Selecting (In)Valid Instruments

Neil Davies, Helmut Farbmacher, George Davey-Smith,
lan White, Frank Windmeijer

e Instrumental variables estimation popular method for identifying and
estimating the magnitude of the causal effect of a modifiable risk
factor on outcomes.

e In epidemiology, the concept of Mendelian randomisation has led to
the use of genes as instruments. E.g. some genes have been shown to
lead to higher weight, and used to estimate the effect of weight on
blood pressure.



e Often, it may be the case that genes don’t satisfy the so-called
exclusion restriction, e.g. some may have a direct effect on the
outcome.

e Kang et al. (2015) propose use of Lasso type method to identify valid
and invalid instruments for 2SLS, sisVIVE.

e L asso selection of invalid instruments using LARS is similar to
forward selection of variables method. We compare using various
stopping rules.

e \We show that sisVIVE breaks down when invalid instruments are
relatively “too” strong.



e \Weighting for instrument strength can lead to correct selection of
valid instruments when there are more than 50% valid instruments

e This is similar to the Han (2008) method using ¢, -GMM, which

results in the median of the IV estimates using all instruments one at
the time, which 1S a consistent estimator when there are more than

50% valid instruments.

e VVery Preliminary!



(A3)

A2 AN\

Unmeasured
.~ | variables

-

Genetic
marker

Outcome

Exposure

.
L
™
E )
.
W
*
L
.
L ]
"y
w
...
...

L ]
L
L
L ]
-
L ]
L ]
-
-
-
L
!"‘
a®
"
s
lllll



Table 6. Estimation results

SMM
Linear OLS

? 0.2009
/ (0.0039)
Multiplicative Gamma
0 0.2974

(0.0063)

Logistic Logistic regression
i 0.9487
® (0.0189)

OSLS
0.2091
(0.0819)

GMML1
0.3090
(0.1192)

GMM1
1.0409
(0.4220)

GMM?2
0.2094
(0.0819)

GMM2
0.3104
(0.1192)

GMM?2
1.0528
(0.4217)

J-test

0.2965

J-test

0.3071

J-test

0.2924

Notes: Sample size 55,523,

Standard errors in brackets: p-values are reported for the J-test.



In a structural linear model
Yy, =X+

where E[xu, |#0, but E[zu, | =0, the two-stage least squares estimator
(2SLS) for 43 is given by (P, =Z(2Z) " 2")

f=(XP,X)" XP,y
The Sargan test for the null E{zu, |=0 is given by (i=y - X f)

U'P,G/ 67— 47,



Kang et al. setup. They consider potential outcomes model for outcome
Y, treatment D and instrument vector Z, containing L potential
Instruments

Y& Y@ 2 (27 2) g (d"—d) g
E [Yi(o,o) | Zi:| =Ziy

where ¢ measures the direct effect of Z on 'Y, and i represents the effect
of confounders in the relationship between Z. and Y% .

They position their model in the Mendelian randomisation genetic
framework, where genes are instruments and independently distributed,
l.e. E[Z,Z/]=1, after standardisation.
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The observed data model is

Y. =Za+D,f+u,

0.

where o =g+ u =Y %% — E[Yi(o’o) | Zi], and hence E[u,|Z,]
A valid instrument i1s then a Zj for which a; = 0.

They estimate the parameters « and £ by Lasso type method using 7,
penalisation:

N

: 1
(@,.8,)= ar%r;nnEHPz (Y -za-Dp)|, + 4|,



A simple two-step algorithm, using the LARS routine, is programmed up
In R and called sisVIVE (some invalid and some valid IV estimator). It
uses a cross-validation technique for finding the value of A, but no
Inference. It works when there are less than 50% invalid instruments.

