
Variance of additive functionals of stationary processes
and stationary Markov Chains

George Deligiannidis
(joint with M. Peligrad and S. Utev)

Department of Statistics, Oxford

Bristol, March 20, 2015

G. Deligiannidis (Oxford) Variance of Partial Sums Bristol, March 20, 2015 1 / 49



Outline

1 Introduction

2 Necessary and sufficient conditions for Stationary Processes
Auxiliary results
Proof of Theorem 2

3 Additive Functionals of Markov Chains
Link between the spectral measures
Reversible MCs
CLT with non-standard normalisation
Normal MCs

4 Continuous Time

G. Deligiannidis (Oxford) Variance of Partial Sums Bristol, March 20, 2015 2 / 49



Introduction

Introduction

Let {Xn}n∈Z, be stationary and

EXi = 0, EX2
i <∞.

Sn := X1 + · · ·+ Xn

cov(X0,Xk) =
∫π
−π

eiktF(dt).

Limit theorems for Sn usually require information about var(Sn).

For example one may assume that var(Sn)/n→ K > 0.
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Introduction

What is known?

If covariances summable, then var(Sn) ∼ n
∑
R(k).

Related to Césaro summability of Fourier series through

var(Sn) =
∫π
−π

sin2(nt/2)
sin2(t/2)

F(dt).

By Fejer’s theorem, if spectral density exists, i.e. F(dt) = f(t)dt and is
continuous at 0, then

var(Sn) ∼ 2πf(0)n.

Only need f to have right and left limits (if infinite not of opposite sign).
Also many more sufficient conditions with mixing, proj. criteria and so on
(see Bradley (2007)).
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Introduction

First necessary and sufficient condition

Theorem 1 (Hardy & Littlewood (1924))

var(Sn)
n

→ A, if and only if 1
2t

∫t
−t
f(s)ds→ A.

Of course Hardy and Littlewood were not interested in stationary processes
but in Césaro means of Fourier series.

First appearance in probability in Bryc & Dembo (1995).

G. Deligiannidis (Oxford) Variance of Partial Sums Bristol, March 20, 2015 5 / 49



Introduction

Non-linear growth

Often var(Sn) ∼ nαl(n) for any α ∈ (0, 2), l slowly varying,
e.g. random walk in random scenery, linear processes, long-range
dependence.

If α > 1 then slowly decaying correlations.

Partial results link the behaviour of the correlation, or of the spectral
density to that of the variance.

eg if the correlations ρn = n−dl(n), then

var(Sn) ∼ Cl(n)n2−d.

Many such results appear in Samorodnitsky (2006).
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NASC for stationary

NASC for Stationary processes

Here’s our first main result.
Assume F defines a symmetric spectral measure.

Theorem 2 (D. & Utev (2013))

Let l(x) be positive and slowly varying at infinity, and α ∈ (0, 2). Then

var(Sn) ∼ K0n
αl(n) if and only if∫x

−x
F(dx) ∼ C(α)K0x

2−αl(1/x)

where C(α) = Γ(1+ α) sin(απ2 )/[π(2− α)].

In particular var(Sn) ∼ K0n if and only if
∫x
−x F(dx) ∼ K0x/π.
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NASC for stationary Auxiliary results

Proof
We write

var(Sn) =
∫π
−π

sin2(nt2 )

sin2(t2)
F(dt) =:

∫π
0
In(t)G(dt)

where In(t)/n is the Fejer kernel and G(x) =
∫x
−x F(dx).

Positivity of the kernel In(y) leads to the following very useful bounds:

Lemma 3

For any A > 0

4
π2n

2G(1/n) 6 var(Sn) 6 G(π) +
π2

4 n
2G(A/n) + π2

∫π
A/n

G(y)

y3 dy.

eg for lower bound, since In(y) > 4n2/π2 for 0 < y < 1/n

var(Sn) =
∫π

0
In(y)G(dy) >

∫1/n

0

4
π2n

2G(dy) > 4
π2n

2G(1/n).
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NASC for stationary Auxiliary results

Equivalence of upper bounds

This offers a first glimpse of a necessary and sufficient condition.
In fact upper bounds for the spectral measure are equivalent to upper
bounds for the variance. Using Lemma 3 one can show

Lemma 4 (Equivalence of upper bounds)

For L > 0 slowly varying, TFAE:
(a) var(Sn) = O(nγL(n)), as n→∞,
(b) G(x) = O(x2−γL(1/x)) as x→ 0.
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NASC for stationary Auxiliary results

What about lower bounds?

