The Growth Model: Busemann Functions, Shape, Geodesics, and Other Stories

Firas Rassoul-Agha

Department of Mathematics
University of Utah

$$
\text { May 1, } 2015
$$

Joint work with Nicos Georgiou (Sussex) and Timo Seppäläinen (Madison-Wisconsin)

Lightning captured at 7,207 images per second (http://vimeo.com/28457062)

Last Passage Percolation

Random potential $\omega=\left(\omega_{x}\right)_{x \in \mathbb{Z}^{2}} \in \Omega, \mathbb{R}$-valued i.i.d., $2+\varepsilon$ moments.

Up-right paths $x_{0, n}=\left(x_{0}, \ldots, x_{n}\right)$ take steps $e_{1}=(1,0)$ or $e_{2}=(0,1)$.

Passage time of path $x_{0, n}$ is $\sum_{i=0}^{n-1} \omega_{x_{i}}$.

Random potential $\omega=\left(\omega_{x}\right)_{x \in \mathbb{Z}^{2}} \in \Omega$, \mathbb{R}-valued i.i.d., $2+\varepsilon$ moments.

Up-right paths $x_{0, n}=\left(x_{0}, \ldots, x_{n}\right)$ take steps $e_{1}=(1,0)$ or $e_{2}=(0,1)$.

Passage time of path $x_{0, n}$ is $\sum_{i=0}^{n-1} \omega_{x_{i}}$.

Point-to-point last passage time: $G_{x, y}(\omega)=\max _{\substack{x_{0}, n \\ x_{0}=x, x_{n}=y}} \sum_{k=0}^{n-1} \omega_{x_{k}}$.
Connections to: Totally Asymmetric Simple Exclusion, Queuing Theory, Corner Growth Model, etc.

LLN says sum of i.i.d. grows linearly.
$G_{0, x}$ is not quite a sum of i.i.d.
It is however superadditive: $G_{x, y}+G_{y, z} \leq G_{x, z}$.
Then: outside one null set, for all $\xi \in \mathbb{R}_{+}^{2}$ and all $x_{n} / n \rightarrow \xi$ simultaneously
$g_{\mathrm{pp}}(\xi)=\lim _{n \rightarrow \infty} n^{-1} G_{0, x_{n}}$ exists, is deterministic, concave, homogenous
($\left.g_{\mathrm{pp}}(c \xi)=c g_{\mathrm{pp}}(\xi)\right)$ and continuous all the way to the boundary.

LLN says sum of i.i.d. grows linearly.
$G_{0, x}$ is not quite a sum of i.i.d.
It is however superadditive: $G_{x, y}+G_{y, z} \leq G_{x, z}$.
Then: outside one null set, for all $\xi \in \mathbb{R}_{+}^{2}$ and all $x_{n} / n \rightarrow \xi$ simultaneously $g_{\mathrm{pp}}(\xi)=\lim _{n \rightarrow \infty} n^{-1} G_{0, x_{n}}$ exists, is deterministic, concave, homogenous ($\left.g_{\mathrm{pp}}(c \xi)=c g_{\mathrm{pp}}(\xi)\right)$ and continuous all the way to the boundary.

Geodesics

Path $x_{0, n}$ that maximizes $G_{x, y}$ is called a geodesic.
$x_{0, \infty}$ is a ξ-geodesic if $\forall n x_{0, n}$ is a geodesic and $x_{n} / n \rightarrow \xi$.
Given $\xi \in \mathbb{R}_{+}^{2}$, is there an infinite ξ-geodesic?
Is it the limit of the geodesic from 0 to x_{n} as $n \rightarrow \infty$ and $x_{n} / n \rightarrow \xi$?
If ω_{0} is continuous then finite geodesics are unique.
Is the infinite ξ-geodesic unique?
Do ξ-geodesics out of x and y coalesce (i.e. eventually merge)?

Geodesics

Licea and Newman '96: answers are in the positive for standard first passage percolation (nearest-neighbor paths minimizing the passage time) if $g_{\text {pp }}(\xi)$ satisfies a global curvature assumption.