A two-step method is employed: for a given A find &, from
1 2
arg min EHM sPY =M Za| +A|a],

Al A ANL A
D=P,D,M,=1-D(DD) D, then

. D'(Y-za,)
D'D

=
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LAR Is similar to forward stagewise linear regression (matching

pursuits), adding the instruments sequentially to the model according to
the magnitude of their correlation with the residual. Considering one

Instrument at the time, the 2SLS estimator for « j INn the model

Y=DB+Za;+U
IS given by
A ’ -1 ’
ajz(zjlvlf)zj) Z'M_P,Y

and forward selection is based on the standardised version

A , vz _,
&} =(ZMsZ,) " ZMPR,Y.
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We will compare sisVIVE with this forward selection method, using
cross-validation (10-fold) to determine the value ac, such that Z; gets

selected when o?j’ > ac.

Andrews (1999) and Andrews and Lu (2001) propose a downward testing
procedure, starting from the model with the largest degrees of freedom,
estimating all possible models and selecting the one with the largest
degrees of freedom that passes the Sargan test (Hansen for
heteroskedasticity).

A directed search with stopping rule would then be to select the Z;
sequentially with the largest «; until the Sargan test does not reject.
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Consider the Kang et al. MC design, n=2000, L=10, s=3, f=1and
the o ’s for the 3 invalid instruments are all equal to 1. All reduced form

parameters r; are equal to 1/ J20 . 0 =0.8.
Y. =Z/a+D. S +u.

D.=Zrm+v.
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Some Monte Carlo results: g =1, L =10, s=3(a =1), n=2000, 1000

reps

mean sd # Inv Selected
2SLS 2.337 0.084
SiSVIVE 1.096 0.034 3.88, 3-9
FS, CV 1.015 0.048 3.68, 3-9
FS, Sar (0.05) 1.006 0.040 3.06, 3-5
2SLS oracle 1.007 0.038

14




Some Monte Carlo results: =1, L=20, s=6(ax=0.2), n=500, 1000

reps
mean sd # Inv Selected

2SLS 1.287 0.042

SiSVIVE 1.217 0.047 6.63, 0-18

FS, CV 1.063 0.074 8.33, 0-19

FS, Sar (0.05) 1.046 0.053 5.55, 3-10

2SLS oracle 1.025 0.048
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Maintaining throughout that E(Z,Z/)=1, and plim(n‘lz’Z)z |, itis
easily shown that

’ 2 12
. T'a :
lim(ad)=| a. — . /| 1-—
P ( J) ( J Jﬂ'ﬂj ( ﬂ'ﬂ)

with the nonzero « s all equal (to «) and the 7 ;s all equal, this becomes

Lghlet) o (et bet)

for the invalid and valid instruments respectively. Hence it is bigger in
absolute value for the valid instruments if (L—s) > s, more than 50% of

the Iinstruments are valid.
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Now, If the invalid instruments are stronger, ., =Cr,,
plim(&;), o times

C“S C _
1—2 /1—2 :
c’s+L-—s c’s+L-—s

CS 1 V2
mE s
cs+L-s cs+L-s

for valid and invalid instruments respectively. When L =10 and s =3,
then this is larger in absolute value for the invalid instruments when

c>2.65

then we get for
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Some Monte Carlo results: =1, L=10, s=3(a =1), z,, =3.57,,

n=2000, 1000 reps

mean sd # Inv Selected
2SLS 2.073 0.016
SiSVIVE 2.252 0.014 7.74, 7-9
FS, CV 2.276 0.016 7.29, 7-9
FS, Sar (0.05) 2.278 0.014 7.05, 7-8
2SLS oracle 1.005 0.037
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We can weigh the moment conditions in order to avoid this problem.

A Generalised Method of Moment (GMM) estimator minimises
(n‘lu 'Z )Wn‘1 (n‘lz ’u)
Letu=Y -Dg, then § =(D'ZW,’ZD) D'ZW,'Zy, and

-1
W «a

T -1
W

plim(n~*Z2'4) = ar -

where W = plim(W, ), again maintaining that plim(n~zz)=1, .

19



Under the same circumstances as before, If W =diag(7zj) then the

correlations of the invalid instruments with the residuals is stronger than
those of the valid ones.