For lower bounds the situation is slightly more complicated as we still
require an upper bound.

Lemma 5 (Equivalence of lower bounds)

If
G(x) = O(x2−γL(1/x)), and var(Sn) > C1n

γL(n),

then for some C2 > 0, we have G(x) > C2x
2−γL(1/x).
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NASC for stationary Proof of Theorem 2

Proof of Theorem 2

We are now pretty much ready to prove the theorem.
“⇒:” Assume G(x) ∼ x2−γL(1/x).

Fix M 6 n and change variables

var(Sn) =
∫M

0

sin2(y)

n2 sin2(y/n)
n2G(2dy/n)

+

∫nπ/2

M

sin2(y)

n2 sin2(y/n)
n2G(2dy/n)

=: In,M + Jn,M.
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NASC for stationary Proof of Theorem 2

Using the classical Tauberian theorem we can show that

Jn,M
nγL(n)

= O(
1

nγL(n)
) +O(M−γ),

and is thus negligible.

For In,M we first use weak convergence.
On the interval [0,M] define the sequence of (almost probability) measures

µn{[0,y)} :=
n2−γG(2y/n)
L(n)(2M)2−γ .

Since G(x) ∼ x2−γL(1/x) as n→∞
µn{[0,y)}→

( y
M

)2−γ
=: µ(y)

and thus µn ⇒ µ weakly.
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NASC for stationary Proof of Theorem 2

On the interval [0,M] we have

sin(y)2

n2 sin(y/n)2 =
sin2(y)

y2 +O
(M2

n2
)
.

Further since sin2(y)/y2 is cts and bdd weak convergence implies that

In,M
g(n)

= 22−γ(2− γ)
∫M

0

sin2(y)

y1+γ dy+ EM(n) +O(M−γ)

= 22−γ(2− γ)
∫∞

0

sin2(y)

y1+γ dy+ EM(n) +O(M−γ),

=
sin(γπ/2)Γ(1+ γ)

π(2− γ) + EM(n) +O(M−γ),

where EM(n)→ 0 as n→∞ for all M.

Let first n→∞ and then M→∞ to complete the proof of “⇒”.
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NASC for stationary Proof of Theorem 2

Proof of “⇐”
Now suppose that var(Sn)/nγL(n)→ K.
For any increasing integer sequence tj we can write

var(Stj)
t
γ
j L(tj)

=

∫M
0

sin2(y)

y2
t

2−γ
j G(2dy/tj)

L(tj)
+O

(M2

t
γ
j

)
+O(M−γ),

By Lemmas 4 and 5

C1x
2−γL(1/x) 6 G(x) 6 C2x

2−γL(1/x),

for some 0 < C1 < C2.
Thus for y 6M

t
2−γ
j G(2M/tj)

L(tj)
6 CM2−γL(tj/2M)

L(tj)
6 CM2−γ.
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NASC for stationary Proof of Theorem 2

Therefore, by Helly’s selection principle, we can find an increasing function
h, defined on [0,∞) and a further subsequence tj ′ such that

Ftj ′ (y) :=
t

2−γ
j ′ G(2y/tj ′)
L(tj ′)

→ h(y), (2.1)

at all continuity points of h.

From the bounds for G it must be that h(y) 6 CM2−γ for y 6M and
since sin2(y)/y2 cts and bdd on [0,M] we have∫M

0

sin2(y)

y2 Ftj ′ (dy)→
∫M

0

sin2(y)

y2 h(dy).
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NASC for stationary Proof of Theorem 2

By hypothesis var(Sn)/nγL(n)→ K.
Therefore we have the identity for arbitrary M

K = lim
j ′→∞

var(Stj ′ )
t
γ
j ′L(tj ′)

=

∫M
0

sin2(y)

y2 h(dy) +O(M−γ),

and letting M→∞
K =

∫∞
0

sin2(y)

y2 h(dy).

