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Mass-Stationarity of ξ
Let ξ be a random measure on R with ξ(−∞,0] = ξ[0,∞) =∞.
Write θt for the shift map: θtξ = ξ(t + ·), t ∈ R.

Recall that ξ is stationary if θtξ
D
= ξ, t ∈ R.

Definition for a simple point process ξ .

Put T0 = 0 and for integers n > 0

Tn = sup{t > 0 : ξ[0, t)=n}, T−n = sup{t < 0 : ξ[t ,0)=n}.

Call ξ mass-stationary if
θTnξ

D
= ξ, n ∈ Z.
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Mass-Stationarity of ξ
Let ξ be a random measure on R with ξ(−∞,0] = ξ[0,∞) =∞.
Write θt for the shift map: θtξ = ξ(t + ·), t ∈ R.

(Recall that ξ is stationary if θtξ
D
= ξ, t ∈ R.)

Definition for a simple point process ξ .

Put T0 = 0 and for integers n > 0

Tn = sup{t > 0 : ξ[0, t)=n}, T−n = sup{t < 0 : ξ[t ,0)=n}.

Call ξ mass-stationary if
θTnξ

D
= ξ, n ∈ Z.

Definition for a diffuse random measure ξ : ξ({t}) = 0, t ∈ R.

Put T0 = 0 and for real r > 0

Tr = sup{t > 0 : ξ[0, t)= r}, T−r = sup{t < 0 : ξ[t ,0)= r}.

Call ξ mass-stationary if
θTr ξ

D
= ξ, r ∈ R.
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Mass-Stationarity of (X , ξ)

Let ξ be a random measure on R with ξ(−∞,0] = ξ[0,∞) =∞.
Write θt for the shift map: θtξ = ξ(t + ·), t ∈ R.
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Mass-Stationarity of (X , ξ)
Let ξ be a random measure on R with ξ(−∞,0] = ξ[0,∞) =∞.
Write θt for the shift map: θtξ = ξ(t + ·), t ∈ R.

Further, let X be a random element in a space on which R acts.

For instance X could be a shift-measurable stochastic process
X = (Xs)s∈R and θtX = (Xt+s)s∈R. Write θt (X , ξ) = (θtX , θtξ).
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Mass-Stationarity of (X , ξ)
Let ξ be a random measure on R with ξ(−∞,0] = ξ[0,∞) =∞.
Write θt for the shift map: θtξ = ξ(t + ·), t ∈ R.

Further, let X be a random element in a space on which R acts.

For instance X could be a shift-measurable stochastic process
X = (Xs)s∈R and θtX = (Xt+s)s∈R. Write θt (X , ξ) = (θtX , θtξ).

Definition for a simple point process ξ .

Call (X , ξ) mass-stationary if

θTn (X , ξ)
D
= (X , ξ), n ∈ Z.

Definition for a diffuse random measure ξ : ξ({t}) = 0, t ∈ R.

Call (X , ξ) mass-stationary if

θTr (X , ξ)
D
= (X , ξ), r ∈ R.
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Brownian motion is mass-stationary
Let B = (Bs)s∈R be a two-sided standard Brownian motion.
In particular, B0 = 0 a.s.

The (diffuse) local time measure `x at x ∈ R can be defined by

`x (A) := lim
h→0

1
h

∫
A

1{x≤Bs≤x+h}ds, A ∈ B.

Put T0 = 0 and for real r > 0

Tr = sup{t > 0 : `0[0, t)= r}, T−r = sup{t < 0 : `0[t ,0)= r}.

Theorem

The pair (B, `0) is mass-stationary: θTr B
D
= B for all r ∈ R.
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Brownian motion is mass-stationary
Let B = (Bs)s∈R be a two-sided standard Brownian motion.
In particular, B0 = 0 a.s.

The (diffuse) local time measure `x at x ∈ R can be defined by

`x (A) := lim
h→0

1
h

∫
A

1{x≤Bs≤x+h}ds, A ∈ B.

