{N}^{1 / q}+r^{-1}\left[n_{0}(N)\right]\right)
$$

- where (here for simplicity in the "marginal uniform" case)

$$
S_{N}
$$

$=n_{0}(N)\left[\sup _{x \in \mathrm{X}} Q_{x}^{N}(|U-1|>\check{\epsilon}(N))+\check{\epsilon}(N)+2 \sup _{x \in \mathrm{X}} \int_{1}^{\infty} Q_{x}^{N}(U>t) d t\right]$
for an adequate choice $n o(N) \rightarrow \infty$ and $\check{v(N) \downarrow 0}$

- The bound depends explicitly on the distribution of the weights, which we can again characterise in terms of moments.

Explicit bounds

- As a by-product of the proof one can get an "explicit" upper bound

$$
\operatorname{var}\left(\tilde{P}_{N}\right)-\operatorname{var}(P) \leq C\left(S_{N}^{1 / q}+r^{-1}\left[n_{0}(N)\right]\right)
$$

- where (here for simplicity in the "marginal uniform" case)

$$
\begin{aligned}
& S_{N} \\
& =n_{0}(N)\left[\sup _{x \in \mathrm{X}} Q_{x}^{N}(|U-1|>\check{\epsilon}(N))+\check{\epsilon}(N)+2 \sup _{x \in \mathrm{X}} \int_{1}^{\infty} Q_{x}^{N}(U>t) d t\right]
\end{aligned}
$$

for an adequate choice $n_{0}(N) \rightarrow \infty$ and $\check{\epsilon}(N) \downarrow 0$

- The bound depends explicitly on the distribution of the weights, which we can again characterise in terms of moments.

Explicit bounds

- As a by-product of the proof one can get an "explicit" upper bound

$$
\operatorname{var}\left(\tilde{P}_{N}\right)-\operatorname{var}(P) \leq C\left(S_{N}^{1 / q}+r^{-1}\left[n_{0}(N)\right]\right)
$$

- where (here for simplicity in the "marginal uniform" case)

$$
\begin{aligned}
& S_{N} \\
= & n_{0}(N)\left[\sup _{x \in \mathrm{X}} Q_{x}^{N}(|U-1|>\check{\epsilon}(N))+\check{\epsilon}(N)+2 \sup _{x \in \mathrm{X}} \int_{1}^{\infty} Q_{x}^{N}(U>t) d t\right]
\end{aligned}
$$

for an adequate choice $n_{0}(N) \rightarrow \infty$ and $\check{\epsilon}(N) \downarrow 0$

- The bound depends explicitly on the distribution of the weights, which we can again characterise in terms of moments.

Exponential moments

- We drop the dependence on x here and assume
$\mathbb{E}[\exp (t(W-1))]<\infty$ for $|t|<H$ and we simply average N iid realisations
- Then by optimising $n_{0}(N) \rightarrow \infty$ and $\check{\epsilon}(N) \downarrow 0$

$$
\begin{gathered}
\operatorname{var}(P)-\operatorname{var}\left(\tilde{P}_{N}\right) \leq C\left(\operatorname { l o g } (N) \left[N^{-1 / 2}+g \log ^{1 / 2}(N) / \sqrt{N}+\sqrt{2 \pi g / N}\right.\right. \\
+2(N T)^{-1} \exp \left(-g T\left(N^{2}\right) / 2\right)+\exp \left(-(\log (N))^{\gamma}\right)
\end{gathered}
$$

Polynomial moments

- Here we assume $\mathbb{E}\left[W^{\beta}\right]<\infty$ for $\beta \geq 2$
- And finds

$$
\operatorname{var}(P)-\operatorname{var}\left(\tilde{P}_{N}\right) \leq\left(A+B / N^{\frac{1}{2} \frac{\beta}{1+\beta}}\right) N^{-\frac{1}{2}(\beta-1) /(\beta+1)}
$$

Polynomial moments

- Here we assume $\mathbb{E}\left[W^{\beta}\right]<\infty$ for $\beta \geq 2$
- And finds

$$
\operatorname{var}(P)-\operatorname{var}\left(\tilde{P}_{N}\right) \leq\left(A+B / N^{\frac{1}{2} \frac{\beta}{1+\beta}}\right) N^{-\frac{1}{2}(\beta-1) /(\beta+1)}
$$

Sub-polynomial moments

- Just kidding...

