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Asymptotics for Change-Point Tests based on Projections

Comparison with Panel-Data-Statistics

Change-Point Statistics
Projections

Change-Point Setting

Consider the following setup:

Xi ,t = µi + δi ,T g(t/T ) + ei ,t , 1 6 i 6 d = dT , 1 6 t 6 T ,

where {(e1,t , . . . , ed ,T )T , t = 1, . . . ,T} is i.i.d., E ei ,j = 0,
0 < var ei ,t <∞, g(·) Riemann-integrable.

Change: ∆d = (δ1,T , . . . , δd ,T )T

g(·) describes type of mean change, e.g.

AMOC-Location Model: g(u) = 1{u>ϑ}.

Epidemic Location Model: g(u) = 1{ϑ1<u6ϑ2}.

Test: H0 : ∆d = 0, H1 : ∆d 6= 0.
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where {(e1,t , . . . , ed ,T )T , t = 1, . . . ,T} is i.i.d., E ei ,j = 0,
0 < var ei ,t <∞, g(·) Riemann-integrable.

Asymptotic Framework:

Multivariate Setting:
d > 1 fixed, i.e. small in comparison to T .

High-Dimensional/Panel-Data Setting:
d = dT →∞ as T →∞.
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Projections

This talk. . .

is not about

how time dependency influences tests.

Multivariate Setting:
Dependency structure must allow for multivariate FCLT.

Panel Data Setting:
More difficult but e.g. linear processes possible.

how change-point tests for different types of changes are
obtained.

Change-Point-Statistics usually based on functionals of the
centered partial sum process {Z ( k

T ) = 1√
T

∑k
j=1(Xt − X̄T )}, e.g.

AMOC-Change:
max16k6T w( k

T )Z ( k
T )AZ ( k

T ).

Epidemic Change:
max16k1<k26T (Z ( k2

T )− Z ( k1

T ))TA(Z ( k2

T )− Z ( k1

T )).

but about

asymptotic properties of tests based on projections.

how to quantify and compare the efficiency of high
dimensional tests.

the influence of misspecification of the model covariance
on size and power.
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Change-Point Statistics
Projections

Motivations for Projections

Change ∆d is always a one-dimensional object
(no matter what d does):

If we know, where to look, we can increase signal-to-noise ratio!

In practical situation: Certain change-scenarios expected or of
particular interest, e.g.

Economics: Performance of several companies looking for
changes caused by recession.

Medical studies: Knowledge about co-regulation of genes.

Projections allow to increase power for changes that are close to
those scenarios at the cost of decreasing power in different
directions.

Analogous assertion hold for one- or two-sample location problem.
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Statistics based on projections

Let pd be a (possibly random) projection vector!

Consider univariate time series:

〈X(t),pd〉 = 〈µ,pd〉+ 〈∆d ,pd〉g(t/T ) + 〈et ,pd〉, 1 6 t 6 T .

Standard univariate change-point statistics based on the centered
partial sum process

Ud,T (x) = 〈Z (x),pd〉 =
1√
T

bTxc∑
t=1

〈Xd(t),pd〉 −
1

T

T∑
j=1

〈Xd(j),pd〉

 ,

e.g. simplest AMOC-statistic sup06x61 |Ud ,T (x)|.
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Comparison with Panel-Data-Statistics

Null Asymptotics
Contiguous Alternatives and Power
Oracle and Random Projections

Null Asymptotics I

Theorem

Let (i) pd independent of {et}, (ii) 〈pd , et〉 non-degenerate

(iii)
‖pd‖2

1

pT
d cov(et)pT

d

= o(T 1−2/ν) a.s., then{
Ud ,T (x)

τ(pd)
: 0 6 x 6 1 |pd

}
D[0,1]−→ {B(x) : 0 6 x 6 1} a.s.,

where τ2(pd) = var(〈et ,pd〉), which can be replaced by a suitable
estimator.

Assumption (iii) is always fulfilled in the multivariate case (with
fixed cov(et)) or if d grows sufficiently slow.

If we want to allow for d = dT →∞ faster, we need stronger
assumptions on the error sequence!
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Assumption on the error sequence

Let η1,t , η2,t , . . . independent (identically distributed across time t)

with E ηi ,t = 0, var ηi ,t = 1 and E |ηi ,t |ν 6 C <∞, ν > 2.

