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Outline

Introduction

Turtles all the way down

What Godzilla said to God when his name wasn’t found in the book of life

Far from the madding crowd

Always twirling, twirling, twirling towards freedom

How long has this been going on?
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Long ago, and so far away

Through the latter half of the 20th century Bayesian methods
became a dominant force in applied and applicable statistics.

I Bayesian statistics provides a coherent way to update
probabilities (or “belief statements”) in the light of new data

I For a number of classical problems, Bayesian methods are
eventually equivalent (with enough data) to the corresponding
non-Bayesian/frequentist method

I The basic intuition is that If you have enough information
about a parameter of inference, any sensible statistical
method will work

I The interesting problems occur when there is not an
over-abundance of information.
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Beast of Burden
A Savage Quotation
You should build your model as big as an elephant

A von Neumann quote
With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.
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Come to the supermarket (in old Peking)

There’s a whole smorgasbord of features of modern Bayesian
models. Notably:

I An overabundance of random effects
I Multilevel models that borrow strength across different

subpopulations to improve estimates
I Correlated random effects, such as spatial or spatiotemporal

random effects
I Nonlinear effects of covariates (splines, splines, and more

splines)

With all these effects, it is not uncommon to have more parameters
than data.

(In fact, it’s not uncommon to have several infinite dimensional
parameters!)
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Busby Berkleey Dreams

We have made things worse
I Estimating the mean of a Gaussian
I MCMC changed everything
I BUGS brought it to the masses
I I work on INLA, which does fast

infrerence for latent Gaussian
models

I Stan is even worse!
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You cain’t get a man with a gun

The real question is then How do you set sensible priors for
realistic models?

I There is no universally applicable way to do this
I There are, however, lots of bad ways to do this
I Some of these bad ways may still work sometimes
I Our focus will be on hierarchical models (specifically Latent

Gaussian Models)
I Nothing is going to infinity!

Today I will sketch our approach to this problem: Penalised
Complexity (PC) priors.
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Me. I am Mariah... the elusive chanteuse

One way to set priors is by expert elicitation

I Elicit probabilities for each quantity
of interest

I Easiest when nodes are discrete
I A Bayesian Network is a useful tool

for eliciting and combining
information

I Turns elicited conditional
probabilities in to a joint
distribution

But what if there’s more than one expert?
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I’ve got 99 problems

Airports of the future project (ARC Linkage project LP0990135)
I From 99 “experts” (airport users)
I probabilities for 49 binary nodes were elicited
I All experts are equal
I Questions about how different elements of airport design affect

the “wayfinding” experience

Treat the experts as measuring devices
We can consider this as a measurement error problem, in which
each expert is providing a noisy measurement of the 49 nodes;
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Expert elicitation as a measurement error model
[Farr, S, Ruggeri, Mengersen, 2014]

Observed probability of node j for expert i :

pij ∼ B(aij , bij)

GLMM for the logit-mean

logit
(

aij
aij + bij

)
= µj + wi + εj

Latent level:
I µj : Consensus (logit) probability for node j

I wi : Systemic bias for expert i
I εj : The measurement bias for node j
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The Ganzfeld Effect

Now it’s time to attack the nuisance effects.
I ui is the observer bias
I Standard random effect wi ∼ N(0, τ−1)

I We need to put a prior on τ

Key point: We don’t want this here!
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I’m just a girl who cain’t say no

So how do we set a prior on a precision?

I Lots of “expert guidance” from the literature
I Some of it is saying how to set priors on the precision
I Some of it is setting priors on the precision for a specific

problem
I Conjugate priors, reference priors, weakly informative priors, ...
I When will it end?

We only want this effect to be in the model if it is required to fit
the data.