Sub-polynomial moments

- Just kidding...

Conclusions

- Many recently proposed algorithms share the underlying noisy structures considered here,
- We have some understanding and characterisation of the properties of these algorithms in terms of moments of the "noise",
- In some recent work we show the monotonicity of $\operatorname{var}\left(\tilde{P}_{N}\right)$ and other quantities \Rightarrow adaptive algorithms.

Conclusions

- Many recently proposed algorithms share the underlying noisy structures considered here,
- We have some understanding and characterisation of the properties of these algorithms in terms of moments of the "noise",
- In some recent work we show the monotonicity of $\operatorname{var}\left(\tilde{P}_{N}\right)$ and other quantities \Rightarrow adaptive algorithms.

Conclusions

- Many recently proposed algorithms share the underlying noisy structures considered here,
- We have some understanding and characterisation of the properties of these algorithms in terms of moments of the "noise",
- In some recent work we show the monotonicity of $\operatorname{var}\left(\tilde{P}_{N}\right)$ and other quantities \Rightarrow adaptive algorithms.

Thanks.

Thanks for your attention!

Counter-example

- Consider the independent MH algorithm, in the discrete case. It is possible to characterise exactly the second largest eigenvalue of the transition probability.
- For P it takes the form $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$
- For \tilde{P} it takes the form $1-\left(\operatorname{sun}(0, w)=\theta \times w \frac{\pi(\theta)}{q(\theta)} w\right)^{-1}$
- If $\sup _{w \in W} w$ is independent of θ, the second largest eigenvalue is exactly $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}\left(\sup _{\ldots \in w} w\right)^{-1}$ which is larger than $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$ - even for an arbitrarily small variance!

Counter-example

- Consider the independent MH algorithm, in the discrete case. It is possible to characterise exactly the second largest eigenvalue of the transition probability.

- For \tilde{P} it takes the form $1-\left(\sup _{(\theta, w) \in \Theta \times W} \frac{\pi(\theta)}{q(\theta)} w\right)$
- If $\sup _{w \in W} w$ is independent of θ, the second largest eigenvalue is exactly $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}\left(\sup _{w \in W} w\right)^{-1}$ which is larger than
$1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$ - even for an arbitrarily small variance!

Counter-example

- Consider the independent MH algorithm, in the discrete case. It is possible to characterise exactly the second largest eigenvalue of the transition probability.
- For P it takes the form $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$
- For \tilde{P} it takes the form $1-\left(\sup (\theta, w) \in \Theta \times W \frac{\pi(\theta)}{q(\theta)} W\right)$
- If $\sup _{w \in W} w$ is independent of θ, the second largest eigenvalue is exactly $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}\left(\sup _{w \in w} w\right)^{-1}$ which is larger than
$1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$ - even for an arbitrarily small variance!

Counter-example

- Consider the independent MH algorithm, in the discrete case. It is possible to characterise exactly the second largest eigenvalue of the transition probability.
- For P it takes the form $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$
- For \tilde{P} it takes the form $1-\left(\sup _{(\theta, w) \in \Theta \times W} \frac{\pi(\theta)}{q(\theta)} w\right)^{-1}$.

Counter-example

- Consider the independent MH algorithm, in the discrete case. It is possible to characterise exactly the second largest eigenvalue of the transition probability.
- For P it takes the form $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$
- For \tilde{P} it takes the form $1-\left(\sup _{(\theta, w) \in \Theta \times W} \frac{\pi(\theta)}{q(\theta)} w\right)^{-1}$.
- If $\sup _{w \in W} w$ is independent of θ, the second largest eigenvalue is exactly $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}\left(\sup _{w \in \mathrm{~W}} w\right)^{-1}$ which is larger than $1-\left(\sup _{\theta \in \Theta} \frac{\pi(\theta)}{q(\theta)}\right)^{-1}$ - even for an arbitrarily small variance!

