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Overview

Assume we are interested in sampling from a probability distribution of
density π(x).
Standard “universal” algorithms require one to evaluate π(x).
Assume for any x ∈ X, “noisy” unbiased measurements of π(x) are
available.
In recent years “novel” MCMC algorithms have been proposed in order
to sample from π(x) in this context.
The main idea is to replace π(x) with a noisy estimator whenever
needed.
A key point is that these algorithms can still be exact, but can be seen
as being (random) approximations of algorithms which make us of
π(x).
Here we focus on the theoretical properties of these noisy algorithms.
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Latent variables and pseudo-marginals
Assume interest is in a posterior distribution

π(x) = p(x |y) ∝ p(x)p(y |x) = p(x)

ˆ
p(y , z |x)dz

where the integral cannot be computed analytically.
Then with zi

iid∼ Qx and p(y , z |x)/Qx(z) well defined, consider an IS
approximation of the likelihood

1
N

N∑
i=1

p(y , zi |x)

Qx(zi )

This is a noisy measurement of the intractable “likelihood” p(y |x).
One gets a noisy measurement (up to a constant) of the posterior
distribution with

π̂N(x) ∝ p(x)

[ˆ
p(y , z |x)dz

]
×

1
N

∑N
i=1

p(y ,zi |x)
Qx (zi )´

p(y , z |x)dz

∝ π(x)× w



Latent variables and pseudo-marginals
Assume interest is in a posterior distribution

π(x) = p(x |y) ∝ p(x)p(y |x) = p(x)

ˆ
p(y , z |x)dz

where the integral cannot be computed analytically.
Then with zi

iid∼ Qx and p(y , z |x)/Qx(z) well defined, consider an IS
approximation of the likelihood

1
N

N∑
i=1

p(y , zi |x)

Qx(zi )

This is a noisy measurement of the intractable “likelihood” p(y |x).
One gets a noisy measurement (up to a constant) of the posterior
distribution with

π̂N(x) ∝ p(x)

[ˆ
p(y , z |x)dz

]
×

1
N

∑N
i=1

p(y ,zi |x)
Qx (zi )´

p(y , z |x)dz

∝ π(x)× w



Latent variables and pseudo-marginals
Assume interest is in a posterior distribution

π(x) = p(x |y) ∝ p(x)p(y |x) = p(x)

ˆ
p(y , z |x)dz

where the integral cannot be computed analytically.
Then with zi

iid∼ Qx and p(y , z |x)/Qx(z) well defined, consider an IS
approximation of the likelihood

1
N

N∑
i=1

p(y , zi |x)

Qx(zi )

This is a noisy measurement of the intractable “likelihood” p(y |x).
One gets a noisy measurement (up to a constant) of the posterior
distribution with

π̂N(x) ∝ p(x)

[ˆ
p(y , z |x)dz

]
×

1
N

∑N
i=1

p(y ,zi |x)
Qx (zi )´

p(y , z |x)dz

∝ π(x)× w



Modelling of the noisy measurements

Measurements of the form π(x)× w where
I w ∼ Qx , w ≥ 0, can be thought of as a multiplicative noise,
I and EQx [w ] = 1.

This covers numerous cases of interest
I latent variable setups,
I model selection,
I statistical inference in diffusion models,
I optimal design,
I fixed parameter estimation in dynamical systems with particle filters...
I Bayesian inference/ML estimation when the normalising constant of

the likelihood is unknown...
I Approximate Bayesian Computation (ABC methods).
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Noisy measurements and MCMC
Unbiased measurements π(x)× w where w ∼ Qx , w ≥ 0 and
EQx [w ] = 1.
What a standard MH algorithm P would do. Given x , y ∼ q(x , ·) and
use

α(x , y) = min
{
1,
π(y)q(y , x)

π(x)q(x , y)

}
= min {1, r(x , y)}

to accept/reject the transition.
Naive idea: such measurements could be directly plugged into the
standard MH algorithm.
One could suggest to use the following “noisy” MH algorithm, P̃ :
y ∼ q(x , ·), obtain a measurement π(y)u of π(y) and evaluate

α̃(x , y) = min
{
1,
π(y)× u q(y , x)

π(x)× w q(x , y)

}
= min

{
1, r(x , y)

u

w

}
P̃ approximates P and targets π(x)Qx(w)× w =⇒ “exact
approximation”.
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Exactness

Consider the probability density

π(x ,w) = π(x)× w × Qx(w)

From the assumed unbiasedness (EQx [w ] = 1) its marginal is π(x).
Now consider a MH algorithm targeting this density and proposal
distribution

q(x , y)× Qy (u) .

The acceptance probability is

α̃(x ,w ; y , u) = min
{
1,
π(y)× u × Qy (u)

π(x)× w × Qx(w)

q(y , x)Qx(w)

q(x , y)Qy (u)

}
= min

{
1,
π(y)× u q(y , x)

π(x)× w q(x , y)

}
.

