The Growth Model: Busemann Functions, Shape, Geodesics, and Other Stories

Firas Rassoul-Agha

Department of Mathematics University of Utah

May 1, 2015

Joint work with Nicos Georgiou (Sussex) and Timo Seppäläinen (Madison-Wisconsin)

Lightning captured at 7,207 images per second (http://vimeo.com/28457062)

Last Passage Percolation

Random potential $\omega = (\omega_x)_{x \in \mathbb{Z}^2} \in \Omega$, \mathbb{R} -valued i.i.d., $2 + \varepsilon$ moments.

Up-right paths
$$x_{0,n} = (x_0, \dots, x_n)$$

take steps $e_1 = (1,0)$ or $e_2 = (0,1)$.
Passage time of path $x_{0,n}$ is $\sum_{i=0}^{n-1} \omega_{x_i}$.

Last Passage Percolation

Random potential $\omega = (\omega_x)_{x \in \mathbb{Z}^2} \in \Omega$, \mathbb{R} -valued i.i.d., $2 + \varepsilon$ moments.

Up-right paths
$$x_{0,n} = (x_0, \dots, x_n)$$

take steps $e_1 = (1,0)$ or $e_2 = (0,1)$.
Passage time of path $x_{0,n}$ is $\sum_{i=0}^{n-1} \omega_{x_i}$.

Point-to-point last passage time: $G_{x,y}(\omega) = \max_{\substack{x_{0,n} \\ x_0 = x, x_n = y}} \sum_{k=0}^{n-1} \omega_{x_k}.$

Connections to: Totally Asymmetric Simple Exclusion, Queuing Theory, Corner Growth Model, etc.

Shape Theorem

LLN says sum of i.i.d. grows linearly.

 $G_{0,x}$ is not quite a sum of i.i.d.

It is however superadditive: $G_{x,y} + G_{y,z} \leq G_{x,z}$.

Then: outside one null set, for all $\xi \in \mathbb{R}^2_+$ and all $x_n/n \to \xi$ simultaneously

 $g_{pp}(\xi) = \lim_{n \to \infty} n^{-1} G_{0,x_n}$ exists, is deterministic, concave, homogenous $(g_{pp}(c\xi) = cg_{pp}(\xi))$ and continuous all the way to the boundary.

Shape Theorem

LLN says sum of i.i.d. grows linearly.

 $G_{0,x}$ is not quite a sum of i.i.d.

It is however superadditive: $G_{x,y} + G_{y,z} \leq G_{x,z}$.

Then: outside one null set, for all $\xi \in \mathbb{R}^2_+$ and all $x_n/n \to \xi$ simultaneously $g_{pp}(\xi) = \lim_{n \to \infty} n^{-1}G_{0,x_n}$ exists, is deterministic, concave, homogenous $(g_{pp}(c\xi) = cg_{pp}(\xi))$ and continuous all the way to the boundary.

> of UTAH 4 / 19

Path $x_{0,n}$ that maximizes $G_{x,y}$ is called a geodesic.

 $x_{0,\infty}$ is a ξ -geodesic if $\forall n \ x_{0,n}$ is a geodesic and $x_n/n \rightarrow \xi$.

Given $\xi \in \mathbb{R}^2_+$, is there an infinite ξ -geodesic?

Is it the limit of the geodesic from 0 to x_n as $n \to \infty$ and $x_n/n \to \xi$?

If ω_0 is continuous then finite geodesics are unique.

Is the infinite ξ -geodesic unique?

Do ξ -geodesics out of x and y coalesce (i.e. eventually merge)?

Geodesics

Licea and Newman '96: answers are in the positive for standard first passage percolation (nearest-neighbor paths minimizing the passage time) if $g_{pp}(\xi)$ satisfies a global curvature assumption.

Problem: the curvature assumption has not been proved. Though conjectured to hold.

Damron and Hanson '14: Existence holds under just strict convexity or differentiability of g_{pp} (which presumably should be "easier" to prove).

Ferrari and Pimentel '05: answers are in the positive also for the last passage percolation model we are considering, but with ω_0 exponential.

The exponential model is one of the solvable models for which explicit computations are possible. In particular, an explicit formula is available for the shape $g_{pp}(\xi)$.

Would like to allow more general weight distributions.

Understanding the shape

Consider a finite subset $V \subset \mathbb{Z}^2$ containing 0 (e.g. $\{u : |u| \leq L\}$).

 $\{G_{0,z_n-u} - G_{0,z_n} : u \in V\}$ describes the microscopic shape around z_n .