Un petit détour (I)

- Before turning to the study of pseudo-marginal algorithms, we show on one of their cousins why the convex order may be useful.
- Consider the following algorithm with transition

$$
\stackrel{\circ}{P}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}(\mathrm{~d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \stackrel{\rho}{\rho}(x)
$$

where $r(x, y)$ is the acceptance ratio of P.

- It can be shown that the condition $Q_{x y}(\mathrm{~d} \omega) \times \omega=Q_{y x}\left(d\left(\omega^{-1}\right)\right)$ for any $x, y \in X$ ensures that it is reversible with respect to π.
- For example, for any $a>0$ the distribution
$Q(\mathrm{~d} w)=\left[\delta_{a}(\mathrm{~d} w)+a \delta_{a^{-1}}(\mathrm{~d} w)\right] /(1+a)$ satisfies this condition, but this is also the case for the log-normal distribution...
- These algorithms are exact approximations of MCMC, but here it is the acceptance probability which is directly approximated.

Un petit détour (I)

- Before turning to the study of pseudo-marginal algorithms, we show on one of their cousins why the convex order may be useful.
- Consider the following algorithm with transition

$$
\stackrel{\circ}{P}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}(\mathrm{~d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \stackrel{\rho}{ }(x)
$$

where $r(x, y)$ is the acceptance ratio of P.

- It can be shown that the condition $Q_{x y}(\mathrm{~d} \varpi)$ any $x, y \in X$ ensures that it is reversible with respect to π.
- For example, for any $a>0$ the distribution $Q(\mathrm{~d} w)=\left[\delta_{a}(\mathrm{~d} w)+a \delta_{a^{-1}}(\mathrm{~d} w)\right] /(1+a)$ satisfies this condition, but this is also the case for the log-normal distribution...
- These algorithms are exact approximations of MCMC, but here it is the acceptance probability which is directly approximated.

Un petit détour (I)

- Before turning to the study of pseudo-marginal algorithms, we show on one of their cousins why the convex order may be useful.
- Consider the following algorithm with transition

$$
\stackrel{\circ}{P}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}(\mathrm{~d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \stackrel{\rho}{ }(x)
$$

where $r(x, y)$ is the acceptance ratio of P.

- It can be shown that the condition $Q_{x y}(\mathrm{~d} \varpi) \times \varpi=Q_{y x}\left(\mathrm{~d}\left(\varpi^{-1}\right)\right)$ for any $x, y \in X$ ensures that it is reversible with respect to π.
- For example, for any $a>0$ the distribution
$Q(\mathrm{~d} w)=\left[\delta_{a}(\mathrm{~d} w)+a \delta_{a^{-1}}(\mathrm{~d} w)\right] /(1+a) \mathrm{s}$
this is also the case for the log-normal distribution...
- These algorithms are exact approximations of MCMC, but here it is the acceptance probability which is directly approximated.

Un petit détour (I)

- Before turning to the study of pseudo-marginal algorithms, we show on one of their cousins why the convex order may be useful.
- Consider the following algorithm with transition

$$
\stackrel{\circ}{P}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}(\mathrm{~d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \stackrel{\rho}{ }(x)
$$

where $r(x, y)$ is the acceptance ratio of P.

- It can be shown that the condition $Q_{x y}(\mathrm{~d} \varpi) \times \varpi=Q_{y x}\left(\mathrm{~d}\left(\varpi^{-1}\right)\right)$ for any $x, y \in X$ ensures that it is reversible with respect to π.
- For example, for any $a>0$ the distribution $Q(\mathrm{~d} w)=\left[\delta_{a}(\mathrm{~d} w)+a \delta_{a^{-1}}(\mathrm{~d} w)\right] /(1+a)$ satisfies this condition, but this is also the case for the log-normal distribution...
the acceptance probability which is directly approximated.