Put T0 = 0 and for real r > 0

Tr = sup{t > 0 : `0[0, t)= r}, T−r = sup{t < 0 : `0[t ,0)= r}.

Theorem

The pair (B, `0) is mass-stationary: θTr B
D
= B for all r ∈ R.

When traveling in time according to the clock of local time at 0
we always see globally a two-sided Brownian motion.
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Why does Tr work ? — Some Palm theory
A pair (X , ξ) defined on (Ω,F ,P) is called a Palm version
of a stationary (X̂ , ξ̂) defined on some (Ω̂, F̂ , P̂), if for each
measurable f ≥ 0 and each A ∈ B(R) with 0 < λ(A) <∞,

E[f (X , ξ)] = Ê
[ ∫

A
f
(
θt (X̂ , ξ̂)

)
ξ̂(dt)

]/
λ(A).

Here (X , ξ) and (X̂ , ξ̂) are allowed to have distributions that
are only σ-finite and not necessarily probability measures.
The measure P is finite if and only if ξ̂ has finite intensity.
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Why does Tr work ? — Some Palm theory
A pair (X , ξ) defined on (Ω,F ,P) is called a Palm version
of a stationary (X̂ , ξ̂) defined on some (Ω̂, F̂ , P̂), if for each
measurable f ≥ 0 and each A ∈ B(R) with 0 < λ(A) <∞,

E[f (X , ξ)] = Ê
[ ∫

A
f
(
θt (X̂ , ξ̂)

)
ξ̂(dt)

]/
λ(A).

Recall the definition of mass-stationarity for diffuse ξ :

Let πr be the map such that Tr = πr (ξ), i.e. π0 = 0 and for r > 0

πr (ξ) = sup{t > 0 : ξ[0, t)= r}, π−r (ξ) = sup{t < 0 : ξ[t ,0)= r}.

Then (X , ξ) is mass-stationary if θTr (X , ξ)
D
= (X , ξ), r ∈ R.
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Why does Tr work ? — Some Palm theory
A pair (X , ξ) defined on (Ω,F ,P) is called a Palm version
of a stationary (X̂ , ξ̂) defined on some (Ω̂, F̂ , P̂), if for each
measurable f ≥ 0 and each A ∈ B(R) with 0 < λ(A) <∞,

E[f (X , ξ)] = Ê
[ ∫

A
f
(
θt (X̂ , ξ̂)

)
ξ̂(dt)

]/
λ(A).

Recall the definition of mass-stationarity for diffuse ξ :

Let πr be the map such that Tr = πr (ξ), i.e. π0 = 0 and for r > 0

πr (ξ) = sup{t > 0 : ξ[0, t)= r}, π−r (ξ) = sup{t < 0 : ξ[t ,0)= r}.

Then (X , ξ) is mass-stationary if θTr (X , ξ)
D
= (X , ξ), r ∈ R.

Theorem: Let ξ be diffuse. Then

(X , ξ) mass-stationary⇐⇒ (X , ξ) Palm version of stationarypair
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Why does Tr work ? — Some Palm theory
A pair (X , ξ) defined on (Ω,F ,P) is called a Palm version
of a stationary (X̂ , ξ̂) defined on some (Ω̂, F̂ , P̂), if for each
measurable f ≥ 0 and each A ∈ B(R) with 0 < λ(A) <∞,

E[f (X , ξ)] = Ê
[ ∫

A
f
(
θt (X̂ , ξ̂)

)
ξ̂(dt)

]/
λ(A).

Recall the definition of mass-stationarity for diffuse ξ :

Let πr be the map such that Tr = πr (ξ), i.e. π0 = 0 and for r > 0

πr (ξ) = sup{t > 0 : ξ[0, t)= r}, π−r (ξ) = sup{t < 0 : ξ[t ,0)= r}.

Then (X , ξ) is mass-stationary if θTr (X , ξ)
D
= (X , ξ), r ∈ R.