Problem: the curvature assumption has not been proved. Though conjectured to hold.

Damron and Hanson '14: Existence holds under just strict convexity or differentiability of $g_{\text {pp }}$ (which presumably should be "easier" to prove).

Ferrari and Pimentel '05: answers are in the positive also for the last passage percolation model we are considering, but with ω_{0} exponential.

The exponential model is one of the solvable models for which explicit computations are possible. In particular, an explicit formula is available for the shape $g_{\mathrm{pp}}(\xi)$.

Would like to allow more general weight distributions.

Understanding the shape

Consider a finite subset $V \subset \mathbb{Z}^{2}$ containing 0 (e.g. $\{u:|u| \leq L\}$).
$\left\{G_{0, z_{n}-u}-G_{0, z_{n}}: u \in V\right\}$ describes the microscopic shape around z_{n}.
Expect this random vector to converge in distribution as $z_{n} / n \rightarrow \xi$.
Shifting by $-z_{n}$ and reflecting $\omega_{x} \mapsto \omega_{-x}$ turns the above into $\left\{G_{u, z_{n}}-G_{0, z_{n}}: u \in V\right\}$.

Now maybe even almost sure convergence holds.

Understanding the shape

Consider a finite subset $V \subset \mathbb{Z}^{2}$ containing 0 (e.g. $\{u:|u| \leq L\}$).
$\left\{G_{0, z_{n}-u}-G_{0, z_{n}}: u \in V\right\}$ describes the microscopic shape around z_{n}.
Expect this random vector to converge in distribution as $z_{n} / n \rightarrow \xi$.
Shifting by $-z_{n}$ and reflecting $\omega_{x} \mapsto \omega_{-x}$ turns the above into $\left\{G_{u, z_{n}}-G_{0, z_{n}}: u \in V\right\}$.

Now maybe even almost sure convergence holds.
Busemann functions: $B^{\xi}(x, y ; \omega)=\lim _{z_{n} / n \rightarrow \xi}\left(G_{x, z_{n}}-G_{y, z_{n}}\right)$.

Limit exists if e.g. geodesics coalesce.

Note that $G_{x, z_{n}}=\omega_{x}+\max \left(G_{x+e_{1}, z_{n}}, G_{x+e_{2}, z_{n}}\right)$.
So $\left(G_{x, z_{n}}-G_{x+e_{1}, z_{n}}\right) \wedge\left(G_{x, z_{n}}-G_{x+e_{2}, z_{n}}\right)=\omega_{x}$ almost surely.
At each point x, geodesic to z_{n} follows the smallest of the two gradients.

Note that $G_{x, z_{n}}=\omega_{x}+\max \left(G_{x+e_{1}, z_{n}}, G_{x+e_{2}, z_{n}}\right)$.
So $\left(G_{x, z_{n}}-G_{x+e_{1}, z_{n}}\right) \wedge\left(G_{x, z_{n}}-G_{x+e_{2}, z_{n}}\right)=\omega_{x}$ almost surely.
At each point x, geodesic to z_{n} follows the smallest of the two gradients.
$n \rightarrow \infty$ gives $B^{\xi}\left(x, x+e_{1}\right) \wedge B^{\xi}\left(x, x+e_{2}\right)=\omega_{x}$ almost surely.
The above suggests that ξ-geodesic out of x should follow the smallest $B^{\xi}(x, x+z), z \in\left\{e_{1}, e_{2}\right\}$.

Busemann functions

Consider $g_{\text {pp }}$ as a concave function on $\mathcal{U}=\{(t, 1-t): t \in(0,1)\}$.
Given $\xi \in \mathcal{U}$ let $[\underline{\xi}, \bar{\xi}] \subset \mathcal{U}$ be the maximal (possibly degenerate) interval containing ξ on which $g_{\text {pp }}$ is linear.

Busemann functions

Consider $g_{\text {pp }}$ as a concave function on $\mathcal{U}=\{(t, 1-t): t \in(0,1)\}$.
Given $\xi \in \mathcal{U}$ let $[\underline{\xi}, \bar{\xi}] \subset \mathcal{U}$ be the maximal (possibly degenerate) interval containing ξ on which $g_{\text {pp }}$ is linear.