Expect this random vector to converge in distribution as $z_n/n \rightarrow \xi$.

Shifting by $-z_n$ and reflecting $\omega_x \mapsto \omega_{-x}$ turns the above into $\{G_{u,z_n} - G_{0,z_n} : u \in V\}.$

Now maybe even almost sure convergence holds.

Understanding the shape

Consider a finite subset $V \subset \mathbb{Z}^2$ containing 0 (e.g. $\{u : |u| \leq L\}$).

 $\{G_{0,z_n-u}-G_{0,z_n}: u \in V\}$ describes the microscopic shape around z_n .

Expect this random vector to converge in distribution as $z_n/n \rightarrow \xi$.

Shifting by $-z_n$ and reflecting $\omega_x \mapsto \omega_{-x}$ turns the above into $\{G_{u,z_n} - G_{0,z_n} : u \in V\}.$

Now maybe even almost sure convergence holds.

Busemann functions:
$$B^{\xi}(x, y; \omega) = \lim_{z_n/n \to \xi} (G_{x, z_n} - G_{y, z_n}).$$

Limit exists if e.g. geodesics coalesce.

Note that
$$G_{x,z_n} = \omega_x + \max(G_{x+e_1,z_n}, G_{x+e_2,z_n}).$$

So $(G_{x,z_n} - G_{x+e_1,z_n}) \wedge (G_{x,z_n} - G_{x+e_2,z_n}) = \omega_x$ almost surely.

At each point x, geodesic to z_n follows the smallest of the two gradients.

Note that $G_{x,z_n} = \omega_x + \max(G_{x+e_1,z_n}, G_{x+e_2,z_n}).$

So $(G_{x,z_n} - G_{x+e_1,z_n}) \wedge (G_{x,z_n} - G_{x+e_2,z_n}) = \omega_x$ almost surely.

At each point x, geodesic to z_n follows the smallest of the two gradients.

 $n \to \infty$ gives $B^{\xi}(x, x + e_1) \wedge B^{\xi}(x, x + e_2) = \omega_x$ almost surely.

The above suggests that ξ -geodesic out of x should follow the smallest $B^{\xi}(x, x + z)$, $z \in \{e_1, e_2\}$.

Busemann functions

Consider g_{pp} as a concave function on $\mathcal{U} = \{(t, 1-t) : t \in (0, 1)\}.$

Given $\xi \in \mathcal{U}$ let $[\underline{\xi}, \overline{\xi}] \subset \mathcal{U}$ be the maximal (possibly degenerate) interval containing ξ on which g_{pp} is linear.

Busemann functions

Consider g_{pp} as a concave function on $\mathcal{U} = \{(t, 1-t) : t \in (0, 1)\}.$

Given $\xi \in \mathcal{U}$ let $[\underline{\xi}, \overline{\xi}] \subset \mathcal{U}$ be the maximal (possibly degenerate) interval containing ξ on which g_{pp} is linear.

Standing assumptions: $\mathbb{P}\{\omega_0 \ge c\} = 1$, ω_x i.i.d. with $2 + \varepsilon$ moments, $\underline{\xi}$ and $\overline{\xi}$ are points of differentiability.

Theorem.
$$B^{\xi}(x, y; \omega) = \lim_{z_n/n \to \xi} (G_{x, z_n} - G_{y, z_n})$$
 exists **a.s.**

Furthermore: Same limit for all ξ in the same linear segment.

Corollary. If g_{pp} is differentiable, limits exist $\forall \xi$. (No convexity needed.)

Busemann functions

Consider $g_{\sf pp}$ as a concave function on $\mathcal{U} = \{(t, 1-t) : t \in (0, 1)\}.$

Given $\xi \in \mathcal{U}$ let $[\underline{\xi}, \overline{\xi}] \subset \mathcal{U}$ be the maximal (possibly degenerate) interval containing ξ on which g_{pp} is linear.

Standing assumptions: $\mathbb{P}\{\omega_0 \ge c\} = 1$, ω_x i.i.d. with $2 + \varepsilon$ moments, $\underline{\xi}$ and $\overline{\xi}$ are points of differentiability.

Theorem.
$$B^{\xi}(x, y; \omega) = \lim_{z_n/n \to \xi} (G_{x, z_n} - G_{y, z_n})$$
 exists **a.s.**

Furthermore: Same limit for all ξ in the same linear segment.

Corollary. If g_{pp} is differentiable, limits exist $\forall \xi$. (No convexity needed.)