We set W, = diag (‘n‘lz;D‘).

This Is the same as the weightmatrix proposed by Han (2008) for /, GMM
3 =argmin|W *n7z'(Y - DA)|.
B = argmin|W,"n"2'(Y ~Dp)

N

B, is the median of the L IV estimates j;(Z;) and is a consistent
estimator for S as long as more than 50% of the instruments are valid.
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Use the GMM estimator for selection of invalid instruments only, and

estimate final selected model by 2SLS.

Some Monte Carlo results: =1, L=10, s=3(ax =1), n=2000

mean sd # Inv Selected
2SLS 2.337 0.084
SisVIVE 1.096 0.034 3.88, 3-9
FS, CV 1.015 0.048 3.68, 3-9
FS, Sar (0.05) 1.006 0.040 3.06, 3-5
2SLS oracle 1.007 0.038
FSW, CV 1.015 0.046 3.66, 3-9
FSW, Sar (0.05) 1.006 0.040 3.06, 3-5
(¢, - Han 1.103 0.083
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Some Monte Carlo results: =1, L=10, s=3(a =1), z,, =3.57,,

n=2000, 1000 reps

mean sd # Inv Selected
2SLS 2.073 0.016
SiISVIVE 2.252 0.014 7.74, 7-9
FS, CV 2.276 0.016 7.29, 7-9
FS, Sar (0.05) 2.278 0.014 7.05, 7-8
2SLS oracle 1.005 0.037
FSW,CV 1.015 0.045 3.55, 3-9
FSW, Sar (0.05) 1.006 0.040 3.06, 3-5
¢, - Han 1.095 0.077
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Discussion

We have investigated alternative ways of selecting invalid instruments,
taking the Lasso approach of Kang et al. as a starting point.

Combining selection with a stopping rule based on Sargan statistic seems
a sensible approach with good properties. Also, in first design, Wald
rejection probabilities are 6.7% at the 5% level for this estimator.

We have proposed a new selection method that allows for different
Instrument strengths and results in selecting the invalid instruments as
long as there are more than 50% of the instruments valid. This is similar
to, but behaves better than, Han’s ¢, estimator, which Is a consistent

estimator.
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The situation covered assumed independent instruments, which seems ok
for Mendelian randomisation. Things are more complicated (and more
Interesting) when instruments are correlated.

In that case, there are differences whether an instrument has a direct effect
or whether they are correlated with the error in a different way from
U= aij +e;. That 1s, sometimes an instrument is invalid, but should not

be included in the main model, i.e. it should just be discarded.
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For example, the Han estimator only works with correlated instruments
If they are not to be included in the model. If the model is

Y =Dj+u

If Z,, Z, are the invalid, valid instruments, then if E[Z,u]=0, but
E[Z,u] =0, the Han estimator works, but not the Kang et al. approach.

However, If u=Za, +¢&, then the valid instruments must have that
E[Z,6]=0, but then E[Z,u]#0 due to the correlation of the valid
Instruments with the invalid ones. So, here Han doesn’t work, but Kang
et al.’s approach does.

When the instruments are independent this problem doesn’t arise, only
efficiency Is affected.
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To deal with correlated instruments then could be a search strategy a la
Andrews (1999). Sequentially drop the instruments from the instrument

set using the correlations Z'G or (Z’Z)_lz’ﬁ and record the Sargan
statistic, stop when Sargan passes.

Then add the instrument with the strongest correlation (or &/) to the

model and repeat sequentially dropping instruments from the instrument
set until Sargan passes.

Repeat till the end, and then select the model where the Sargan passed
with the largest degrees of freedom, k, —Kk, .
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There are various related papers in the econometrics domain. For
example,

Caner, M, Han, X, and Lee, Y, (2013), Adaptive Elastic Net GMM
Estimator with many Invalid Moment Conditions: A Simultaneous Model
and Moment Selection, mimeo, University of Michigan.
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