Theorem: Let ξ be diffuse. Then

(X , ξ) mass-stationary⇐⇒ (X , ξ) Palm version of stationarypair

The key to the proof is that πr is preserving in the sense that
ξ(τπr ∈ ·) = ξ where τπr (s) = s + πr (θsξ) for s ∈ R.
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Why does Tr work ? — Some Palm theory
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Why does Tr work ? — Some Palm theory
A pair (X , ξ) defined on (Ω,F ,P) is called a Palm version
of a stationary (X̂ , ξ̂) defined on some (Ω̂, F̂ , P̂), if for each
measurable f ≥ 0 and each A ∈ B(R) with 0 < λ(A) <∞,

E[f (X , ξ)] = Ê
[ ∫

A
f
(
θt (X̂ , ξ̂)

)
ξ̂(dt)

]/
λ(A).

Here (X , ξ) and (X̂ , ξ̂) are allowed to have distributions that
are only σ-finite and not necessarily probability measures.
The measure P is finite if and only if ξ̂ has finite intensity.

Theorem (from previous slide): Let ξ be diffuse. Then

(X , ξ) mass-stationary⇐⇒ (X , ξ) Palm version of stationarypair
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Why does Tr work ? — Some Palm theory
A pair (X , ξ) defined on (Ω,F ,P) is called a Palm version
of a stationary (X̂ , ξ̂) defined on some (Ω̂, F̂ , P̂), if for each
measurable f ≥ 0 and each A ∈ B(R) with 0 < λ(A) <∞,

E[f (X , ξ)] = Ê
[ ∫

A
f
(
θt (X̂ , ξ̂)

)
ξ̂(dt)

]/
λ(A).

Here (X , ξ) and (X̂ , ξ̂) are allowed to have distributions that
are only σ-finite and not necessarily probability measures.
The measure P is finite if and only if ξ̂ has finite intensity.

Theorem (from previous slide): Let ξ be diffuse. Then

(X , ξ) mass-stationary⇐⇒ (X , ξ) Palm version of stationarypair

Theorem: Let B be two-sided standard Browninan motion.

The pair (B, `0) is Palm version of the stationary (B̂, ˆ̀0) where
B̂ has the distribution

∫
R P(x + B ∈ ·)dx (which is σ-finite).
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Shift-coupling B and x + B ?

We just saw that θTr B
D
= B for r ∈ R.
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Shift-coupling B and x + B ?

We just saw that θTr B
D
= B for r ∈ R.

Question (unbiased two-sided Skorohod imbedding of x ?)

Is there a T such that θT B D
= x + B for x 6= 0 ?

That is: a T such that θT B − x is standard Brownian.
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Shift-coupling B and x + B ?
We just saw that θTr B

D
= B for r ∈ R.

Question (unbiased two-sided Skorohod imbedding of x ?)

Is there a T such that θT B D
= x + B for x 6= 0 ?

That is: a T such that θT B − x is standard Brownian.

Example (of a T that does NOT work)

Let T = Tx be the hitting time of an x 6= 0

Tx := inf{t ≥ 0 : Bt = x}.

Then (BT+s)s≥0 − x is one-sided standard Brownian
and (BT+s)s≥0 − x is independent of (BT−s)s≥0 − x
but (BT−s)s≥0 − x is NOT one-sided standard Brownian
(note that for all s > 0 small enough, BT−s − x 6= 0).
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Unbiased two-sided Skorohod imbedding of ν ?

Say that x + B is two-sided Brownian with value x at 0.

More generally, say that a process B′ = (B′s)s∈R
is two-sided Brownian with distribution ν at 0
if B′0 has distribution ν, and B′0 is independent of B′ − B′0,
and B′ − B′0 is a two-sided standard Brownian motion.
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Unbiased two-sided Skorohod imbedding of ν ?
Say that x + B is two-sided Brownian with value x at 0.

More generally, say that a process B′ = (B′s)s∈R
is two-sided Brownian with distribution ν at 0
if B′0 has distribution ν, and B′0 is independent of B′ − B′0,
and B′ − B′0 is a two-sided standard Brownian motion.

Question (unbiased two-sided Skorohod imbedding of ν ?)