Standing assumptions: $\mathbb{P}\left\{\omega_{0} \geq c\right\}=1, \omega_{x}$ i.i.d. with $2+\varepsilon$ moments, $\underline{\xi}$ and $\bar{\xi}$ are points of differentiability.

Theorem. $B^{\xi}(x, y ; \omega)=\lim _{z_{n} / n \rightarrow \xi}\left(G_{x, z_{n}}-G_{y, z_{n}}\right)$ exists a.s.
Furthermore: Same limit for all ξ in the same linear segment.
Corollary. If $g_{\text {pp }}$ is differentiable, limits exist $\forall \xi$. (No convexity needed.)

Busemann functions

Consider $g_{\text {pp }}$ as a concave function on $\mathcal{U}=\{(t, 1-t): t \in(0,1)\}$.
Given $\xi \in \mathcal{U}$ let $[\underline{\xi}, \bar{\xi}] \subset \mathcal{U}$ be the maximal (possibly degenerate) interval containing ξ on which $g_{\text {pp }}$ is linear.

Standing assumptions: $\mathbb{P}\left\{\omega_{0} \geq c\right\}=1, \omega_{x}$ i.i.d. with $2+\varepsilon$ moments, $\underline{\xi}$ and $\bar{\xi}$ are points of differentiability.

Theorem. $B^{\xi}(x, y ; \omega)=\lim _{z_{n} / n \rightarrow \xi}\left(G_{x, z_{n}}-G_{y, z_{n}}\right)$ exists a.s.
Furthermore: Same limit for all ξ in the same linear segment.
Corollary. If $g_{\text {pp }}$ is differentiable, limits exist $\forall \xi$. (No convexity needed.)
Remark. $\omega_{0} \geq c$ only because we use results from queuing where service times were assumed nonnegative. All the queuing results seem to go through without this assumption.
$L^{1}: \mathbb{E}\left[\left|B^{\xi}(x, y)\right|\right]<\infty$. (Comes from construction.)
Stationary: $B^{\xi}\left(x, y ; T_{z} \omega\right)=B^{\xi}(x+z, y+z ; \omega)\left(\left(T_{z} \omega\right)_{x}=\omega_{x+z}\right)$
Cocycle: $B^{\xi}(x, y)+B^{\xi}(y, z)=B^{\xi}(x, z)$.
The space of L^{1} stationary cocycles: \mathscr{C}.
Potential recovery: $B^{\xi}\left(0, e_{1}\right) \wedge B^{\xi}\left(0, e_{2}\right)=\omega_{0}$ almost surely.

Geodesics

If $B \in \mathscr{C}$ then a B-geodesic is a path that follows the minimal $B(x, x+z)$, $z \in\left\{e_{1}, e_{2}\right\}$. (In case of ties, OK to go either way.)

Theorem. If B recovers potential $\omega\left(B\left(0, e_{1}\right) \wedge B\left(0, e_{2}\right)=\omega_{0}\right.$ a.s. $)$ then a B-geodesic is a geodesic: every finite piece of it is a geodesic.

Geodesics

If $B \in \mathscr{C}$ then a B-geodesic is a path that follows the minimal $B(x, x+z)$, $z \in\left\{e_{1}, e_{2}\right\}$. (In case of ties, OK to go either way.)

Theorem. If B recovers potential $\omega\left(B\left(0, e_{1}\right) \wedge B\left(0, e_{2}\right)=\omega_{0}\right.$ a.s. $)$ then a B-geodesic is a geodesic: every finite piece of it is a geodesic.

Given $\xi \in \mathcal{U}$, recall the maximal linear segment $[\underline{\xi}, \bar{\xi}]$.
A geodesic $x_{0, \infty}$ is directed in $[\underline{\xi}, \bar{\xi}]$ if all limit points of x_{n} / n belong to this interval.