The error sequence is defined as

et(d) =
∑
j>1

aj(d)ηj ,t .

Three important special cases:

C.1 Independent case: ei ,t(d) = si ηi ,t .

C.2 Fully dependent case: ei ,t(d) = Φi η1,t .

C.3 Mixed components: ei ,t(d) = si ηi ,t + Φi ηd+1,t .

Aston, Kirch Change-Points in High-Dimensional Settings



Introduction
Asymptotics for Change-Point Tests based on Projections

Comparison with Panel-Data-Statistics

Null Asymptotics
Contiguous Alternatives and Power
Oracle and Random Projections

Assumption on the error sequence

Let η1,t , η2,t , . . . independent (identically distributed across time t)

with E ηi ,t = 0, var ηi ,t = 1 and E |ηi ,t |ν 6 C <∞, ν > 2.

The error sequence is defined as

et(d) =
∑
j>1

aj(d)ηj ,t .

Three important special cases:

C.1 Independent case: ei ,t(d) = si ηi ,t .

C.2 Fully dependent case: ei ,t(d) = Φi η1,t .

C.3 Mixed components: ei ,t(d) = si ηi ,t + Φi ηd+1,t .

Aston, Kirch Change-Points in High-Dimensional Settings



Introduction
Asymptotics for Change-Point Tests based on Projections

Comparison with Panel-Data-Statistics

Null Asymptotics
Contiguous Alternatives and Power
Oracle and Random Projections

Assumption on the error sequence

Let η1,t , η2,t , . . . independent (identically distributed across time t)

with E ηi ,t = 0, var ηi ,t = 1 and E |ηi ,t |ν 6 C <∞, ν > 2.

The error sequence is defined as

et(d) =
∑
j>1

aj(d)ηj ,t .

Three important special cases:

C.1 Independent case: ei ,t(d) = si ηi ,t .

C.2 Fully dependent case: ei ,t(d) = Φi η1,t .

C.3 Mixed components: ei ,t(d) = si ηi ,t + Φi ηd+1,t .

Aston, Kirch Change-Points in High-Dimensional Settings



Introduction
Asymptotics for Change-Point Tests based on Projections

Comparison with Panel-Data-Statistics

Null Asymptotics
Contiguous Alternatives and Power
Oracle and Random Projections

Assumption on the error sequence

Let η1,t , η2,t , . . . independent (identically distributed across time t)

with E ηi ,t = 0, var ηi ,t = 1 and E |ηi ,t |ν 6 C <∞, ν > 2.

The error sequence is defined as

et(d) =
∑
j>1

aj(d)ηj ,t .

Three important special cases:

C.1 Independent case: ei ,t(d) = si ηi ,t .

C.2 Fully dependent case: ei ,t(d) = Φi η1,t .

C.3 Mixed components: ei ,t(d) = si ηi ,t + Φi ηd+1,t .

Aston, Kirch Change-Points in High-Dimensional Settings



Introduction
Asymptotics for Change-Point Tests based on Projections

Comparison with Panel-Data-Statistics

Null Asymptotics
Contiguous Alternatives and Power
Oracle and Random Projections

Assumption on the error sequence

Let η1,t , η2,t , . . . independent (identically distributed across time t)

with E ηi ,t = 0, var ηi ,t = 1 and E |ηi ,t |ν 6 C <∞, ν > 2.

The error sequence is defined as

et(d) =
∑
j>1

aj(d)ηj ,t .

Three important special cases:

C.1 Independent case: ei ,t(d) = si ηi ,t .

C.2 Fully dependent case: ei ,t(d) = Φi η1,t .

C.3 Mixed components: ei ,t(d) = si ηi ,t + Φi ηd+1,t .

Aston, Kirch Change-Points in High-Dimensional Settings



Introduction
Asymptotics for Change-Point Tests based on Projections

Comparison with Panel-Data-Statistics

Null Asymptotics
Contiguous Alternatives and Power
Oracle and Random Projections

Null Asymptotics II

Theorem

Let the above error structure hold and

(i) pd independent of {ηi ,t}
(ii) 〈pd , et〉 non-degenerate

then{
Ud ,T (x)

τ(pd)
: 0 6 x 6 1 |pd

}
D[0,1]−→ {B(x) : 0 6 x 6 1} a.s.,

where τ2(pd) = var(〈et ,pd〉), which can be replaced by a suitable
estimator.
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Empirical Size, C.3, sj = 1, T = 100, d = 200
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High-dimensional efficiency

Power comparison:

Typically, large enough changes are detected by all statistics.

