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Background – graphical models (I/II) 2(31)

A probabilistic graphical model (PGM) is a probabilistic model
where a graph G = (V , E) represents the conditional independency
structure between random variables,

1. a set of vertices V (nodes) represents the random variables
2. a set of edges E containing elements (i, j) ∈ E connecting a

pair of nodes (i, j) ∈ V × V
x0 x1 x2

. . .
xT

y1 y2 yT

p(x0:T, y1:T) = p(x0)
T

∏
t=1

p(xt | xt−1)
T

∏
t=1

p(yt | xt).
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Background – graphical models (II/II) 3(31)

For an undirected graphical model (Markov random field), the joint
PDF over all the involved random variables XV := (xi)i∈V is

p(XV ) =
1
Z ∏

C∈C
ψC(XC),

where C is the set of cliques in G, and Z =
∫

∏C∈C ψC(XC)dXV .

x1 x2

x3

x4

x5 x1 ψ1 x2 ψ2

x3

x4

ψ3

ψ4

x5 ψ5

Undirected graph
Example of a factor graph making

interactions explicit,
p(x1:5) =

1
Z ∏5

i=1 ψi(·).
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Background – sequential Monte Carlo (I/II) 4(31)

Approximate a sequence of probability distributions on a sequence
of probability spaces of increasing dimension.

Let {γk(x1:k)}k≥1 be a sequence of unnormalised densities and

γ̄k(x1:k) =
γk(x1:k)

Zk

Approximates

γ̄k(x1:k) ≈
N

∑
i=1

wi
k

∑N
l=1 wl

k

δxi
1:k
(x1:k).

Ex. (SSM)

γ̄k(x1:k) = p(x1:k | y1:k), γk(x1:k) = p(x1:k, y1:k),

Zk = p(y1:k).
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Background – sequential Monte Carlo (II/II) 5(31)

1. Resampling: {xi
1:k−1, wi

k−1}N
i=1 → {x̌i

1:k−1, 1}N
i=1.

2. Propagation: xi
k ∼ qk(xk | x̌i

1:k−1) and xi
1:k = {x̌i

1:k−1, xi
k}.

3. Weighting: wi
k = Wk(xi

1:k) =
γk(xi

1:k)

γk−1(xi
1:k−1)qk(xi

k|x
i
1:k−1)

.

⇒ {xi
1:k, wi

k}N
i=1
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(a hopefully) intuitive preview 6(31)

SMC samplers are used to approximate a sequence of probability
distributions on a sequence of probability spaces.

Using an artificial sequence of intermediate target distributions for an
SMC sampler is a powerful (and quite possibly underutilised) idea.

Key idea: Perform and make use of various decompositions of
graphical models to design SMC inference methods.
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Outline 7(31)

1. Example – from information theory
2. Sequential decomposition→ “standard” SMC

a) Sequential decomposition and SMC for PGMs
b) Example – Estimating partition functions

3. Tree decomposition→ Divide-and-Conquer with SMC
a) Tree decomposition and D&C-SMC for PGMs
b) Example – Hierarchical Bayesian Model
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Information theory – 2D channel capacity 8(31)

Example borrowed from:
M. Molkaraie and H.-A. Loeliger, Monte Carlo algorithms for the partition function and information rates of
two-dimensional channels, IEEE Transactions on Information Theory, 59(1): 495–503, 2013.

2D binary-input channel with the constraint that no two horizontally
or vertically adjacent variables may be both be equal to 1.

· · · · · · · · · · · · · · ·
· · · 0 1 0 · · ·
· · · 0 0 1 · · ·
· · · 0 1 0 · · ·
· · · · · · · · · · · · · · ·

“of interest in magnetic and optical storage”

The channel can be described by a square lattice undirected
graphical model.
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2D channel capacity – graphical model 9(31)
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The variables are binary
x`,j ∈ {0, 1} and the interactions
are pair-wise between adjacent
variables. Factors:

ψ(x`,j, xm,n) =

{
0, x`,j = xm,n = 1
1, otherwise
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2D channel capacity – graphical model 10(31)

The resulting joint PDF is given by

p(XV ) =
1
Z ∏

(`j,mn)∈E
ψ(x`,j, xm,n),

For a channel of dimension M×M we can write the finite-size
noiseless capacity as

CM =
1

M2 log2 Z.