Geodesics

If $B \in \mathscr{C}$ then a B-geodesic is a path that follows the minimal $B(x, x+z)$, $z \in\left\{e_{1}, e_{2}\right\}$. (In case of ties, OK to go either way.)

Theorem. If B recovers potential $\omega\left(B\left(0, e_{1}\right) \wedge B\left(0, e_{2}\right)=\omega_{0}\right.$ a.s. $)$ then a B-geodesic is a geodesic: every finite piece of it is a geodesic.

Given $\xi \in \mathcal{U}$, recall the maximal linear segment $[\underline{\xi}, \bar{\xi}]$.
A geodesic $x_{0, \infty}$ is directed in $[\underline{\xi}, \bar{\xi}]$ if all limit points of x_{n} / n belong to this interval.

Theorem.

a) Any B^{ξ}-geodesic is directed in $[\underline{\xi}, \bar{\xi}]$.
b) Any geodesic directed in $[\underline{\xi}, \bar{\xi}]$ is a B^{ξ}-geodesic.
c) The B^{ξ}-geodesic with e_{2}-tie breaks is the topmost of all geodesics directed in $[\underline{\xi}, \bar{\xi}]$. Similarly for rightmost.

Geodesics

Corollary. If g_{pp} is differentiable everywhere, then every geodesic is directed in $[\underline{\xi}, \bar{\xi}]$ for some ξ.

Remark. Can also handle corners, but will omit.

Thus can show: If $g_{\text {pp }}$ is strictly concave, then every geodesic has a direction ξ, i.e. $\lim x_{n} / n$ exists almost surely.

Geodesics

Corollary. If g_{pp} is differentiable everywhere, then every geodesic is directed in $[\underline{\xi}, \bar{\xi}]$ for some ξ.

Remark. Can also handle corners, but will omit.

Thus can show: If $g_{\text {pp }}$ is strictly concave, then every geodesic has a direction ξ, i.e. $\lim x_{n} / n$ exists almost surely.

Theorem. Assume also $\mathbb{P}\left\{\omega_{0} \leq r\right\}$ is continuous in r. Then $\mathbb{P}\left\{B^{\xi}\left(0, e_{1}\right)=B^{\xi}\left(0, e_{2}\right)\right\}=0$.

Corollary. If ω_{0} is continuous, then there exists a unique geodesic directed in $[\underline{\xi}, \bar{\xi}]$ out of every point $x \in \mathbb{Z}^{2}$.

Theorem. Topmost $[\underline{\xi}, \bar{\xi}]$-directed geodesics coalesce, rightmost $[\underline{\xi}, \bar{\xi}]$-geodesics coalesce, and when ω_{0} is continuous, $[\underline{\xi}, \bar{\xi}]$-geodesics coalesce.

Until recently, the only description of $g_{\mathrm{pp}}(\xi)$ was from superadditivity: $g_{\mathrm{pp}}(\xi)=\sup _{n} n^{-1} \mathbb{E}\left[G_{0,[n \xi]}\right]$ (e.g. if $\xi \in \mathbb{Z}_{+}^{2}$).

Going through random polymer models:
Theorem. $g_{\mathrm{pp}}(\xi)=\inf _{B \in \mathscr{C}} \operatorname{ess} \sup \left\{\omega_{0}-B\left(0, e_{1} ; \omega\right) \wedge B\left(0, e_{2} ; \omega\right)+\bar{B} \cdot \xi\right\}$.
$\left(\bar{B}=\left(\mathbb{E}\left[B\left(0, e_{1}\right)\right], \mathbb{E}\left[B\left(0, e_{2}\right)\right]\right)\right.$ and \mathscr{C} is class of L^{1} stationary cocycles. $)$
Such formulas are important in statistical mechanics: their solutions are expected to describe the infinite-volume system (i.e. geodesics and shape as $n \rightarrow \infty$).