At this stage h may depend on the subsequence t ′j chosen. To see why this
is not actually the case we now exploit the regular variation of var(Sn).

G. Deligiannidis (Oxford) Variance of Partial Sums Bristol, March 20, 2015 16 / 49



NASC for stationary Proof of Theorem 2

Let r > 0 be arbitrary. Then by slow variation of L and a simple argument

F[rtj ′ ](y) :=
[rtj ′ ]

2−γG(2y/[rtj ′ ])
L([rtj ′ ])

(2.2)

∼ r2−γ
t

2−γ
j ′ G

(
2(y/r)/tj ′

)
L(tj ′)

→ r2−γh(y/r), (2.3)

as j ′ →∞ at all good points y/r with h the same as before.

Since var(Sn)/g(n)→ K, for any r > 0

K = lim
j ′→∞

var(Stj ′ )
g(tj ′)

=

∫∞
0

sin2(y)

y2 r2−γh(dy/r).

G. Deligiannidis (Oxford) Variance of Partial Sums Bristol, March 20, 2015 17 / 49



NASC for stationary Proof of Theorem 2

A convolution equation

Combining all steps so far we arrive at the “convolution type equation"∫∞
0

sin2(ry)

y2 h(dy) = rγK, (2.4)

where h may depend on the particular subsequence t ′j.

In the rest of the proof we show that the solution h must be unique, and
thus cannot depend on the subsequence.
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NASC for stationary Proof of Theorem 2

Solving the convolution equation

First define the auxiliary odd function, defined by

ψ(y) := lim
N→∞

∫N
y

x−2h(dx), ψ(−y) := −ψ(y), y > 0.

Equation 2.4 allows us to compute the sine-transform of ψ as

lim
a→∞

∫a
−a

sin(ry)ψ(y)dy = 22−γsgn(r)|r|γ−1K.

Unfortunately ψ(y) behaves like y−γ so depending on γ this may not be
L1 or L2 (eg for γ = 1). So parse ψ as a tempered distribution

Ψ[φ] :=

∫∞
0
ψ(y)(φ(y) − φ(−y))dy,

for Schwartz functions φ.
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NASC for stationary Proof of Theorem 2

Again careful analysis to compute the Fourier transform of Ψ using the
identity Ψ̂[φ] = Ψ[φ] and we find

Ψ̂[φ] =

∫∞
−∞
(
i22−γKsgn(t)|t|γ−1

)
φ(t)dt.

Fourier inversion allows us to identify ψ to be KD(γ)y−γ, and therefore

h(x) =
γ

2− γKD(γ)x2−γ, D(γ) := Γ(γ)22−γ sin(γπ/2)
π

.

From this one can deduce that

lim
x→0

G(x)

x2−γL(1/x) = C(γ)K.
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NASC for stationary Proof of Theorem 2

Motivating question

This was motivated by a question by M. Peligrad:

Assume var(Sn)/n→ K along the subsequence nr = 2r. Does this imply
convergence along the full sequence?

The answer is no!

Let G(x) = 2−k, for x ∈ (2−(k+1), 2−k], for k > 1.

Then limx→0G(x)/x does not exist, as different subsequences give
different limits, and therefore the limit of the full sequence var(Sn)/n
cannot exist.
By direct calculation on the subsequence 2r,

var(S2r)

2r →
∞∑
k=0

sin2(2k)
2k +

∞∑
k=1

2k sin2(2−k) ∈ (0,∞).
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Functionals of MCs

Functionals of Stationary Markov Chains

Suppose now that Xn = g(ξn), where
(ξn)n∈Z stationary ergodic Markov chain with values in (S,A),
marginal π and transition kernel Q(x, dy).
g ∈ L2(S,π) such that π(g) = 0.