Let ν 6= δ0 be a probability measure on R. Is there a T
such that θT B is two-sided Brownian with distribution ν at 0 ?
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Unbiased two-sided Skorohod imbedding of ν ?
Say that x + B is two-sided Brownian with value x at 0.

More generally, say that a process B′ = (B′s)s∈R
is two-sided Brownian with distribution ν at 0
if B′0 has distribution ν, and B′0 is independent of B′ − B′0,
and B′ − B′0 is a two-sided standard Brownian motion.

Question (unbiased two-sided Skorohod imbedding of ν ?)

Let ν 6= δ0 be a probability measure on R. Is there a T
such that θT B is two-sided Brownian with distribution ν at 0 ?

Example (of another T that does NOT work)

Consider T ≡ t where t 6= 0. Let ν be the distribution of Bt .
Put B′ = θtB. Then B′0 = Bt has distribution ν and
B′ − B′0 = θtB − Bt is a two-sided standard Brownian motion.
But B′0 is NOT independent of B′ − B′0 since B′−t − B′0 = −B′0.

Hermann Thorisson Probability & Statistics seminar Bristol 6 May 2016



A time T ν that works for unbiased imbedding

For x ∈ R define T x = inf{t > 0 : `0([0, t ]) = `x ([0, t ])}.

Theorem

If x 6= 0 then θT x B is two-sided Brownian with value x at 0:

θT x B D
= x + B.
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Times T x and T ν that work for unbiased imbedding

For x ∈ R define T x = inf{t > 0 : `0([0, t ]) = `x ([0, t ])}.

Theorem

If x 6= 0 then θT x B is two-sided Brownian with value x at 0:

θT x B D
= x + B.

For a probability measure ν on R define the local time at ν by

`ν =
∫
`x ν(dx)

and set
T ν := inf{t > 0 : `0([0, t ]) = `ν([0, t ])}.

Theorem (unbiased two-sided Skorohod imbedding)

If ν({0}) = 0
then θTνB is two-sided Brownian with distribution ν at 0.
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Why does T ν work ? — Shift-coupling Palm versions
Let X̂ be stationary ergodic and the measures ξ̂ and η̂ invariant
i.e. ∃ measurable maps f ,g : θt ξ̂ = f (θt X̂ ), θt η̂ = g(θt X̂ ), t ∈ R.
Let ξ̂ and η̂ have the same finite intensity.

The above conditions hold for (X̂ , ξ̂, η̂) = (B̂, ˆ̀0, ˆ̀ν).
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Let X̂ be stationary ergodic and the measures ξ̂ and η̂ invariant
i.e. ∃ measurable maps f ,g : θt ξ̂ = f (θt X̂ ), θt η̂ = g(θt X̂ ), t ∈ R.
Let ξ̂ and η̂ have the same finite intensity.

The above conditions hold for (X̂ , ξ̂, η̂) = (B̂, ˆ̀0, ˆ̀ν).

Say that a measurable map π balances ξ and η if ξ(τπ ∈ ·) = η
where τπ is the allocation rule τπ(s) = s + π(θsX ), s ∈ R.
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Why does T ν work ? — Shift-coupling Palm versions
Let X̂ be stationary ergodic and the measures ξ̂ and η̂ invariant
i.e. ∃ measurable maps f ,g : θt ξ̂ = f (θt X̂ ), θt η̂ = g(θt X̂ ), t ∈ R.
Let ξ̂ and η̂ have the same finite intensity.

The above conditions hold for (X̂ , ξ̂, η̂) = (B̂, ˆ̀0, ˆ̀ν).

Say that a measurable map π balances ξ and η if ξ(τπ ∈ ·) = η
where τπ is the allocation rule τπ(s) = s + π(θsX ), s ∈ R.