This is the naive algorithm suggested earlier!
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Exact approximation

P̃ approximates P .

the more w is concentrated on 1 the better the approximation looks,

for example if for x ∈ X we have N (say independent) noisy
measurements of π(x)wi then one could use the following (better)
estimator

π(x)
1
N

N∑
i=1

wi

Question: is it important to average, or more generally use better
approximations of the algorithm we cannot implement?
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Toy latent variables example

We consider here a simple example where the target distribution is

π(x , z) = N
((

x
z

)
;

(
0
0

)
,

[
1 −0.9
−0.9 1

])
Marginal is π(x) = N (x ; 0, 1)

Sample with random walk Metropolis algorithm
I with q(x , y) = N

(
y ; x , 2.42

)
and Qx (Z ) =

∏N
i=1N (zi ; 0, 1) for IS.

I q(x , y) = N
(
y ; x , 2.42

)
is known to be optimal in terms of asymptotic

variance.
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Standard AV
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N = 5
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N = 10
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N = 20
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Intuition

The acceptance probability of the algorithm is

min
{
1, r(x , y)

u

w

}
The probability of escaping (x ,w) can be made arbitrarily small by
increasing w ...
The Markov chain becomes “sticky”.
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Asymptotic variance and expected acceptance probability

With Π a Markov transition kernel with invariant distribution µ, letting
X1 ∼ µ and Xn ∼ Π(Xn−1, ·),

var (f ,Π) := lim
T→∞

TE
(

1
T

T∑
k=1

f (Xk)− µ(f )

)2

∈ [0,∞].

The expected acceptance probability of a MH algorithm with invariant
distribution π is ˆ

α(x , y)π(dx)q(x , dy)
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Performance as a function of N
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Comparing pseudo-marginal algorithms?

A natural question is whether the performance of the algorithm indeed
always improves as we increase N?
Our work is concerned with developing tools for the comparison of the
performance of pseudo-marginal algorithms in terms of the choice of
Qx .
Let

{
Q

(1)
x

}
and

{
Q

(2)
x

}
be two families of distributions corresponding

to two possible approximations of the marginal density.
Let P̃(1) and P̃(2) be the corresponding competing pseudo-marginal
implementations of the MH algorithm

I targeting π(·) marginally
I sharing the same family of proposal distributions {q(x , ·), x ∈ X}.
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Standard ordering of MH algorithms—Peskun
Let Π(1) and Π(2) be two Markov kernel reversible with respect to
some common invariant distribution µ on

(
E,B(E)

)
.

A well known result due originally to Peskun states that

Theorem (Peskun)
Whenever for any x ∈ E and A ∈ B (E) such that x /∈ A,
Π(1)(x ,A) ≥ Π(2)(x ,A) then for any f : E→ R such that varµ(f ) <∞
then

var(f ,Π(1)) ≤ var(f ,Π(2)) and GapR

(
Π(1)

)
≥ GapR

(
Π(2)

)
therefore leading to a simple and intuitive criterion for the comparison
of performance of algorithms.
Peskun’s result is not an “iff” statement (more later), but it is
practically useful.
Clearly Peskun’s result does not apply to the comparison of
pseudo-marginal algorithms since P̃(1) and P̃(2) do not share the same
invariant distribution.
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An order for variability
Intuitively performance of pseudo-marginal algorithms should depend
on the variability of the approximation.

Considering the variance is not sufficient : one can construct
counterexamples where var(W1) ≤ var(W2) but
var(f , P̃(1)) ≥ var(f , P̃(2)) [CA & Vihola, 2015].

The convex order is a natural way to compare the “variability” or
“dispersion” of two random variables or distributions.

Definition
The random variables W1 and W2 are convex ordered W1 ≤cx W2 if for
any convex function φ : R→ R,

E[φ(W1)] ≤ E[φ(W2)],

whenever the expectations are well-defined.

Note that W1 ≤cx W2 implies var(W1) ≤ var(W2) i.e. an observed
order in terms of variance will be a by-product of the convex order.
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Relevance of the convex order?

An equivalent characterization of the convex order is possible by
restricting the subset of convex functions to t 7→ −min {a, t} for
a ∈ R,
The algorithm’s acceptance ratio is

min
{
1, r(x , y)

u

w

}
and at a superficial level one may suspect a link...
Except for a very specific scenario we do not claim that this is the
optimal way of ordering algorithms.
Importantly it allows us to establish practically relevant results.
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Main result

Theorem

Let π be a probability distribution on some measurable space
(
X,B(X)

)
and P̃1 and P̃2 be two implementations of pseudo-marginal algorithms to
sample from π sharing the family of proposal distributions

{
q(x , ·), x ∈ X

}
but noise distributions

{
Q

(1)
x , x ∈ X

}
and

{
Q

(2)
x , x ∈ X

}
such that for any

x ∈ X W
(1)
x ≤cx W

(2)
x . Then for any f ∈ L2(X, π) we have the following

orders for the
1 asymptotic variances: var(f , P̃2) ≥ var(f , P̃1),
2 spectral gaps: GapR

(
P̃i

)
≤ GapR

(
P
)
and more...