Corresponding asymptotic theory: Fixed changes with
‖∆d‖ = c > 0.

To understand the small sample power using asymptotic tools
contiguous alternatives need to be considered:

‖∆d‖ → 0, such that asymptotic power strictly between α and 1.

Unlike classic efficiency we obtain different rates for d
increasing!
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Asymptotics for contiguous alternatives
Theorem

Let

E2
1 (∆d ,pd) :=

‖∆d‖2‖pd‖2 cos2(α∆d ,pd
)

τ 2(pd)
.

a) If
√
T E1(∆d ,pd)→∞ a.s., then{

Ud,T (x)

τ(pd)
√
T E1(∆,pd)

: 0 6 x 6 1 |pd

}
D[0,1]−→

{∫ x

0

g(t) dt − x

∫ 1

0

g(t) dt : 0 6 x 6 1

}
a.s.

We call E1(∆d ,pd) the absolute high dimensional efficiency for
the projection procedure!
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Implications for change-point tests

Corollary (Asymptotic power one)

If
√
T E1(∆d ,pd)→∞ a.s., then for g(·) 6= c it holds

P

(
max

06x61

|Ud ,T (x)|
τ(pd)

> c |pd

)
→ 1 a.s.

Corollary

For the AMOC-situation g(x) = 1{x>ϑ}, the estimator

ϑ̂T =

⌊
arg maxk |Ud ,T (k/T )|

T

⌋
is consistent, i.e. P

(∣∣∣ϑ̂T − ϑ∣∣∣ > ε |pd

)
→ 0 a.s.
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Asymptotics for contiguous alternatives
Theorem

Let

E2
1 (∆d ,pd) :=

‖∆d‖2‖pd‖2 cos2(α∆d ,pd
)

τ 2(pd)
.

b) If
√
T E1(∆d ,pd)→ C1 > 0 a.s., then{
Ud,T (x)

τ(pd)
− sdC1

(∫ x

0

g(t) dt − x

∫ 1

0

g(t) dt

)
: 0 6 x 6 1 |pd

}
D[0,1]−→ {B(x)} a.s.,

where sd = sgn(∆T
d pd).

We call E1(∆d ,pd) the absolute high dimensional efficiency for
the projection procedure!
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Oracle Projection

Proposition

If Σ is invertible, then

E1(∆d ,pd) = ‖Σ−1/2∆d‖ cos(αΣ−1/2∆d ,Σ1/2pd
).

High-dimensional efficiency only depends on magnitude of change
‖Σ−1/2∆d‖ and angle between projection and change.

The projection o = Σ−1∆d maximizes E1(∆d ,pd) if Σ−1 exists. It
is called oracle.

Another way to think of it: First, standardize data via Σ−1/2, then
project onto the new change Σ−1/2∆d .
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Benchmark: Correctly Scaled Random Projection

Theorem

Consider a random uniform projection rd on the d-dimensional
unit sphere and rΣ,d = Σ−1/2rd .

Then, there exist for all ε > 0 constants c ,C > 0, such that

P

(
c 6 E1(∆, rΣ,d)

√
d

‖Σ−1/2∆‖
6 C

)
> 1− ε.

Another way to think of it: Random projection on the unit sphere
after standardizing the data!

Random high dimensional efficiency is an order
√
d worse than

oracle projection.
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Empirical Power: Different Angles, T = 100, d = 200
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Power for increasing dimension, T = 100, ‖∆‖ constant
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Misscaled Projections

In high dimensional settings: Covariance structure not known and
not estimable!

Theorem

a) For a misscaled random projection rM,d = M−1/2rd :

P

(
c 6 E2

1 (∆d , rM,d)
tr(M−1/2ΣM−1/2)

‖M−1/2∆d‖2
6 C

)
> 1− ε.

b) For the misscaled oracle oM = M−1∆d , it holds

E2
1 (∆d , oM) >

‖M−1/2∆d‖2

tr(M−1/2ΣM−1/2)
,

with equality iff there is only one common factor and ∆d is a
multiple of this factor.
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Misscaled Projections

In high dimensional settings: Covariance structure not known and
not estimable!