Theorem (X̂ stationary ergodic, ξ̂ and η̂ invariant, intensity<∞)

If (X , ξ) is Palm version of (X̂ , ξ̂) and (X ′, η′) of (X̂ , η̂) then
θπ(X)X

D
= X ′ ⇐⇒ π balances ξ and η

Further, if ξ is diffuse and ξ and η are mutually singular then
π(X ) := inf{t > 0 : ξ([0, t ]) = η([0, t ])} balances ξ and η
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Why does T ν work ? — Shift-coupling Palm versions
Let X̂ be stationary ergodic and the measures ξ̂ and η̂ invariant
i.e. ∃ measurable maps f ,g : θt ξ̂ = f (θt X̂ ), θt η̂ = g(θt X̂ ), t ∈ R.
Let ξ̂ and η̂ have the same finite intensity.

The above conditions hold for (X̂ , ξ̂, η̂) = (B̂, ˆ̀0, ˆ̀ν).

Say that a measurable map π balances ξ and η if ξ(τπ ∈ ·) = η
where τπ is the allocation rule τπ(s) = s + π(θsX ), s ∈ R.

Theorem (X̂ stationary ergodic, ξ̂ and η̂ invariant, intensity<∞)

If (X , ξ) is Palm version of (X̂ , ξ̂) and (X ′, η′) of (X̂ , η̂) then
θπ(X)X

D
= X ′ ⇐⇒ π balances ξ and η

Further, if ξ is diffuse and ξ and η are mutually singular then
π(X ) := inf{t > 0 : ξ([0, t ]) = η([0, t ])} balances ξ and η

Recall that T ν = inf{t > 0 : `0([0, t ])= `ν([0, t ])}. Note also that
if ν({0})= 0 then the diffuse ˆ̀0 and `ν are mutually singular.
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Why does T ν work ? — Shift-coupling Palm versions

Say that a measurable map π balances ξ and η if ξ(τπ ∈ ·) = η
where τπ is the allocation rule τπ(s) = s + π(θsX ), s ∈ R.

Theorem (X̂ stationary ergodic, ξ̂ and η̂ invariant, intensity<∞)

If (X , ξ) is Palm version of (X̂ , ξ̂) and (X ′, η′) of (X̂ , η̂) then
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Why does T ν work ? — Shift-coupling Palm versions

Say that a measurable map π balances ξ and η if ξ(τπ ∈ ·) = η
where τπ is the allocation rule τπ(s) = s + π(θsX ), s ∈ R.

Theorem (X̂ stationary ergodic, ξ̂ and η̂ invariant, intensity<∞)

If (X , ξ) is Palm version of (X̂ , ξ̂) and (X ′, η′) of (X̂ , η̂) then
θπ(X)X

D
= X ′ ⇐⇒ π balances ξ and η

Further, if ξ is diffuse and ξ and η are mutually singular then
π(X ) := inf{t > 0 : ξ([0, t ]) = η([0, t ])} balances ξ and η

Recall that T ν = inf{t > 0 : `0([0, t ])= `ν([0, t ])}. Note also that
if ν({0})= 0 then the diffuse ˆ̀0 and `ν are mutually singular.

In general, if B′ is two-sided Brownian with distribution ν at 0
then (B′, ˆ̀′ν) is Palm version of the stationary (B̂, ˆ̀ν).

Take (X̂ , ξ̂, η̂) = (B̂, ˆ̀0, ˆ̀ν) and ν({0}) = 0 to obtain θTνB D
= B′.
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The Brownian Bridge
The Slepian process (Bs+1 − Bs)s∈R is stationary ergodic.

This process has a local-time-at-zero measure, denote it η .
Set Xs = (Bs+u − Bs)0≤u≤1 and X = (Xs)s∈R.
With (X ′, η′) Palm version of (X , η), X ′0 is a Brownian bridge.

Let ξ be Lebesgue measure, ξ = λ.
Since X is stationary, (X , ξ) is Palm version of itself.

The measures ξ and η are diffuse and mutually singular.
——————————————————————————
So the conditions of the shift-coupling are satisfied. Set

T = inf{t > 0 : η([0, t ]) = t}
to obtain θT X D

= X ′.
————————————————————————————
Thus XT

D
= X ′0, that is, (BT+u −BT )0≤u≤1 is a Brownian bridge.