Remark. $\omega_0 \ge c$ only because we use results from queuing where service times were assumed nonnegative. All the queuing results seem to go through without this assumption.

$$\begin{split} L^1: & \mathbb{E}[|B^{\xi}(x,y)|] < \infty. \text{ (Comes from construction.)} \\ \text{Stationary: } B^{\xi}(x,y;T_z\omega) = B^{\xi}(x+z,y+z;\omega) \text{ (}(T_z\omega)_x = \omega_{x+z}) \\ \text{Cocycle: } B^{\xi}(x,y) + B^{\xi}(y,z) = B^{\xi}(x,z). \end{split}$$

The space of L^1 stationary cocycles: \mathscr{C} .

Potential recovery: $B^{\xi}(0, e_1) \wedge B^{\xi}(0, e_2) = \omega_0$ almost surely.

Geodesics

If $B \in \mathscr{C}$ then a *B*-geodesic is a path that follows the minimal B(x, x + z), $z \in \{e_1, e_2\}$. (In case of ties, OK to go either way.)

Theorem. If *B* recovers potential ω ($B(0, e_1) \wedge B(0, e_2) = \omega_0$ a.s.) then a *B*-geodesic is a geodesic: every finite piece of it is a geodesic.

If $B \in \mathscr{C}$ then a *B*-geodesic is a path that follows the minimal B(x, x + z), $z \in \{e_1, e_2\}$. (In case of ties, OK to go either way.)

Theorem. If *B* recovers potential ω ($B(0, e_1) \wedge B(0, e_2) = \omega_0$ a.s.) then a *B*-geodesic is a geodesic: every finite piece of it is a geodesic.

Given $\xi \in \mathcal{U}$, recall the maximal linear segment $[\xi, \overline{\xi}]$.

A geodesic $x_{0,\infty}$ is directed in $[\underline{\xi}, \overline{\xi}]$ if all limit points of x_n/n belong to this interval.

If $B \in \mathscr{C}$ then a *B*-geodesic is a path that follows the minimal B(x, x + z), $z \in \{e_1, e_2\}$. (In case of ties, OK to go either way.)

Theorem. If *B* recovers potential ω ($B(0, e_1) \wedge B(0, e_2) = \omega_0$ a.s.) then a *B*-geodesic is a geodesic: every finite piece of it is a geodesic.

Given $\xi \in \mathcal{U}$, recall the maximal linear segment $[\xi, \overline{\xi}]$.

A geodesic $x_{0,\infty}$ is directed in $[\underline{\xi}, \overline{\xi}]$ if all limit points of x_n/n belong to this interval.

Theorem.

- a) Any B^{ξ} -geodesic is directed in $[\xi, \overline{\xi}]$.
- b) Any geodesic directed in $[\xi, \overline{\xi}]$ is a B^{ξ} -geodesic.

c) The B^{ξ} -geodesic with e_2 -tie breaks is the topmost of all geodesics directed in $[\xi, \overline{\xi}]$. Similarly for rightmost.

Corollary. If g_{pp} is differentiable everywhere, then every geodesic is directed in $[\xi, \overline{\xi}]$ for some ξ .

Remark. Can also handle corners, but will omit.

Thus can show: If g_{pp} is strictly concave, then every geodesic has a direction ξ , i.e. $\lim x_n/n$ exists almost surely.

Corollary. If g_{pp} is differentiable everywhere, then every geodesic is directed in $[\xi, \overline{\xi}]$ for some ξ .

Remark. Can also handle corners, but will omit.

Thus can show: If g_{pp} is strictly concave, then every geodesic has a direction ξ , i.e. $\lim x_n/n$ exists almost surely.

Theorem. Assume also $\mathbb{P}\{\omega_0 \leq r\}$ is continuous in r. Then $\mathbb{P}\{B^{\xi}(0, e_1) = B^{\xi}(0, e_2)\} = 0.$

Corollary. If ω_0 is continuous, then there exists a **Unique** geodesic directed in $[\xi, \overline{\xi}]$ out of every point $x \in \mathbb{Z}^2$.

Theorem. Topmost $[\underline{\xi}, \overline{\xi}]$ -directed geodesics coalesce, rightmost $[\underline{\xi}, \overline{\xi}]$ -geodesics coalesce, and when ω_0 is continuous, $[\underline{\xi}, \overline{\xi}]$ -geodesics $\lim_{\substack{\text{UNIVERSIT} \\ \text{or UTAH}}} \omega_0$

Until recently, the only description of $g_{pp}(\xi)$ was from superadditivity: $g_{pp}(\xi) = \sup_n n^{-1} \mathbb{E}[G_{0,[n\xi]}]$ (e.g. if $\xi \in \mathbb{Z}^2_+$).