Extremal distributions (I)

Theorem
For µ, a, b ∈ R (a ≤ µ ≤ b) let P(µ, [a, b]) be the set of probability
distributions Q on (R,B(R)) such that for W ∼ Q, EQ

[
W
]

= µ and
Q
(
W ∈ [a, b]

)
= 1. Then for any Q ∈P(µ, [a, b])

Qmin ≤cx Q ≤cx Qmax

Qmin(dw) := δµ(dw),

Qmax(dw) :=
b − µ
b − a

δa(dw) +
µ− a

b − a
δb(dw) .



Extremal distributions (II)

Theorem
Let ax , bx : X2 → [0,∞) (ax ≤ 1 ≤ bx). Consider the class of pseudo
marginal algorithms P̃ such that for any x ∈ X the weight distribution Qx

is such that Qx ∈P(1, [ax , bx ]). Then for any f ∈ L2(X, π),
var (P, f ) ≤ var

(
P̃, f

)
≤ var

(
P̃max, f

)
,

where P̃max is the pseudo-marginal algorithm with distribution

Qmax
x (dw) =

1− ax
bx − ax

δax (dw) +
bx − 1
bx − ax

δbx (dw) .

Furthermore

var
(
P̃max, f

)
≤ sup

x∈X
bxvar (P, f ) + (sup

x∈X
bx − 1)varπ(f ) .



Every sample counts in pseudo-marginal MCMC
As mentioned earlier a suggestion in order to improve the performance
of such algorithms one can suggest averaging, i.e. use an average of
(say independent) estimates of the density

π(x)WN := π(x)
1
N

N∑
i=1

Wi

Intuitively this should help since we are reducing the variance. But we
know that the variance is not necessarily a good indicator
(counterexample).
However... for exchangeable random variables, it is known that for any
N ≥ 1

1
N + 1

N+1∑
i=1

Wi ≤cx
1
N

N∑
i=1

Wi

Which from our results immediately implies that for any f ∈ L2(X, π)
and any N ≥ 2

var
(
f , P̃N−1

)
≥ var

(
f , P̃N

)
...
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Éléments de preuve
As pointed out earlier the main difficulty when trying to establish an
order here stems from the fact that P̃1 and P̃2 do not share the same
invariant distribution since for i ∈ {1, 2}

π̃(i)
(
dx × dw

)
= π(dx)Q

(i)
x (dw)w

The central idea of the proof is to embed these two probability
distributions into one, π̆
With this idea in mind (and say, W (1)

x “less noisy” than W
(2)
x ) we

consider

π̆(dx , dw , dm) := π(dx)Q
(1)
x (dw)w × Kx ,w (dm)m ,

where we have the properties
1
´
Q

(1)
x (dw)Kx,w (dm)I

{
w ×m ∈ A

}
= Q

(2)
x (A) for all

(x ,A) ∈ X× B(R+)
2
´
Kx,w (dm)m = 1

m can be thought of as a Martingale multiplicative increment which
“adds” noise to w
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Strassen’s characterisation
One of the miracles in this work is that Strassen’s characterisation of
the convex order tells us that for x ∈ X, W (1)

x ≤cx W
(2)
x “less noisy”

then

Theorem (Strassen)

Suppose that E[W1] and E[W2] are well-defined. Then, W1 ≤cx W2 if and
only if there exists a probability space with random variables W̌1 and W̌2
coinciding with W1 and W2 in distribution, respectively, such that
(W̌1, W̌2) is a martingale pair, that is, E[W̌2 | W̌1] = W̌1 (a.s.).

Here there are some subtle measurability issues since Strassen’s
theorem can be applied for any x ∈ X but we require

π̆(dx , dw , dm) := π(dx)Q
(1)
x (dw)w × Kx ,w (dm)m

to define a probability distribution...

An extension of Strassen’s theorem is required in practice. This is
possible, highly technical and skipped here.
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Working on the embedding space
Now we consider two Markov transition probabilities P̆(1) and P̆(2)

reversible with respect to π̆(dx , dw , dm)

For f , g ∈ L2(E, µ) define 〈f , g〉µ :=
´
f (z)g(z)µ(dz)

One can establish that with f̄ = f − µ(f ),
var(f ,Π) = varµ(f ) + 2

∑∞
k=1

〈
f̄ ,Πk f̄

〉
µ
,

We aim to construct P̃(1) and P̃(2) such that for k ≥ 0 and
g : X→ R 〈

g ,
[
P̆(1)

]k
g
〉
π̆

=
〈
g ,
[
P̃(1)

]k
g
〉
π̃(1) ,〈

g ,
[
P̆(2)

]k
g
〉
π̆

=
〈
g ,
[
P̃(2)

]k
g
〉
π̃(2) .