Q also denotes the Markov transition operator

(Qg)(x) :=

∫
S

g(s)Q(x, ds).

The chain is reversible iff Q is self-adjoint.

The chain will be called normal if Q is normal, ie Q∗Q = QQ∗.
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Functionals of MCs

Transition Spectral measure

In the context of Markov chains we distinguish between two different
spectral measures.
The transition operator Q, acts on L2(S,π), where S is the state space
and π the stationary measure.

Assuming Q∗Q = QQ∗ by the spectral theorem there is a unique
transition spectral measure ν, supported on the unit disc, such that

cov(X0,Xn) = 〈g,Qng〉 =
∫
D

znν(dz). (3.1)

where D := {z ∈ C : |z| 6 1}.

In the reversible case ν is concentrated on [−1, 1].
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Functionals of MCs

Shift Spectral measure

The shift operator U acts on L2(Ω,P), where (Ω,F,P) is the canonical
probability space on which the MC is defined.

The spectral theorem applied to the unitary operator U implies the
existence of a unique shift spectral measure F on [−π,π] (or S1) such that

cov(X0,Xn) =
∫π
−π

eintF(d t).

Thus we can use Theorem 2 to analyse the variance in terms of the shift
spectral measure.
Can we also analyse it in terms of the transition spectral measure?
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Functionals of MCs

What is known?

Kipnis & Varadhan (1986):
√
n-CLT for reversible MC if

lim
n→∞ var(Sn)

n
= σ2

g, iff σ2
g :=

∫1

−1

1+ t
1− tν(dt) <∞. (3.2)

Gordin & Lifšic (1981):
√
n-CLT for normal MC under∫
D

1
|1− z|ν(dz) <∞, (3.3)

and if (3.3) then var(Sn)
n

→ σ2 :=

∫
D

1− |z|2

|1− z|2ν(dz).

See also Tóth (1986); Derriennic & Lin (2001); Holzmann (2005).
Recently Zhao, Woodroofe & Volny (2010) and Longla, Peligrad &
Peligrad (2012), studied reversible MC such that var(Sn) = nl(n).
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Functionals of MCs

We will address the following two issues:
(i) How are the two spectral measures related?
(ii) Can we get necessary and sufficient conditions for

var(Sn) ∼ Cnαl(n) in terms of the transition spectral measure ν?
(iii) For reversible: is it true var(Sn) ∼ Cn if and only if

ν{(1− x, 1)} ∼ C ′x?

Question 3.1 (Open?)
Is the Kipnis-Varadhan condition necessary for a

√
n-CLT in the reversible

case?
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Functionals of MCs Link between the spectral measures

Transition vs shift spectral measure
Let ∂D and D0 be the boundary and the interior of the unit disc.

Theorem 6

The shift spectral measure has the representation

F(dt) = ν|∂D(dt) + f(t)dt, where

f(t) =
1
2π

∫
D0

1− |z|2

|1− zeit|2
ν0(dz).

(3.4)

In other words if ν is supported on D0, the spectral density exists.

See also Häggström & Rosenthal (2007); Jewel & Bloomfield (1983);
Derriennic & Lin (2001).

In reversible case f is simpler

f(t) =
1
2π

∫1

−1

1− λ2

1+ λ2 − 2λ cos tdν(λ)
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Functionals of MCs Link between the spectral measures

Proof of Theorem 6.
For t ∈ [−π,π] let

f(t) :=
1
2π

∫
D0

[
1+

∞∑
k=1

(zkeitk + z̄ke−itk
]
ν(dz)

=
1
2π

∫
D0

1− |z|2

|1− zeit|2
ν(dz).

An easy calculation shows that∫2π

0
eiktf(t)dt =

∫
D0

zkν(dz),

and the result follows easily.
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Functionals of MCs Link between the spectral measures

Link through Brownian motion I
The presence of the Poisson kernel hints at a link with harmonic measure.

Let (Bzt)t>0 be standard planar Brownian motion in C, started at the
point z.