Going through random polymer models:

Theorem.
$$g_{pp}(\xi) = \inf_{B \in \mathscr{C}} \operatorname{ess\,sup}\{\omega_0 - B(0, e_1; \omega) \land B(0, e_2; \omega) + \overline{B} \cdot \xi\}.$$

 $(\overline{B} = (\mathbb{E}[B(0, e_1)], \mathbb{E}[B(0, e_2)])$ and \mathscr{C} is class of L^1 stationary cocycles.)

Such formulas are important in statistical mechanics: their solutions are expected to describe the infinite-volume system (i.e. geodesics and shape as $n \to \infty$).

Theorem. Under the standing assumptions, B^{ξ} solves the variational formula for $g_{pp}(\xi)$. In fact, the essential supremum is not needed and we have almost surely

$$g_{\mathsf{pp}}(\xi) = \omega_0 - B^{\xi}(0, e_1, \omega) \wedge B^{\xi}(0, e_2, \omega) + \overline{B^{\xi}} \cdot \xi.$$

Corollary. Due to potential recovery, we have $g_{pp}(\xi) = \overline{B^{\xi}} \cdot \xi$.

Using some calculus one then gets that $\overline{B^{\xi}} = \nabla g_{pp}(\xi)$.

Nice interpretation: average microscopic gradient is macroscopic gradient.

When ω_0 are exponential or geometric we in fact can calculate explicitly the distributions of $B^{\xi}(0, e_1)$ and $B^{\xi}(0, e_2)$ for all $\xi \in \mathcal{U}$.

For example, if ω_0 is exponential with rate 1, then $B^{\xi}(0, e_1)$ is exponential with rate α and $B^{\xi}(0, e_2)$ is exponential with rate $1 - \alpha$, where $\alpha = \frac{\sqrt{\xi_1}}{\sqrt{\xi \cdot e_1} + \sqrt{\xi \cdot e_2}}.$

Then $\overline{B^{\xi}} = (\mathbb{E}[B^{\xi}(0, e_1)], \mathbb{E}[B^{\xi}(0, e_2)]) = (\frac{1}{\alpha}, \frac{1}{1-\alpha})$

and $g_{\rm pp}(\xi) = \overline{B^{\xi}} \cdot \xi = (\sqrt{\xi \cdot e_1} + \sqrt{\xi \cdot e_2})^2$.

This is the known formula derived by Rost '81.

Fluctuations

CLT says that if $X_{0,n}$ has increments e_1 or e_2 equally likely, then it fluctuates from its average (straight line from 0 to (n/2, n/2)) by $n^{1/2}$.

Limit distribution of $(X_n - (n/2, n/2))/n^{1/2}$ is Gaussian.

Fluctuations

CLT says that if $X_{0,n}$ has increments e_1 or e_2 equally likely, then it fluctuates from its average (straight line from 0 to (n/2, n/2)) by $n^{1/2}$.

Limit distribution of $(X_n - (n/2, n/2))/n^{1/2}$ is Gaussian.

Say ω_0 is continuous.

What are the fluctuations of the geodesic from 0 to $[n\xi]$?

Conjecture: with enough moments on ω_0 geodesic has fluctuations of order $n^{2/3}$.

Superdiffusivity is because the path goes "out of its way" looking for high values of the potential.

On the other hand, $G_{0,[n\xi]}$ should have $n^{1/3}$ fluctuations.

Limit distributions related to Tracy-Widom from random matrices.

Models with these fluctuation exponents are said to belong to the Kardar-Parisi-Zhang (KPZ) universality class.

Johansson '00 proved LPP with exponential weights is in the KPZ class.

Again: solvability of the model was key.

When ω_0 is exponential or geometric, $B^{\xi}(ne_1, (n+1)e_1)$ are i.i.d. and so are $B^{\xi}(ne_2, (n+1)e_2)$.

Balázs, Cator, and Seppäläinen '06 used this to prove the $n^{2/3}$ fluctuations of the geodesic and $n^{1/3}$ fluctuations of the last passage time, in the exponential weights case, with less technology than Johansson's proof of the Tracy-Widom limit.

More generally, CLT exponents for fluctuations of $B^{\xi}(0, ne_1)$ and $B^{\xi}(0, ne_2)$ imply information about fluctuation exponents of last passage quantities. (The above BCS result is one way to achieve this.)

Now we have a promising route to proving universality of KPZ fluctuations for general weight distributions.

Thank You