So var(g , P̆(1)) = var(g , P̃(1)) var(g , P̆(2)) = var(g , P̃(2)) and it is
sufficient to establish the sought result on the “fictitious” kernels in
order to deduce the result on the kernels of interest.
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Sampling in two different ways
Two ways to think about the target
π̆(dx , dw , dm) := π(dx)Qx(dw)w × Kx ,w (dm)m or
π̆(dx , dw , dm) := π(dx)Qx(dw)Kx ,w (dm)(w ×m)

The transitions are defined as follows
1 P̆(1)(x ,w ,mw ; dy , du, dmu)=

q(x , dy)Qy (du)min
{
1, r(x , y)

u

w

}
Ky ,u(dmu)mu

+ δx,w ,mw (dy , du, dmu)ρ̆(1)(x ,w)

1 P̆(2)(x ,w ,mw ; dy , du, dmu)=

q(x , dy)Qy (du)Ky ,u(dmu)min
{
1, r(x , y)

u mu

w mw

}
+ δx,w ,mw (dy , du, dmu)ρ̆(2)(x ,wmw )

It should be at least believable that there is a correspondence between
P̆(1), P̆(2) and P̃(1), P̃(2) .
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Hilbert space techniques I
Let µ be a probability distribution on (E,B(E)) and Π a Markov kernel
reversible w.r.t. µ.

One can establish that with f̄ = f − µ(f ),
var(f ,Π) = varµ(f ) + 2

∑∞
k=1

〈
f ,Πk f

〉
µ
,

Then for λ ∈ [0, 1)

var(f , λΠ) := 2
〈
f , (I − λΠ)−1f

〉
µ
− ‖f ‖2µ.

where (I − λΠ)−1 :=
∑∞

k=0 λ
kΠk .

Define the “Dirichlet forms” EλΠ

(
f
)

:= 〈f , (I − λΠ)f 〉µ [related to the
first order autocovariance coefficient of the chain]

Now for Π1 and Π2 reversible w.r.t µ the property underpinning
Peskun’s result is essentially[
∀f ∈ L2(E, µ) 〈

f , (I − λΠ2)−1f
〉
µ
≥
〈
f , (I − λΠ1)−1f

〉
µ

]
⇐⇒

[
∀g ∈ L2(E, µ) 〈g , (I − λΠ2)g〉µ ≤ 〈g , (I − λΠ1)g〉µ

]
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Explicit bounds

Theorem (Tierney)
Let Π1 and Π2 be two Markov transition probabilities defined on some
measurable space (E,B(E)) and reversible with respect to some common
invariant distribution µ. Then for any f ∈ L2(E, µ) and any λ ∈ [0, 1)

EλΠ1

(
f̂ λ1
)
− EλΠ2

(
f̂ λ1
)
≤ 1

2

[
var(f , λΠ2)− var(f , λΠ1)

]
≤ EλΠ1

(
f̂ λ2
)
− EλΠ2

(
f̂ λ2
)

,

where f̂ λi :=
(
I − λΠi

)−1
f .



Back to P̆i

The important point for us is that

EP̆(1)

(
f̂1
)
− EP̆(2)

(
f̂1
)
≤ 1

2

[
var(f , P̆(2))− var(f , P̆(1))

]
.

And
1 f̂1 :=

(
I − P̆(1)

)−1
f is a function of x ,w (not m) only if f : X→ R

2 it is easy to show (Jensen’s inequality) that for g(x ,w) : X× R+ → R

EP̆(1)

(
g
)
≥ EP̆(2)

(
g
)

.
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Ordering of Dirichlet forms

The Dirichlet form for P̆(2) and g(x ,w) [NOT dependent on m] is

ˆ {
[g(x ,w)− g(y , u)]2 min

{
1, r(x , y)

u ×mu

w ×mw

}
×

× π(dx)Qx(dw)Kx ,w

(
dmw

)
mwq(x , dy)Qy (du)Ky ,u

(
dmu

)}
For x , y ∈ X and w , u ∈ R+ we have from Jensen’s inequality,
ˆ

min
{
1, r(x , y)

u ×mu

w ×mw

}
Kx ,w

(
dmw

)
mwKy ,u

(
dmu

)
≤min

{
1, r(x , y)

ˆ
u ×mu

w ×mw
Kx ,w

(
dmw

)
mwKy ,u

(
dmu

)}
=min

{
1, r(x , y)

u

w

}
So EP̆(1)

(
g
)
≥ EP̆(2)

(
g
)
and the conclusion follows.
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Conclusion

Developed tools to compare pseudo-marginal and related MCMC
algorithms,
The convex order seems to be natural order + literature on the topic
is rich,
Effectively develop some sort of extension of Peskun’s result...
Other applications of these ideas.



Conclusion

Developed tools to compare pseudo-marginal and related MCMC
algorithms,
The convex order seems to be natural order + literature on the topic
is rich,
Effectively develop some sort of extension of Peskun’s result...
Other applications of these ideas.



Conclusion

Developed tools to compare pseudo-marginal and related MCMC
algorithms,
The convex order seems to be natural order + literature on the topic
is rich,
Effectively develop some sort of extension of Peskun’s result...
Other applications of these ideas.