Theorem. Under the standing assumptions, B^{ξ} solves the variational formula for $g_{\mathrm{pp}}(\xi)$. In fact, the essential supremum is not needed and we have almost surely

$$
g_{\mathrm{pp}}(\xi)=\omega_{0}-B^{\xi}\left(0, e_{1}, \omega\right) \wedge B^{\xi}\left(0, e_{2}, \omega\right)+\overline{B^{\xi}} \cdot \xi
$$

Corollary. Due to potential recovery, we have $g_{\mathrm{pp}}(\xi)=\overline{B^{\xi}} \cdot \xi$.
Using some calculus one then gets that $\overline{B^{\xi}}=\nabla g_{\mathrm{pp}}(\xi)$.
Nice interpretation: average microscopic gradient is macroscopic gradient.

When ω_{0} are exponential or geometric we in fact can calculate explicitly the distributions of $B^{\xi}\left(0, e_{1}\right)$ and $B^{\xi}\left(0, e_{2}\right)$ for all $\xi \in \mathcal{U}$.

For example, if ω_{0} is exponential with rate 1 , then $B^{\xi}\left(0, e_{1}\right)$ is exponential with rate α and $B^{\xi}\left(0, e_{2}\right)$ is exponential with rate $1-\alpha$, where

$$
\alpha=\frac{\sqrt{\xi_{1}}}{\sqrt{\xi \cdot e_{1}}+\sqrt{\xi \cdot e_{2}}}
$$

Then $\overline{B^{\xi}}=\left(\mathbb{E}\left[B^{\xi}\left(0, e_{1}\right)\right], \mathbb{E}\left[B^{\xi}\left(0, e_{2}\right)\right]\right)=\left(\frac{1}{\alpha}, \frac{1}{1-\alpha}\right)$
and $g_{\mathrm{pp}}(\xi)=\overline{B^{\xi}} \cdot \xi=\left(\sqrt{\xi \cdot e_{1}}+\sqrt{\xi \cdot e_{2}}\right)^{2}$.
This is the known formula derived by Rost ' 81.

Fluctuations

CLT says that if $X_{0, n}$ has increments e_{1} or e_{2} equally likely, then it fluctuates from its average (straight line from 0 to $(n / 2, n / 2)$) by $n^{1 / 2}$.

Limit distribution of $\left(X_{n}-(n / 2, n / 2)\right) / n^{1 / 2}$ is Gaussian.

Fluctuations

CLT says that if $X_{0, n}$ has increments e_{1} or e_{2} equally likely, then it fluctuates from its average (straight line from 0 to $(n / 2, n / 2)$) by $n^{1 / 2}$.

Limit distribution of $\left(X_{n}-(n / 2, n / 2)\right) / n^{1 / 2}$ is Gaussian.
Say ω_{0} is continuous.
What are the fluctuations of the geodesic from 0 to $[n \xi]$?
Conjecture: with enough moments on ω_{0} geodesic has fluctuations of order $n^{2 / 3}$.

Superdiffusivity is because the path goes "out of its way" looking for high values of the potential.

On the other hand, $G_{0,[n \xi]}$ should have $n^{1 / 3}$ fluctuations.
Limit distributions related to Tracy-Widom from random matrices.

Models with these fluctuation exponents are said to belong to the Kardar-Parisi-Zhang (KPZ) universality class.

Johansson '00 proved LPP with exponential weights is in the KPZ class.
Again: solvability of the model was key.

When ω_{0} is exponential or geometric, $B^{\xi}\left(n e_{1},(n+1) e_{1}\right)$ are i.i.d. and so are $B^{\xi}\left(n e_{2},(n+1) e_{2}\right)$.

Balázs, Cator, and Seppäläinen '06 used this to prove the $n^{2 / 3}$ fluctuations of the geodesic and $n^{1 / 3}$ fluctuations of the last passage time, in the exponential weights case, with less technology than Johansson's proof of the Tracy-Widom limit.

More generally, CLT exponents for fluctuations of $B^{\xi}\left(0, n e_{1}\right)$ and $B^{\xi}\left(0, n e_{2}\right)$ imply information about fluctuation exponents of last passage quantities. (The above BCS result is one way to achieve this.)

Now we have a promising route to proving universality of KPZ fluctuations for general weight distributions.

Thank You