Unfortunately calculating Z exactly for these types of models is
computationally prohibitive, since the complexity is exponential in the
size of the grid M.

Fredrik Lindsten, Sequential Monte Carlo for graphical models

Statistics Seminar, University of Bristol, 7 November 2014.



2D channel capacity – undirected chain 11(31)

x1 x2 x3 x4 x5 x6 Rewrite the PGM as a
high-dimensional undirected
chain by introducing a new set of
variables xk.

x1 x2 x3 x4 x5 x6

φ(xk) =
M−1

∏
j=1

ψ(xj,k, xj+1,k),

ψ(xk−1, xk) =
M

∏
j=1

ψ(xj,k−1, xj,k).
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2D channel capacity – SMC algorithm 12(31)

x1 x2 x3 x4 x5 x6

The undirected chain results in the following joint PDF

p(XV ) =
1
Z

M

∏
k=1
φ(xk)

M

∏
k=2
ψ(xk−1, xk).

Natural sequential decomposition:

x1 x2 x3 xk

γk(x1:k) =
k

∏
`=1
φ(x`)

k

∏
`=2
ψ(x`−1, x`).
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2D channel capacity – 60× 60 example 13(31)
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SMC

Tree sampler, Mx3

Our SMC sampler
compared to the tree
sampler by
F. Hamze and N. de Freitas, From fields to trees,
In Proceedings of the conference on Uncertainty
in Artificial Intelligence (UAI), Banff, Canada, July,
2004.

implemented according to
M. Molkaraie and H.-A. Loeliger, Monte Carlo
algorithms for the partition function and
information rates of two-dimensional
channels, IEEE Transactions on Information
Theory, 59(1): 495–503, 2013.

For the 2D channel: fully adapted SMC sampler. To sample xk we
run a forward/backward algorithm for the kth column.

This was just a special case, the important question is, can we do
this for a general graphical model?! Yes!
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Using “standard” SMC for PGMs – the idea 14(31)

Key idea:

• Perform a sequential decomposition of the graphical model.

• Each subgraph induces an artificial target distribution.

• Apply SMC to the sequence of artificial target distributions.
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Sequential decomposition of PGMs – pictures 15(31)

The joint PDF of the set of random
variables indexed by V ,
XV , {x1, . . . , x|V|}

p(XV ) =
1
Z ∏

C∈C
ψC(XC).

x1 ψ1 x2 ψ2

x3

x4

ψ3

ψ4

x5 ψ5

Example of a sequential decomposition of the above factor graph (the
target distributions are built up by adding factors at each iteration),

γ1(XL1) γ2(XL2) γ3(XL3) ∝ p(XV )

x1 ψ1 x2 x1 ψ1 x2 ψ2

x3

x4

x1 ψ1 x2 ψ2

x3

x4

ψ3

ψ4

x5 ψ5
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Sequential decomposition of PGMs – equations 16(31)

Let {Ck}K
k=1 be an ordered partition of C. Define:

ψk(XIk) , ∏
C∈Ck

ψC(XC),

where Ik ⊆ {1, . . . , |V|} is the set of indices in the domain of ψk.

The sequential decomposition is based on these factors,

γk(XLk) ,
k

∏
`=1

ψ`(XI`),

where Lk ,
⋃k

`=1 I`.
By construction, LK = V and the joint PDF p(XLK) ∝ γK(XLK).
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SMC sampler for graphical models 17(31)

Algorithm SMC sampler for graphical models

1. Initialise (k = 1): Draw Xi
L1
∼ q1(·) and set wi

1 = W1(Xi
L1
).

2. For k = 2 to K do:
(a) Draw ai

k ∼ Cat({wj
k−1}

N
j=1).

(b) Draw ξi
k ∼ qk(·|X

ai
k
Lk−1

) and set Xi
Lk

= X
ai

k
Lk−1
∪ ξi

k.

(c) Set wi
k = Wk(Xi

Lk
).