Conclusion

Developed tools to compare pseudo-marginal and related MCMC
algorithms,
The convex order seems to be natural order + literature on the topic
is rich,
Effectively develop some sort of extension of Peskun’s result...
Other applications of these ideas.



Rates of convergence of Markov chains

Denote by Lx(Φn) the law of a Markov chain Φn with
1 transition probability Π and invariant distribution µΠ = µ,
2 initial state Φ0 ≡ x .

Recall the Markov chain convergence rates

‖Lx(Φn)− µ‖∗ ≤


Mρn if uniformly ergodic
MV (x)ρn if geometrically ergodic
MV (x)n−p if polynomially ergodic
r−1(n) r(n)→∞if ergodic.



Some negative results
Theorem (CA and Roberts, 2009)
If the weight distributions are not (essentially) bounded, then the
pseudo-marginal algorithm cannot be geometrically ergodic.
[The pseudo-marginal algorithm has a zero spectral gap if the set below
has a positive π-mass,{

x ∈ X :

ˆ ∞
M

Qx(w)dw > 0 for all M <∞
}

]

Corollary
Even when P is geometrically ergodic if

1 the noise is unbounded the approximation cannot be geometric,

2 for any N ∈ Nr {0},
{
x ∈ X :

´∞
M QN

x (w)dw > 0 for all M <∞
}

has a positive π-mass, then P̃N cannot be geometrically ergodic for
any N ∈ Nr {0}.
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Intuition

The acceptance probability of the algorithm is

min
{
1,
π(y)× u q(y , x)

π(x)× w q(x , y)

}
The probability of escaping (x ,w) can be made arbitrarily small...
The Markov chain becomes “sticky”.
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Bounded weights
One may wonder what happens when the support W of the weights is
bounded?
One can consider the spectral gaps of P and P̃ (remember that
1−Gap(Π) is the second largest eigenvalue of Π).

Theorem (CA and M. Vihola, 2012)

With P the idealised algorithm and P̃ its exact approximation, if the
support of the weights is W = [0, w̄ ] for some w̄ > 1 and π({x}) = 0 for
all x ∈ X then

1−Gap(P̃) ≤ 1− w̄−1Gap(P) .

Remark
Say that we have a sequence WN ∼ QN

x and that for all N ∈ Nr {0} and
any x ∈ X, ε > 0,

´ w̄
w̄−εQ

N
x (w)dw > 0 then it is not possible in general to

achieve the rate of convergence of the marginal chain P , even though we
may have varQN

x
(WN)→ 0 as N →∞ for all x ∈ X (counter-example).
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Bounded weights—asymptotic variance

Proposition (CA & Vihola, 2012)
Assume the marginal algorithm is geometrically ergodic, the weights of the
pseudo-marginal algorithm are upper-bounded by w̄ and´
f 2(x)π(x)dx <∞. Then,

var(f , P̃) ≤ w̄var(f ,P) + (w̄ − 1)varπ(f ), (1)

Assume Gap(P) > 0 and
ˆ w̄

0
Qx(w)dw = 1 for π-almost all x ∈ X,

then (1) holds, where varπ(f ) = π
(
(f − π(f ))2).
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Ordering of the variances
Theorem (CA & Vihola, 2012)
The pseudo-marginal algorithm is never more efficient than the
corresponding marginal algorithm (in terms of the asymptotic variance).

Assume f : X→ R satisfies π(f 2) <∞. The asymptotic variances of f
with respect to the pseudo-marginal algorithm P̃ and the marginal
algorithm P always satisfy

var(f ,P) ≤ var(f , P̃) .

Remark
The result above is general and does not assume that the weights are
bounded.

Remark
Note that although not unexpected, the result requires a non-trivial
extension of Peskun’s result.
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Convergence in terms of variance

If we combine the last two results, if the weights are upper-bounded
by w̄ then

var(f ,P) ≤ var(f , P̃) ≤ w̄var(f ,P) + (w̄ − 1)varπ(f ) .

If we have a sequence WN ∼ QN
x and the corresponding supports are

WN = [0, w̄N ] and w̄N ↓ 1 then the pseudo-marginal algorithm
approaches P in terms of asymptotic variance i.e.

lim
N→∞

var(f , P̃N) = var(f ,P) .

In what follows we show how to extend these results to the (more
realistic) case where the weights are unbounded.
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Rates with w unbounded

If P is geometric and w unbounded, what rates can one expect for P̃?
It depends on the tail behaviour of Qx (W ≥ w),
The “practical” approach developed relies on the drift/minorization
approach.
Establishing these rates of convergence turns out to be essential to
characterise the behaviour of P̃N as a function of N.
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A paedagogical example

The independent Metropolis-Hastings (IMH) algorithm, albeit of
limited practical interest, is relatively easy to analyse.
If we target π(dx) with a proposal distribution q(dx), the rate of
convergence depends on the behaviour of µ(x) := π(dx)/q(dx)

1 the IMH is geometric iff. supx∈X µ(x) <∞ [Mengersen and Tweedie
1996],

2 if
´
µβ(x)π(dx) <∞ then the IMH is polynomially ergodic [Jarner and

Roberts 2002],
3 if

´
φ (µ(x))π(dx) <∞ (e.g. φ(x) = exp(x)) then the IMH is

sub-geometric... [Douc Moulines Soulier 2007].