Let Z ∼ ν be a random point in D := {z : |z| 6 1} distributed according to
ν(normalized);
let τZD := inf{t > 0 : BZt /∈ D}. Let α ∈ (0, 2).

Theorem 7
The shift spectral measure can be expressed as the harmonic measure of
Brownian motion in the disc started from ν. That is for any Borel
A ⊂ [−π,π]

F(A) = P{arg(BZ
τZD

) ∈ A} =
∫
D

P{arg(BzτD) ∈ A}ν(dz).
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Functionals of MCs Reversible MCs

Can we find NASC?

Having obtained the link between the two spectral measures we look for
necessary and sufficient conditions for var(Sn) to be regularly varying in
terms of the transition spectral measure.

We begin with reversible Markov chains.

The asymptotically linear case is known since Kipnis & Varadhan (1986):

lim var(Sn)
n

=

∫1

−1

1+ t
1− tν(dt).
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Functionals of MCs Reversible MCs

NASC for reversible MCs

Proposition 8

Assume that Q is self-adjoint and that ν has no atoms at ±1. Then the
shift spectral measure F is absolutely continuous and the following
relations are equivalent. Let α ∈> 1

1 var(Sn) ∼ nαl(n) as n→∞;

2

∫1−x

−1

1
1− tν(dt) ∼

α(α−1)
2Γ(3−α)x

1−αl(
1
x
) and α > 1.

3 ν(1− x, 1] ∼ α(α− 1)
2Γ(3− α)x

2−αl(1/x) as x→ 0+, and α > 1.

Remark 9
So if α = 1 ν does not have to be regularly varying at 1.
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Functionals of MCs Reversible MCs

Proof

Assume α ∈ [1, 2) and in particular that var(Sn)/n→∞.
Let C1(n) :=

∑n−1
i=0
∫1

0 x
iν(dx). Then it is easy to see that

var(Sn) ∼ 2
n∑
k=1

C1(k).

Since C1(k) is increasing by the Tauberian theorem

var(Sn) ∼ nγL(n), iff C1(n) ∼
γ

2n
γ−1L(n).

Since
C1(n) =

∫1

0

1− xn
1− x ν(dx),

the result follows after integration by parts and change of variables.
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Functionals of MCs CLT with non-standard normalisation

Example for non
√
n-CLT’s I

We next give an example of a Metropolis-Hastings type chain that satisfies
a CLT with super-diffusive normaliser.

Example 10
Let E = {x : |x| 6 1} and ν a symmetric probability measure on E such that

θ :=

∫1

−1

ν(dx)
1− |x|

<∞.

Define the transition kernel

Q(x,A) = |x|δx(A) + (1− |x|)ν(A).

So if the current state is x you propose from ν(·) and you accept with
probability 1− |x|.
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Functionals of MCs CLT with non-standard normalisation

Example for non
√
n-CLT’s II

This kernel defines a Markov chain {ξk}, which is reversible wrt

µ(dx) = ν(dx)
θ(1− |x|)

.

For any odd g
Qkg(x) = |x|kg(x),

and thus letting g(x) = sgn(x) we have

(g,Qkg) =
∫1

−1
|x|kµ(dx) = 2

∫1

0
xkµ(dx),

and thus the transition spectral measure is given by 2µ and is supported
on [0, 1]. Define
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Functionals of MCs CLT with non-standard normalisation

Example for non
√
n-CLT’s III

V(x) :=

∫1−x

0

ν(dy)
1− y ∼

1
2h(

1
x
).

We have the following result

Theorem 11

If V(x) is slowly varying at 0, then

1
nh(n)

n∑
i=1

sgn(ξi)⇒ N(0, 1).
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Functionals of MCs Normal MCs

Normal MC’s

Having covered reversible, let us now have a look at the normal case.
Using representation in terms of harmonic measure and Theorem 2 we get
the following result for free.

Theorem 12

The following statements are equivalent:
(i) var(Sn) ∼ nαl(n) as n→∞;

(ii) P
{
BZ
τZD
∈ (−x, x)

}
∼ C(α)x2−αl(1/x)/ν(D) as x→ 0.
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Functionals of MCs Normal MCs

Normal MC’s

Define
σ2 =

∫
D

1− |z|2

|1− z|2ν(dz). (3.5)

The following result clarifies the linear case.