Un petit détour (I)

- Before turning to the study of pseudo-marginal algorithms, we show on one of their cousins why the convex order may be useful.
- Consider the following algorithm with transition

$$
\stackrel{\circ}{P}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}(\mathrm{~d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \stackrel{\rho}{\rho}(x)
$$

where $r(x, y)$ is the acceptance ratio of P.

- It can be shown that the condition $Q_{x y}(\mathrm{~d} \varpi) \times \varpi=Q_{y x}\left(\mathrm{~d}\left(\varpi^{-1}\right)\right)$ for any $x, y \in X$ ensures that it is reversible with respect to π.
- For example, for any $a>0$ the distribution $Q(\mathrm{~d} w)=\left[\delta_{a}(\mathrm{~d} w)+a \delta_{a^{-1}}(\mathrm{~d} w)\right] /(1+a)$ satisfies this condition, but this is also the case for the log-normal distribution...
- These algorithms are exact approximations of MCMC, but here it is the acceptance probability which is directly approximated.

A small detour (II)

- Now compare

$$
\stackrel{\circ}{P}^{(i)}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}^{(i)}(\mathrm{d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \stackrel{\rho}{\rho}^{(i)}(x)
$$

- These define Markov chains $\left\{\dot{X}^{(1)}\right\}$ and $\left\{\dot{X}^{(2)}\right\}$ with common invariant distribution (Peskun!).
- In contrast with pseudo-marginal algorithms for which the Markov chain involves the weight sequence, i.e. $\left\{X^{(1)}, W^{(1)}\right\}$.
- If we have for any $x, y \in X^{2}$ that $\bar{W}_{x y}^{(1)} \leq_{c x} \bar{W}_{x y}^{(2)}$ then, noting that $u \mapsto-\min \{1, u\}$ is convex,

- This therefore allows us to apply Peskun's result directly and conclude that $\operatorname{var}\left(f, \stackrel{\circ}{P}_{2}\right) \geq \operatorname{var}\left(f, \stackrel{\circ}{P}_{1}\right)$.

A small detour (II)

- Now compare

$$
\stackrel{\circ}{P}^{(i)}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}^{(i)}(\mathrm{d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \stackrel{\rho}{\rho}^{(i)}(x)
$$

- These define Markov chains $\left\{\dot{X}^{(1)}\right\}$ and $\left\{\dot{X}^{(2)}\right\}$ with common invariant distribution (Peskun!).
- In contrast with pseudo-marginal algorithms for which the Markov chain involves the weight sequence, i.e. $\left\{X^{(1)}, W^{(1)}\right\}$.
- If we have for any $x, y \in X^{2}$ that $\bar{W}_{x y}^{(1)}<_{c x} \bar{W}_{x y}^{(2)}$ then, noting that $u \mapsto-\min \{1, u\}$ is convex,

- This therefore allows us to apply Peskun's result directly and conclude that $\operatorname{var}\left(f, \stackrel{\circ}{P}_{2}\right) \geq \operatorname{var}\left(f, \stackrel{\circ}{P}_{1}\right)$

A small detour (II)

- Now compare

$$
\stackrel{\circ}{P}^{(i)}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}^{(i)}(\mathrm{d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \dot{\rho}^{(i)}(x)
$$

- These define Markov chains $\left\{\dot{X}^{(1)}\right\}$ and $\left\{\dot{X}^{(2)}\right\}$ with common invariant distribution (Peskun!).
- In contrast with pseudo-marginal algorithms for which the Markov chain involves the weight sequence, i.e. $\left\{X^{(1)}, W^{(1)}\right\}$.
- If we have for any $x, y \in X^{2}$ that $\bar{W}_{x y}^{(1)} \leq_{c x} \bar{W}_{x y}^{(2)}$ then, noting that $u \mapsto-\min \{1, u\}$ is convex,

A small detour (II)

- Now compare

$$
\stackrel{\circ}{P}^{(i)}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}^{(i)}(\mathrm{d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \grave{\rho}^{(i)}(x)
$$