• Generates samples {Xi
LK

, wi
K}N

i=1
approx.∼ p(XLK).

• Provides an unbiased estimate of the partition function!
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Example – Evaluation of topic models 18(31)

Evaluating Latent Dirichlet Allocation models on heldout documents
corresponds to estimating the partition function of a PGM.

αm

θ

z1

w1

· · · zM

wM

Ψ

· · ·

50 100 150 200 250 300 350

−92.5

−92

−91.5

−91

−90.5

N

lo
g(
Ẑ
)

 

 

LRS

SMC

Exact

(a) Synthetic

LRS 1 LRS 2 SMC 1 SMC 2
−8780

−8764

−8748

−8732

−8716

−8700

lo
g(
Ẑ
)

(b) PMC

LRS 1 LRS 2 SMC 1 SMC 2
−1.356

−1.354

−1.352

−1.35

−1.348
x 10

4

lo
g(
Ẑ
)

(c) 20 newsgroups

Estimates of the log-likelihood of heldout documents for
various datasets.
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Block sampling and PMCMC 19(31)

Can be used for block sampling with PMCMC.
Ex) Iteratively update the white variables, conditionally on the black
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Potentially useful when no “natural” sequential decomposition is
available for full graph.
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Divide-and-Conquer with SMC – the idea 20(31)

The sequential decomposition is basically a chain-oriented
decomposition of the PGM. This naturally leads to a sequence of
distributions suitable for standard SMC samplers.

Divide-and-Conquer SMC:

Key idea:

• Consider graph decompositions organised on trees.

• Assign auxiliary target distributions to all nodes of the tree.

• Inference using a new class of SMC algorithms.
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Tree decomposition of PGMs (I/II) 21(31)

Hierarchical Bayesian network

y1 y2 y3

x̃1 x̃2 x̃3

x̃4

x̃5

Level 2:

Level 1:

Level 0:

y1 y2 y3

x̃1 x̃2 x̃3

y1 y2 y3

x̃1 x̃2 x̃3

x̃4

y1 y2 y3

x̃1 x̃2 x̃3

x̃4

x̃5

We initialise the D&C-SMC with independent particle populations
for each leaf in the tree decomposition. These are then merged,
resampled and propagated as we move up the tree.

Iter 1: Initialise (x̃i
k, wi

k)
N
i=1 for k = 1, 2, 3.

Iter 2: Merge populations 1 and 2 and propagate⇒ (x̃i
1,2,4, wi

4)
N
i=1

Iter 3: Merge populations 3 and 4 and propagate⇒ (x̃i
1,2,3,4,5, wi

5)
N
i=1
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Tree decomposition of PGMs (II/II) 22(31)

Tree decomposition follows naturally when the graphical model is a
tree. However, the idea is more generally applicable.

Example: Lattice Markov random field

The subgraphs can be organised on a tree!
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Divide-and-Conquer SMC 23(31)

Algorithm dc smc(t) – D&C-SMC for node t ∈ T

1. For c ∈ C(t):
1. (xi

c, wi
c)

N
i=1 ← dc smc(c).

2. Resample (xi
c, wi

c)
N
i=1 to obtain the equally weighted particle system (x̌i

c, 1)N
i=1.

2. For particle i = 1, . . . , N:

1. Simulate x̃i
t ∼ qt(· | x̌i

c1
, . . . , x̌i

cC
) from some proposal kernel on X̃t, and where

(c1, c2, . . . , cC) = C(t).
2. Set xi

t = (x̌i
c1

, . . . , x̌i
cC

, x̃i
t).

3. Compute wi
t =

γt(xi
t)

∏c∈C(t) γc(x̌i
c)

1
qt(x̃i

t | x̌i
c1

, . . . , x̌i
cC
)

.

3. Return (xi
t, wi

t)
N
i=1.