Theorem 13
Assume lim infn→∞ var(Sn)/n > 0. Then the following are equivalent
(a) var(Sn)/n→ K <∞;
(b) σ2 <∞, and ν(Ux)/x→ (K− σ2)/π,
where

Ux = {z = (1− r)eiu ∈ D : 0 6 r 6 |u| 6 x}.

Ux appears in Cuny & Lin (2009).
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Functionals of MCs Normal MCs

Sketch of Proof I

Proof begins with martingale decomposition

Sn = E0(Sn) +
n∑
i=1

Ei(Sn − Si−1) − Ei−1(Sn − Si−1).

and its spectral representation

var(Sn) =
∫
D

|1− zn|2
|1− z|2 ν(dz) +

n∑
j=1

∫
D0

|1− zj|2(1− |z|2)

|1− z|2 ν(dz) +O(1).

The second term easily results in the σ2 <∞ condition.
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Functionals of MCs Normal MCs

Sketch of Proof II

First term is essentially E
[
E0(Sn)

2
]
.

The proof consists in several approximation steps that essentially show that

1
n
E
[
E0(Sn)

2
]
=

∫π
0

sin2(nt/2)
sin2(t/2)

G(dt) + o(1),

where the distribution function G is given by G(x) := ν(Ux), with

Ux = {z = (1− r)eiu ∈ D : 0 6 r 6 |u| 6 x}.

Essentially we sweep the measure ν out towards the boundary of D.
Then we can apply Theorem 2 to the measure F̃(x) = ν(Ux) to complete
the result.
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Functionals of MCs Normal MCs

In fact by looking at the proof it can be easily seen that in the super linear
case we can say more.

Corollary 14
Assume σ2 <∞ and α > 1. Then with C(α) as defined in Theorem 2.

var(Sn) ∼ nαl(n), as n→∞, iff ν(Ux) ∼ C(α)x
2−αl(1/x)as x→ 0+.
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Continuous Time

Continuous time

Stationary Markov process {ξt}t>0, with values in (S,A);
for g ∈ L2

0(π) let Ttg(x) := E[g(ξt)|ξ0 = x].
Tt = eLt, where L is assumed normal, so that spectrum is supported on
{z ∈ C : <(z) 6 0}, such that

cov(f(ξt), f(ξ0)) =

∫
<(z)60

eztν(dz).

Finally define

ST (g) :=

∫T
s=0

g(ξs)ds.

Again there is also a shift spectral measure F on (−∞,∞) such that

cov(f(ξ0), f(ξt)) =
∫∞
−∞ eiutF(du).
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Link between spectral measures

Write (Bzt)t>0 for a standard planar Brownian motion in C, started at the
point z ∈ H− := {z ∈ C : <(z) 6 0}.
Let Z ∼ ν be a random point in H− and

τZH− := inf{t>0 : BZt /∈ H−}.

Then for A ∈ B(R) the shift spectral measure is can be expressed as

F(A) = P(BZ(τZH) ∈ A).

Theorem 15
For α ∈ (0, 2) and L slowly varying the following are equivalent:
(a) var(ST ) ∼ TαL(T),
(b) P{BZ

τZH−
∈ (−ix, ix)} ∼ C(α)x2−αL(1/x)/ν(H−).
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Necessary and sufficient conditions

Theorem 16

Let
σ2 := −2

∫
H−

<(1/z)ν(dz) <∞.

The following are equivalent:
(i) var(ST (g))/T → L = σ2 + K, where K > 0;
(ii) σ2 <∞ and ν(Ux)/x→ K/π as x→ 0+.

In addition, if σ2 <∞, lim infT→∞ var(ST )/T =∞, and α > 1 then

var(ST ) ∼ Tαh(T) iff ν(Ux) ∼ C(α)x
2−αh(1/x).
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Thank you for your attention!
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