- These define Markov chains $\left\{\dot{X}^{(1)}\right\}$ and $\left\{\dot{X}^{(2)}\right\}$ with common invariant distribution (Peskun!).
- In contrast with pseudo-marginal algorithms for which the Markov chain involves the weight sequence, i.e. $\left\{X^{(1)}, W^{(1)}\right\}$.
- If we have for any $x, y \in X^{2}$ that $\bar{W}_{x y}^{(1)} \leq_{c x} \bar{W}_{x y}^{(2)}$ then, noting that $u \mapsto-\min \{1, u\}$ is convex,
$\int_{\mathrm{W}} Q_{x y}^{(2)}\left(\mathrm{d} \varpi_{2}\right) \min \left\{1, r(x, y) \varpi_{2}\right\} \leq \int_{\mathrm{W}} Q_{x y}^{(1)}\left(\mathrm{d} \varpi_{1}\right) \min \left\{1, r(x, y) \varpi_{1}\right\}$.

A small detour (II)

- Now compare

$$
\stackrel{\circ}{P}^{(i)}(x ; \mathrm{d} y)=q(x, \mathrm{~d} y) \int_{\mathrm{W}} Q_{x y}^{(i)}(\mathrm{d} \varpi) \min \{1, r(x, y) \varpi\}+\delta_{x}(\mathrm{~d} y) \grave{\rho}^{(i)}(x)
$$

- These define Markov chains $\left\{\dot{X}^{(1)}\right\}$ and $\left\{\dot{X}^{(2)}\right\}$ with common invariant distribution (Peskun!).
- In contrast with pseudo-marginal algorithms for which the Markov chain involves the weight sequence, i.e. $\left\{X^{(1)}, W^{(1)}\right\}$.
- If we have for any $x, y \in X^{2}$ that $\bar{W}_{x y}^{(1)} \leq_{c x} \bar{W}_{x y}^{(2)}$ then, noting that $u \mapsto-\min \{1, u\}$ is convex,
$\int_{\mathrm{W}} Q_{x y}^{(2)}\left(\mathrm{d} \varpi_{2}\right) \min \left\{1, r(x, y) \varpi_{2}\right\} \leq \int_{\mathrm{W}} Q_{x y}^{(1)}\left(\mathrm{d} \varpi_{1}\right) \min \left\{1, r(x, y) \varpi_{1}\right\}$.
- This therefore allows us to apply Peskun's result directly and conclude that $\operatorname{var}\left(f, \stackrel{\circ}{P}_{2}\right) \geq \operatorname{var}\left(f, \stackrel{\circ}{P}_{1}\right)$.

Extremal distributions (III)

When the interval has infinite support, one can constrain the problem by e.g. imposing a variance on the class of distributions, $\mathscr{P}\left(\mu, \sigma^{2},[0, \infty)\right)$ for $\sigma^{2}<\infty$

Theorem

Let $\sigma_{x}^{2}: X \rightarrow[0, \infty)$. Consider the class of pseudo marginal algorithms \tilde{P} such that for any $x \in X$ the weight distribution Q_{X} is such that $\mathscr{P}\left(1, \sigma_{x}^{2},[0, \infty)\right)$. Then for any $f \in L^{2}(X, \pi)$,

$$
\operatorname{var}(P, f) \leq \operatorname{var}(\tilde{P}, f) \leq \operatorname{var}\left(\tilde{P}_{\max }, f\right)
$$

where for any $x \in X$

$$
Q_{x}^{\max }\left(W \leq t ; \sigma_{x}^{2}\right):= \begin{cases}0 & \text { for } t \leq 0 \\ \frac{\sigma_{x}^{2}}{1+\sigma_{x}^{2}} & \text { for } 0 \leq t \leq\left(\sigma_{x}^{2}+1\right) / 2 \\ \frac{1}{2}+\frac{1}{2} \frac{t-1}{\sqrt{\sigma_{x}^{2}+(t-1)^{2}}} & \text { for } t \geq\left(\sigma_{x}^{2}+1\right) / 2\end{cases}
$$