• Generalises the SMC framework (std SMC recovered if T is a chain).
• Consistent and gives an unbiased estimate of the partition function.
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D&C-SMC extensions (I/III) 24(31)

D&C “Sampling Importance Resampling”

Fredrik Lindsten, Sequential Monte Carlo for graphical models
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∏c∈C(t) γ̂N
c (xc) → Resampling→ (x̌i

c1
, . . . , x̌i

cC
)N

i=1 → Weighting→ (xi
t, wi

t)
N
i=1



D&C-SMC extensions (II/III) 25(31)

D&C-SMC: Auxiliary mixture sampling

Fredrik Lindsten, Sequential Monte Carlo for graphical models
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∏c∈C(t) γ̂N
c (xc) → (Auxiliary) Weighting → Resampling



D&C-SMC extensions (III/III) 26(31)

D&C-SMC: Auxiliary mixture sampling + Tempering

Fredrik Lindsten, Sequential Monte Carlo for graphical models
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∏c∈C(t) γ̂N
c (xc) → (Auxiliary) Weighting → Tempering



Example – NY maths test (model) 27(31)

Data Table of test results (278 399 instances), with school code,
year, number of students tested in that year and school, and
the number students that passed.

Structure We organise the data into a tree with the following form:
NYC (root), borough of the school district, school district,
school, year.

Parameters • Observations at the leaf (binomial pt = logistic(θt)).
• Parameters θt′ = θt + ∆e, with ∆e ∼ N(0, σ2

e ).
• Hyperparameters σ2

e ∼ Exp(1).

After marginalization of internal θ-parameters, the dimensionality of the
remaining parameters in the model is 3 555.
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Example – NY maths test (results, I/II) 28(31)

10 Particles 100 Particles 1 000 Particles 10k Particles
B

ro
nx

−0.4 0.0 0.2 0.4

0
5

10
15

−0.4 0.0 0.2 0.4

0
5

10
15

−0.4 0.0 0.2 0.4

0
5

10
15

−0.4 0.0 0.2 0.4

0
5

10
15

-0.03(0.06) -0.05(0.04) -0.04(0.05) -0.04(0.05)

Q
ue

en
s

−0.4 0.0 0.2 0.4

0
5

10
15

−0.4 0.0 0.2 0.4

0
5

10
15

−0.4 0.0 0.2 0.4

0
5

10
15

−0.4 0.0 0.2 0.4

0
5

10
15

0.07(0.07) 0.03(0.04) 0.04(0.05) 0.04(0.04)

Posterior distribution of δe =”difference in logistic(θ) along edge e” for two boroughs (rows)

and four computational regimes (columns), with mean and std dev below each histogram.
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Example – NY maths test (results, II/II) 29(31)

We compare our D&C-SMC (implemented in Java) to Hamiltonian
Monte Carlo (Stan, implemented in C++).

Similar posterior approximation accuracy.

Method Iterations/Particles Runtime
D&C-SMC 1000 39 s

HMC (Stan) 2000 (50% burn-in) 3860 s (64 min)

Node Stan D&C-SMC Speedup
Manhattan 0.17 15.96 93.89

Bronx 0.05 8.12 165.69
Brooklyn 0.18 6.52 36.22
Queens 0.07 14.01 209.05

Staten Island 0.05 25.50 481.17

The effective samples per second and speedup.

Fredrik Lindsten, Sequential Monte Carlo for graphical models
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Conclusions 30(31)

• We have derived SMC-based inference methods for graphical
models of arbitrary topologies with discrete and/or continuous
random variables.

• Key insight: We exploit various decompositions of the
graphical model to design efficient SMC samplers.
• Examples involving:

1. estimating the partition function
2. inferring the latent variables
3. learning parameters.

• If you have interesting and challenging problems involving
graphical models, let us know!

Fredrik Lindsten, Sequential Monte Carlo for graphical models
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Some references 31(31)

SMC (and PMCMC) methods for graphical models:

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte
Carlo for Graphical Models. Advances in Neural Information Processing Systems
(NIPS) 27, December, 2014.

F. Lindsten, A. M. Johansen, C. A. Naesseth, B. Kirkpatrick, T. B. Schön, J. Aston and
A. Bouchard-Côté, Divide-and-Conquer with Sequential Monte Carlo. Preprint
arXiv:1406.4993, June, 2014.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Capacity estimation of
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IEEE Information Theory Workshop (ITW), November, 2014.

Thank you!!
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