We simply exploit that the pseudo-approximation of an IMH is an IMH
algorithm (target is π̃(dx × dw) and the proposal is q(dx)Qx(dw).
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Drift approach

Proposition
Denote µ(x) = π(dx)/q(dx). Suppose that there exists a strictly
increasing φ : (0,∞)→ [1,∞) with lim inft→∞ φ(t)/t > 0, such that

ˆ
π̃(dx , dw)φ

(
µ(x)w

)
<∞. (2)

Then, there exists constants M, c , ε ∈ (0,∞) and a probability measure ν
on (X×W,B(X)× B(W)) such that for all (x ,w) ∈ X×W,

P̃V (x ,w) ≤ V (x ,w)− c
V (x ,w)

φ−1
(
V (x ,w)

) , µ(x)w > M (3)

P̃(x ,w ; ·) ≥ εν(·), µ(x)w ≤ M, (4)

and ν(V ) <∞, where V (x ,w) = φ
(
µ(x)w

)
.



Corollary: polynomial

Corollary
If for some β ≥ 1

ˆ
π̃(dx × dw)

(
µ(x)w

)β
<∞,

then there exist constants M, c , cV ∈ (0,∞) such that for µ(x)w ≥ M, we
have the polynomial drift

P̃V (x ,w) ≤ V (x ,w)− cV α(x ,w),

where V (x ,w) = (µ(x)w)β + 1 and α = 1− 1/β. We have for ξ ∈ [0, 1]

‖Lx(Φn)− µ‖V (1−ξ)α ≤ CξV (x)n−
ξα

1−α



Corollary: sub-exponential

Corollary
If for some γ > 0,

ˆ
π̃(dx × dw) exp

[(
µ(x)w

)γ]
<∞,

then there exist constants M, c , cV ∈ (0,∞) such that for µ(x)w ≥ M, we
have the drift

P̃V (x ,w) ≤ V (x ,w)− cκ
(
V (x ,w)

)
,

where V (x ,w) = exp
(
(µ(x)w)γ

)
and κ(t) = t(log t)−1/γ . We have for

ξ ∈ (0, 1) and b ∈ R

‖Lx(Φn)− µ‖V ξ/(1+logV )b

≤ Cξn
(b+γ−1)/(1+γ−1) exp

(
−c(1− ξ){(1 + γ−1)nγ/(1+γ)}

)



Uniform marginal algorithm
Proposition (CA and Vihola 2012)
Suppose that the one-step expected acceptance probability of the marginal
algorithm is bounded away from zero,

α0 := inf
x∈X

ˆ
q(x , dy)min{1, r(x , y)} > 0,

and there exists a non-decreasing convex function φ : [0,∞)→ [1,∞)
satisfying

lim inf
t→∞

φ(t)

t
=∞ and MW := sup

x∈X

ˆ
φ(w)Qx(dw) <∞.

Then, there exist constants δ > 0 and w̄ ∈ (1,∞) such that

P̃V (x ,w) ≤ V (w)− δV (w)

w
I{w ∈ [w̄ ,∞)}+ MW I{w ∈ (0, w̄)}.

where V (x ,w) = V (w) := φ(w) (δ and w̄ depend only on α0, φ and MW ).



Marginal RWM-uniform moments

We consider the situation where the marginal algorithm is
geometrically convergent Random Walk Metropolis.
It is known that this is the case when [Jarner & Hansen, 2000] see also
[Roberts& Tweedie, 1996].

1 π has a density which is continuously differentiable and supported on
X = Rd ,

2 the tails of π are super-exponentially decaying and have regular
contours, that is,

lim
|x|→∞

x

|x |
· ∇ log π(x) = −∞ and lim sup

|x|→∞

x

|x |
· ∇π(x)

|∇π(x)|
< 0,

3 the proposal distribution satisfies q(x ,A) = q(A− x) =
´
A
q(y − x)dy

with a symmetric density q bounded away from zero in some
neighbourhood of the origin.

“Strongly super-exponential condition”.
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Marginal RWM-uniform moments

If in addition to the condition on the marginal algorithm we have a
uniform moment condition on the distributions {Qx}x∈X : there exist
constants α′ > 0 and β′ > 1 such that

MW := esssupx∈X

ˆ
max{w−α′ ∨ wβ′}Qx(dw) <∞, (5)

(the essential supremum is taken with respect to the Lebesgue
measure).
Then one can establish polynomial drift condition and conclude about
the polynomial convergence of the pseudo-marginal algorithm,
In fact one can replace the condition with more general moments and
obtain other sub-geometric rates.
What about non-uniform moments...?
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Ajelehtia Rambo pohjoisesta “drift Rambo from the North”.
Let ŵ : X→ [1,∞) be a function bounded on compact sets
and tending to infinity as |x | → ∞. Let ψ : (0,∞)→ [1,∞)
be a non-increasing function such that ψ(t)→∞ as t → 0,
and define g(x) := ψ(π(x)).