We don’t want a prior that the data has to drag towards “no
effect”!
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Basic instinct

A base model
I We have a model component with distribution π(x | ξ)
I ξ is a flexibility parameter,
I ξ = 0 is indexes the base model
I The base model is the simplest model

Idea: Build a prior that has a mode at the base model. The
posterior only concentrates on ξ > 0 if the data requires the more
complex model.
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Some examples

Case Parameter ξ Base
Student-t ν (dof) ξ = 1/ν ξ = 0 (Gaussian)

IID τ (precision) ξ = 1/τ ξ = 0 (no random effect)

IGMRFs τ (precision) ξ = 1/τ ξ = 0 (const, linear, plane)

AR(1) ρ (correlation) ξ = ρ ξ = 0 (no dep. in time)

ξ = ρ ξ = 1 (no changes in time)

FGN H (Hurst param.) ξ = H ξ = 0.5 (White noise)

Correlation
matrix R ξ = R ξ = I (no correlation)
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The pleasure principle

To build a prior that knows about the base model, I’m going to
introduce the idea of Penalised Complexity (PC) Priors

I PC priors are our attempt to put together a set of principles
that lead to a unique prior

I You can interrogate / criticise / modify the principles
individually
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Principle I: Occam’s razor

Prefer simplicity over complexity

Consider the more complex model

π(x |ξ), ξ ≥ 0

with base model π(x |ξ = 0).
I The prior for ξ ≥ 0 should penalise the complexity introduced

by ξ
I The prior should be decaying with increasing measure by the

complexity (the mode should be at the base model)

A prior will cause overfitting/force complexity if, loosely
speaking,

πξ(ξ = 0) = 0
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Principle II: Measure of complexity

Use Kullback-Leibler discrepancy to measure the increased
complexity introduced by ξ > 0,

KLD(f ‖g) =
∫

f (x) log
(
f (x)

g(x)

)
dx

for flexible model f and base model g .

Gives a measure of the information lost when the base model is
used to approximate the more flexible models
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Principle III: Constant rate penalisation

Define
d(ξ) =

√
2 KLD(ξ)

as the (uni-directional) “distance” from flexible-model to the base
model. Need the square-root to get the scale right.

Constant rate penalisation:

π(d) = λ exp (−λd) , λ > 0

with mode at d = 0

Invariance: OK
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Principle IV: User-defined scaling

The rate λ is determined from knowledge of the scale or some
interpretable property or impact, Q(ξ) of ξ:

Pr(Q(ξ) > U) = α

I Problem dependent: must be!!!
I Can make the prior more informative or weakly informative this

way
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The precision of a Gaussian

PC prior for the precision τ when τ =∞ defines the base model
I “random effects”/iid-model
I The smoothing parameter in spline models
I etc...

Result Let πτ (τ) be a prior for τ > 0 where E (τ) <∞, then
πd(0) = 0 and the prior overfits.
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The precision case (II)

The resulting prior is a type-2 Gumbel

π(τ) =
λ

2
τ−3/2 exp

(
−λ/
√
τ
)
, E(τ) =∞,

Prob(σ > u) = α gives

λ = − ln(α)
u

Alternative interpretation

π(σ) = λ exp(−λσ)
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Link with the tradition

Other (good) priors for the precision are
I A half-Gaussian on the standard deviation. (lighter tail than

the PC prior)
I A half-Cauchy on the standard deviation. (heavier tail)
I A half-Student-t with more than 2 d.o.f. (heavier tail, similar

risk properties)

The important thing here is that they all have a maximum at the
base model. The tail behaviour is more “controversial”
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Knowing me, knowing you

The final component of our model is nodal measurement error εj
I Big question: Is the measurement error independent across

nodes?
I Maybe not?
I Nearby nodes measure “similar” things, so we would expect

correlation
I We propose a BYM model

εj = vj + uj

where vj
iid∼ N(0, τ−1

v ) and u ∼ N(0, τ−1
u Q+) is a Besag model.
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The structured effect

The structured difference in u between neighbouring regions is
N(0, τ−1

u ).

π(u) ∝ τ (n−1)/2
u exp

−τu
2

∑
i∼j

(ui − uj)
2

 . (1)

“ i ∼ j” denotes the set of all unordered pairs of neighbours.

I This is the Besag model.
I It is rank deficient.
I How do we put a prior on τu?
I Big thing: It will depend on the graph!
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Building a better BYM

Base model = 0→ iid→ dependence = more flexible model

Rewrite the model as

η =
1√
τ

(√
1− γv∗ +√γu∗

)
where ·∗ is a unit-variance standardised model.

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ (base model γ = 0) depends on the graph!
I Parameters control different features. Use the PC priors for τ

and γ separately.