————————————————————————————
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Mass-Stationarity — General random measures on R
Setting

Let ξ be a random measure on R.
Let X be a random element in a space on which R acts.
Write θt for the shift map placing a new origin at t ∈ R.

Definition (extended to cover all random measures on R)

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ R of positive λ-measure

θVC (X , ξ,UC)
D
= (X , ξ,UC)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).

For ξ diffuse, this is equivalent to θTr (X , ξ)
D
= (X , ξ), r ∈ R.

And for ξ simple point process, to θTn (X , ξ)
D
= (X , ξ), n ∈ Z.
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Mass-Stationarity — General random measures on R
Setting

Let ξ be a random measure on R.
Let X be a random element in a space on which R acts.
Write θt for the shift map placing a new origin at t ∈ R.

Definition (extended to cover all random measures on R)

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ R of positive λ-measure

θVC (X , ξ,UC)
D
= (X , ξ,UC)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).

Theorem: Let ξ be a general random measure on R. Then

(X , ξ) mass-stationary⇐⇒ (X , ξ) Palm version of stationarypair
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Mass-Stationarity — General random measures on R
Setting

Let ξ be a random measure on R.
Let X be a random element in a space on which R acts.
Write θt for the shift map placing a new origin at t ∈ R.

Definition (equivalent to (X , ξ) being Palm of a stationary pair)

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ R of positive λ-measure

θVC (X , ξ,UC)
D
= (X , ξ,UC)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).
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Mass-Stationarity — General random measures on R
Setting

Let ξ be a random measure on R.
Let X be a random element in a space on which R acts.
Write θt for the shift map placing a new origin at t ∈ R.

Definition (equivalent to (X , ξ) being Palm of a stationary pair)

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ R of positive λ-measure

θVC (X , ξ,UC)
D
= (X , ξ,UC)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).
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Mass-Stationarity — General random measures on G
Setting

Let G be a locally compact second countable topological group
with left-invariant Haar measure λ. For instance, G = Rd .
Let ξ be a random measure on G.
Let X be a random element in a space on which G acts.
Write θt for the shift map placing a new origin at t ∈ G.

Definition (equivalent to (X , ξ) being Palm of a stationary pair)

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ G of positive λ-measure

θVC (X , ξ,UC
−1)

D
= (X , ξ,UC

−1)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).
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Mass-Stationarity when G is compact

Definition (from previous slide) for general G

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ G of positive λ-measure

θVC (X , ξ,UC
−1)

D
= (X , ξ,UC

−1)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).

Note that when G is compact then P(VG ∈ · | X , ξ) = ξ( · | G).
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Mass-Stationarity when G is compact
Definition (from previous slide) for general G :

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ G of positive λ-measure

θVC (X , ξ,UC
−1)

D
= (X , ξ,UC

−1)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).

Note that when G is compact then P(VG ∈ · | X , ξ) = ξ( · | G).

Theorem for compact G :

Let G be compact and V be a random element in G such that

P(V ∈ · | X , ξ) = ξ( · | G).
Then

(X , ξ) mass-stationary ⇐⇒ θV (X , ξ)
D
= (X , ξ)
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Shift-coupling Palm versions when G is general
Definition (from previous slides) for general G :

Call (X , ξ) mass-stationary if for all bounded λ-continuity sets
C ⊆ G of positive λ-measure

θVC (X , ξ,UC
−1)

D
= (X , ξ,UC

−1)

where UC is such that P(UC ∈ · | X , ξ) = λ( · | C)

and VC is such that P(VC ∈ · | X , ξ,UC) = ξ( · | θUC C).

Theorem (X̂ stationary ergodic, ξ̂ and η̂ invariant, intensity<∞)

If (X , ξ) and (X ′, η′) are Palm versions of (X̂ , ξ̂) and (X̂ , η̂) then
θπ(X)X

D
= X ′ ⇐⇒ π balances ξ and η

Recall: if G = R and ξ, η diffuse and mutually singular then
π(X ) := inf{t > 0 : ξ([0, t ]) = η([0, t ])} balances ξ and η

This type of result is now being extended to G = Rd .
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