Theorem

a) For a misscaled random projection rM,d = M−1/2rd :

P

(
c 6 E2

1 (∆d , rM,d)
tr(M−1/2ΣM−1/2)

‖M−1/2∆d‖2
6 C

)
> 1− ε.
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Misscaled Oracle Projection

The projection qo = (∆1/σ
2
1, . . . ,∆d/σ

2
d)T is called

quasi-oracle, if σ2
j > 0, j = 1, . . . , d .

The projection po = ∆d is called pre-oracle.

Proposition

If the channels are uncorrelated, the oracle and the quasi-oracle are
equal.

If additionally 0 < c 6 σ2
i < C <∞ for i = 1, . . . , d , then

c

C
E1(∆, qo) 6 E1(∆, po) 6 E1(∆, qo),

i.e. the high dimensional efficiency for pre- and (quasi-)oracle is of
the same order.
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Benchmark: Random Projection

Remark:
It can happen, that all the efficiency of all three oracle projections
is of the same order as for the random projection!

Example:
C.3: Mixed dependence with common factor:
If ∆d ∼ Φ projection maximizes not only the signal but also noise!

Competing multivariate or panel data procedures are also of the
same order!
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Empirical Power: sj = 1, T = 100, d = 200
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Independent Panels
Dependent Panels

Comparison with Panel-Data-Statistics

Null asymptotics for independent panels

Theorem (Horváth, Hušková (2012))

If the panels are independent, σ2
i = var ei ,t > c > 0 for all i and

E |ei ,t |ν 6 C <∞ for some ν > 4 and d
T 2 → 0,

then it holds under the null hypothesis of no change

1√
d

d∑
i=1

(
1

σ2
i

Z 2
T ,i (x)− bTxc(T − bTxc)

T 2

)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
,

where W (·) is a standard Wiener process.
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High-dimensional efficiency for independent panels

Theorem

In this independent setting, the high dimensional efficiency is given
by

E2(∆d) =
1

d1/4
‖Σ−1/2∆d‖.

The panel high dimensional efficiency is

an order d1/4 better than the random projection

an order d1/4 worse than all three oracles.
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Power for increasing dimension, T = 100, ‖∆‖ constant
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Null asymptotics for dependent panels

Theorem (Horváth, Hušková (2012))

Let Case C.3 hold (mixed with common factor) with certain
moment conditions. If

1√
d
Ad :=

1√
d

d∑
i=1

Φ2
i

σ2
i

→∞,

then

1

Ad

d∑
i=1

(
1

σ2
i

Z 2
T ,i (x)− bTxc(T − bTxc)

T 2

)
D[0,1]−→ B2(x)− x(1− x),

where {B(x) : 0 6 x 6 1} is a standard Brownian bridge.
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Empirical Size, C.3, sj = 1, T = 100, d = 200
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High-dimensional efficiency for dependent panels

Theorem

a) In this situation the high dimensional efficiency is given by

E3(∆d) =

√
1

Ad
∆T

d diag

(
1

s2
1 + Φ2

1

, . . . ,
1

s2
d + Φ2

d

)
∆d .

b) The high dimensional efficiency of the quasi-oracle is always at
least as good as the one of the misspecified panel statistic.

c) If additionally Ad/d → A > 0, then the high dimensional
efficiency is of the same order as for the random projection.

Remark:

For the oracle projections this was only the case for ∆d ∼ Φ.
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Outlook: Different projection methods

Multiple Projections:

Multivariate change-point tests in lower dimensional space:
Only information about subspace not actual directions used.

Combine univariate projections in different way, e.g. as
maximum of the univariate change-point statistics.

Multiple Changes:

Use multiple projections, one for each possible change.

Data-Driven Projections:

Principal Component Analysis:
Empirical size close to nominal size, certain power advantage
for fixed alternatives if projection is necessary (Aston, K.
(2012)) but not for contiguous alternatives.

Univariate estimation of δi ,d : Irreparable size problems.
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For further reading:

Aston, Kirch
Change-points in high dimensional settings.
Preprint, 2014.

Horváth , Hušková
Change-point detection in panel data.
J. Time Ser. Anal., 33:631-648, 2012.

Thank you very much for your attention!
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