1 There exist constants α′ > 0 and β′ > 1 such that

esssupx∈Xg
−1(x)

ˆ
u−α

′ ∨ uβ
′
Qx(du) ≤ 1,

2 There exist constants ξw ∈ (0, β′ − 1) and ξπ ∈ (0, β′ − 1− ξw ),

sup
x∈X

g(x)

ŵ ξπ(x)
sup
z∈Rx

[(
π(x + z)

π(x)

)ξπ g(x + z)

g(x)

]
<∞, (6)

where Rx := {z : π(x+z)
π(x) < 1} is the set of possible rejection for the

marginal random-walk Metropolis algorithm.
3 For any b > 1, one must have supx∈X MW

(
b(|x | ∨ 1)

)
/ŵ ξw (x) <∞

MW (r) := esssup|x |≤r

ˆ
u−α

′ ∨ uβ
′
Qx(du) ≤ esssup|x |≤rg(x) .



More
Surprisingly these conditions are implied by the simpler conditions...

Theorem
Suppose π is strongly super-exponential and q regular, and that there exist
α′ > 0, β′ > 1, c <∞ and ρ′ ∈ [0, ρ− 1) such that

ˆ
max

{
w−α

′
,wβ′

}
Qx(w)dw ≤ c max

{
1, |x |ρ

′}
,

Then, defining V (x ,w) := ‖π‖η∞π−η(x)max{w−α,wβ} for any

η ∈
(
0, α′ ∧ (β′ − 1) ∧ 1

)
, α ∈ (η, α′], β ∈ (1− η, β′ − η),

then there exist w̄ ,M, b ∈ [1,∞), w ∈ (0, 1] and δV > 0 such that

P̃V (x ,w) ≤

{
V (x ,w)− δVV

β−1
β (x ,w), for all (x ,w) /∈ C,

b, for all (x ,w) ∈ C,

where C := {(x ,w) : |x | ≤ M, w ∈ [w , w̄ ]}.



Uniform vanishing of the IA’s tails

Showing that limN→∞ var(f , P̃N) = var(f ,P) seem to require a
fundamental property.
Denote by X̃N

n the stationary pseudo-marginal chain with weight
distribution QN

x . We require that for f : X→ R, denoting
f̄ = f − π(f ),

lim
n→∞

sup
N∈N

∣∣∣∣ ∞∑
k=n

E[f̄ (X̃N
0 )f̄ (X̃N

k )]

∣∣∣∣ = 0.

The drift conditions established earlier allow us to verify these
conditions, and in fact one can even obtain quantitative bounds.
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Convergence of the variance

Theorem (CA & Vihola, 2012)
Under general technical conditions, the asymptotic variance of the
pseudo-marginal algorithm converges to the asymptotic variance of the
marginal algorithm.

Assume that
´
|f (x)|2+δπ(x)dx <∞ for some δ > 0,∑∞

k=1 E[f̄ (X0)f̄ (Xk)] = c ∈ R and the Uniform IA vanishing assumption.
Suppose also that,

lim
N→∞

ˆ
QN

x (w)|1− w |dw = 0 for all x ∈ X.

Then,
lim

N→∞
var(f , P̃N) = var(f ,P) .
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Explicit bounds

As a by-product of the proof one can get an “explicit” upper bound

var(P̃N)− var(P) ≤ C
(
S

1/q
N + r−1[n0(N)]

)
where (here for simplicity in the “marginal uniform” case)

SN

= n0(N)

[
sup
x∈X

QN
x (|U − 1| > ε̌(N)) + ε̌(N) + 2 sup

x∈X

ˆ ∞
1

QN
x (U > t)dt

]
for an adequate choice n0(N)→∞ and ε̌(N) ↓ 0

The bound depends explicitly on the distribution of the weights, which
we can again characterise in terms of moments.
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Exponential moments

We drop the dependence on x here and assume
E [exp(t(W − 1))] <∞ for |t| < H and we simply average N iid
realisations
Then by optimising n0(N)→∞ and ε̌(N) ↓ 0

var(P)−var(P̃N) ≤ C
(
log(N)

[
N−1/2 + g log1/2(N)/

√
N +

√
2πg/N

])
+ 2(NT )−1 exp

(
−gT (N2)/2

)
+ exp(−(log(N))γ)



Polynomial moments

Here we assume E
[
W β

]
<∞ for β ≥ 2

And finds

var(P)− var(P̃N) ≤
(
A + B/N

1
2

β
1+β

)
N−

1
2 (β−1)/(β+1)
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Sub-polynomial moments

Just kidding...
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Conclusions

Many recently proposed algorithms share the underlying noisy
structures considered here,

We have some understanding and characterisation of the properties of
these algorithms in terms of moments of the “noise”,

In some recent work we show the monotonicity of var(P̃N) and other
quantities ⇒ adaptive algorithms.
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Thanks.

Thanks for your attention!