28/ 40

Building a better BYM

Base model = 0→ iid→ dependence = more flexible model

Rewrite the model as

η =
1√
τ

(√
1− γv∗ +√γu∗

)
where ·∗ is a unit-variance standardised model.

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ (base model γ = 0) depends on the graph!
I Parameters control different features. Use the PC priors for τ

and γ separately.



28/ 40

Building a better BYM

Base model = 0→ iid→ dependence = more flexible model

Rewrite the model as

η =
1√
τ

(√
1− γv∗ +√γu∗

)
where ·∗ is a unit-variance standardised model.

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ (base model γ = 0) depends on the graph!
I Parameters control different features. Use the PC priors for τ

and γ separately.



28/ 40

Building a better BYM

Base model = 0→ iid→ dependence = more flexible model

Rewrite the model as

η =
1√
τ

(√
1− γv∗ +√γu∗

)
where ·∗ is a unit-variance standardised model.

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ (base model γ = 0) depends on the graph!
I Parameters control different features. Use the PC priors for τ

and γ separately.



28/ 40

Building a better BYM

Base model = 0→ iid→ dependence = more flexible model

Rewrite the model as

η =
1√
τ

(√
1− γv∗ +√γu∗

)
where ·∗ is a unit-variance standardised model.

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ (base model γ = 0) depends on the graph!
I Parameters control different features. Use the PC priors for τ

and γ separately.



29/ 40

Get behind me, Esther Williams!

What does the PC prior on γ look like?
I The covariance matrix is Σ(γ) = γI + (1− γ)R−1

I The squared distance is then

d(γ)2 = nγ

(
1
n
tr(R−1)− 1

)
− log

∣∣(1− γ)I + γR−1∣∣
I For sparse R, the trace is easy to compute, and the evaluation

costs one sparse Cholesky decomposition
I The PC prior is then

π(γ) =
λ exp(−λd(γ))
1− exp(−λd(1))

∣∣∣∣∂d(γ)∂γ

∣∣∣∣ .
I (NB: d(1) is finite, and so we use a truncated exponential!)
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The BYM

yi

ηij µj

ujwi vj

τuτw τv

λuλw λv

i = 1, . . . , n, & j = 1, . . . ,m

Where is the variation coming from?
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Building a better BYM

yi

ηij µj

wi εj

uj vj

γ

λφ

τf

λf

τε

λε

i = 1, . . . , n, & j = 1, . . . ,m
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As long as you follow

So what was the outcome with the airports?

I The observer random effect was
small with small credible regions

I The posterior estimates of the
consensus probabilities have a
larger IQR than those produced
with a plain GLM

I But is this real?
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Did anything happen?
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Was the graphical structure useful?
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Miss Otis Regrets

I In the end, the results for this particular problem were boring
I This is good!
I The aim of the PC prior project is to make priors that can find

nothing when nothing is there
I The new BYM parameterisation gives a more interpretable way

to look at the structure of the random effect
I The PC priors for this model satisfy a basic principle: If
something important in your model changes, the
corresponding priors should also change
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Outline

Introduction

Turtles all the way down

What Godzilla said to God when his name wasn’t found in the book of life

Far from the madding crowd

Always twirling, twirling, twirling towards freedom

How long has this been going on?
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If love were all

This example shows just a corner of the power of PC priors
I Splines
I Skew-Gaussian distributions
I Correlation matrices
I AR(p)
I Over-dispersion in Negative Binomials
I Hurst Parameters for fractional Brownian motion
I Degrees of freedom in a Student-t
I Parameters in Gaussian random fields (partially identifiable!)
I Non-stationary GRFs
I Correlated random effects
I Variances in multilevel models
I +++



39/ 40

Placating pugilistic pachyderms

I Under everything, this was a talk about
setting prior distributions

I This is hard.
I Bayesian models should not be used /

interpreted unless you can interpret all
levels of your model (including your prior)

I This doesn’t fix the general problem of
Bad Bayesian Analysis

I But it helps: we need to match the
ambition and complexity of the applied
modellers

I Otherwise, instead of giving them enough
rope to hang themselves, we are cutting
out the middle man

Mayer, Khairy, and
Howard,
Am. J. Phys. 78,
648 (2010)
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