Counter-example

Consider the independent MH algorithm, in the discrete case. It is
possible to characterise exactly the second largest eigenvalue of the
transition probability.

I For P it takes the form 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1

I For P̃ it takes the form 1−
(
sup(θ,w)∈Θ×W

π(θ)
q(θ)w

)−1
.

If supw∈W w is independent of θ, the second largest eigenvalue is

exactly 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
(supw∈W w)−1 which is larger than

1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
- even for an arbitrarily small variance!



Counter-example

Consider the independent MH algorithm, in the discrete case. It is
possible to characterise exactly the second largest eigenvalue of the
transition probability.

I For P it takes the form 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1

I For P̃ it takes the form 1−
(
sup(θ,w)∈Θ×W

π(θ)
q(θ)w

)−1
.

If supw∈W w is independent of θ, the second largest eigenvalue is

exactly 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
(supw∈W w)−1 which is larger than

1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
- even for an arbitrarily small variance!



Counter-example

Consider the independent MH algorithm, in the discrete case. It is
possible to characterise exactly the second largest eigenvalue of the
transition probability.

I For P it takes the form 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1

I For P̃ it takes the form 1−
(
sup(θ,w)∈Θ×W

π(θ)
q(θ)w

)−1
.

If supw∈W w is independent of θ, the second largest eigenvalue is

exactly 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
(supw∈W w)−1 which is larger than

1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
- even for an arbitrarily small variance!



Counter-example

Consider the independent MH algorithm, in the discrete case. It is
possible to characterise exactly the second largest eigenvalue of the
transition probability.

I For P it takes the form 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1

I For P̃ it takes the form 1−
(
sup(θ,w)∈Θ×W

π(θ)
q(θ)w

)−1
.

If supw∈W w is independent of θ, the second largest eigenvalue is

exactly 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
(supw∈W w)−1 which is larger than

1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
- even for an arbitrarily small variance!



Counter-example

Consider the independent MH algorithm, in the discrete case. It is
possible to characterise exactly the second largest eigenvalue of the
transition probability.

I For P it takes the form 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1

I For P̃ it takes the form 1−
(
sup(θ,w)∈Θ×W

π(θ)
q(θ)w

)−1
.

If supw∈W w is independent of θ, the second largest eigenvalue is

exactly 1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
(supw∈W w)−1 which is larger than

1−
(
supθ∈Θ

π(θ)
q(θ)

)−1
- even for an arbitrarily small variance!



Un petit détour (I)

Before turning to the study of pseudo-marginal algorithms, we show
on one of their cousins why the convex order may be useful.
Consider the following algorithm with transition

P̊(x ; dy) = q(x , dy)

ˆ
W
Qxy (d$)min {1, r(x , y)$}+ δx(dy)ρ̊(x)

where r(x , y) is the acceptance ratio of P .

It can be shown that the condition Qxy (d$)×$ = Qyx(d($−1)) for
any x , y ∈ X ensures that it is reversible with respect to π.
For example, for any a > 0 the distribution
Q(dw) = [δa (dw) + a δa−1 (dw)] /(1 + a) satisfies this condition, but
this is also the case for the log-normal distribution...
These algorithms are exact approximations of MCMC, but here it is
the acceptance probability which is directly approximated.
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A small detour (II)

Now compare

P̊(i)(x ; dy) = q(x , dy)

ˆ
W
Q

(i)
xy (d$)min {1, r(x , y)$}+ δx(dy)ρ̊(i)(x)

These define Markov chains {X̊ (1)} and {X̊ (2)} with common
invariant distribution (Peskun!).
In contrast with pseudo-marginal algorithms for which the Markov
chain involves the weight sequence, i.e. {X (1),W (1)}.
If we have for any x , y ∈ X2 that W̄ (1)

xy ≤cx W̄
(2)
xy then, noting that

u 7→ −min
{
1, u
}
is convex,

ˆ
W
Q

(2)
xy (d$2)min {1, r(x , y)$2} ≤

ˆ
W
Q

(1)
xy (d$1)min {1, r(x , y)$1} .

This therefore allows us to apply Peskun’s result directly and conclude
that var(f , P̊2) ≥ var(f , P̊1).
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Extremal distributions (III)
When the interval has infinite support, one can constrain the problem by
e.g. imposing a variance on the class of distributions, P(µ, σ2, [0,∞)) for
σ2 <∞

Theorem
Let σ2

x : X→ [0,∞). Consider the class of pseudo marginal algorithms P̃
such that for any x ∈ X the weight distribution Qx is such that
P(1, σ2

x , [0,∞)). Then for any f ∈ L2(X, π),
var (P, f ) ≤ var

(
P̃, f

)
≤ var

(
P̃max, f

)
,

where for any x ∈ X

Qmax
x

(
W ≤ t;σ2

x

)
:=


0 for t ≤ 0
σ2
x

1+σ2
x

for 0 ≤ t ≤ (σ2
x + 1)/2

1
2 + 1

2
t−1√

σ2
x +(t−1)2

for t ≥ (σ2
x + 1)/2
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