LONG RANGE DEPENDENCE IN ANALYSIS AND
NUMBER THEORY

Continued fractions =z € (0, 1) irrational
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a2—|—a3+...

ay(r) = [1/z],  anpi(r) = ar(T"z), Tx = {1/}
Gauss (1821) Letter to Laplace

1 [t
c(0.1): Ty <t ) d

and asked for the speed of convergence
Kusmin (1928) 7, = O(e~¢V™)

In today’s language: The sequence (ay,) is stationary and ¢-mixing
with respect to the Gaussian measure with nearly exponential speed
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vous en occuper quelques momens: dans ce cas je suis sur que vous trouverés
unc solution plus complete. Le voici. Soit M une quantité inconnue entre
les limites 0 et 1, pour laquelle toujtes les valeurs sout ou egalement pro-
bables ou plus ou moins selon une loi donnée: qu'on la suppose convertie
en une fraction continue
1
=
e
Quelle est la probabilité, qu'en s’airetant dans le developpement & un
terme fini, a™, la fraction suivauste
i
aten g L
o= L sto.

soit entre les limites 0 et z? Je la designe par P(n, z) et j'ai en supposant
pour M toutes les valeurs egalement probables
P, 2) = a:
P(1,a) est une fonction transcendente dependante de la fonction
1,1 1
t+5+5+-+3
que EviLEr nome inexplicable et sur la quelle je viens de dommer plusieurs
herches dans un ire p 4 notre societé des scliences] qui sera
bientot imprimé[*)]. Mais pour les cas ou n est plus grand, la valeur exacte

de P(n, z) semble intraitable. Cependant j'ai trouvé par des raisonnemens
tres simples que powr » infini on a

, log 1+
Pna)= KI.TZ)'

Mais les efforts que j'ai fait lors de mes recherches pour assigner
Plo, o) — 250 Ee
pour une valeur tres grande de =, mais pas infinie, ont été infructueux.

(%) Disquisitionss cirea seviem etc, dor Gesellsshatt der Wissonschaften vorgelegt am 30, Jazuar 1512,
Werke L1, 8. 123; wicke insbedondere 6. 154 &)
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Khinchin (1923): Small denominator problem For almost all «

<@ .0. ift i@:oo
k=1

C]2

Erdés-Kac (1939)  w(n) = # of prime divisors of n

i# nSN:w(n)—loglogNSx > 1 22 g
N Vioglog N

Salem-Zygmund (1947)  npq/np > q>1
al d
N~12 Zsin 2 — N(0,1/2)
k=1

Rosenblatt (1956)  Start of "purely probabilistic” theory
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Mandelbrot, Van Ness (1968) Study of the R/S statistic of
water level of river Nile (H = 0.77 instead of H = 0.5)
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Figure 1.1. Annual minima of the water level in the Nile river for the years 622 to 1281, mea-
sured at the Roda gauge near Cairo.

Data show long range dependence/long memory



(X,) stationary Gaussian, covariance 7, ~ n~%, Ef(X)? < oo
Limit distribution of ﬁ Zé\le f(X3)
a > 1 Gaussian

« < 1 nongaussian, depending on the first nonzero coeflicient in the
Hermite-expansion of f

(a) Sensitive dependence on f
(b) Combinatorial formalism for moments and cumulants (diagram

formula)
(¢) Unusual behavior of empirical process (semi-deterministic instead

of Gaussian)



Figure 2. (2) y € [, ® 7 & Ty, ©y eIy,

With (c.3) in mind, we call a diagram y = (V4, ..., V;) Gaussian if |Vi| =--- = [V,| = 2.
Obviously, this implies 2r = |W|, i.e., the total number of elements of W must be even. Write

& F{‘V[ for the set of all connected diagrams and all Gaussian diagrams, respectively.

Proposition 2.1 (The Diagram Formula for usual products).

k

EXV=E[[x" = ) x@&"M.x@x™), 23)
j=l1 y=(V)-el'w

x XWX = Y @My x(x). (2.4)

y=(V)r€FfV



Probability theory of {na}

Kronecker (1876) {na} is dense if « is irrational
Sierpinski, Bohl, Weyl (1910)  Uniformly distributed mod 1

(xn) C (0,1) is UD if
%#{ng: xp € (a,b)} — b—a

N(a,b
Dn(z1,...,zy) = sup <N )
0<a<b<l

v

# of terms of z, ...,z in (a,b)

—(b—a)| = Sup [Fy(z) — |

7



Ostrowski, Khinchin, Hardy & Littlewood (1921-1924) The asymp-
totic behavior of Dy ({na}) is closely connected to the continued
fraction digits of «

Khinchin (1924)

Dy({ka}) =0 ((log ]]:[[)Hé‘) a.e. for e > 0

Kesten (1964)
2 log N log log N
Div({ka}) ~ o5
-

Chung & Smirnov (1948, 1944) For i.i.d. sequences (&)
loglog N
Dx({e)) =0 ( o )

1N measure




Super-uniformity of the billiard path

oL

Beck (2010) A C [0,1]? fix, speed =1

For (1 — e)-almost all starting positions



Strong law of large numbers
fle+1) = f(z), flz)dz =0

Khinchin conjecture (1923)
, 1
lim — Z f(kx)=0 ae

Disproved by Marstrand (1970) Bounded counterexample exists
Koksma (1953) Let f(x) = > ez are>™RT  Fourier series

O
Z lag|*w(k) < oo suffices with  w(k) = Z 1/d=o_1(k)
k=1 m

Bourgain (1989) New counterexample via metric entropy criterion
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Theorem. (B. & Weber 2014) Koksma’s condition

O

> laglw(k) < oo,  w(k)=) 1/d

k=1 d|k

is optimal for the strong law.

Note: w(k) = O(loglog k), lm p\ s ng % Z]kvzl wk) =5

2

Three series criterion
The series > 72 ¢ f(kx) converges a.e. if Y72 7 < 00

Valid if f(z) = sin 27z Carleson (1966)
Fails if f(x) = sgnsin27wx  Nikishin (1970)

No precise criteria exist even for steptfunctions f
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Calculus for moments: GCD calculus

For f € BV
2

1 [ N N (n o )Q
/ Zf(nkx) dx < C Z hy L GCD sum
U \k=1 go=1 R
and for f(x) = x — [x] — 1/2 this is sharp (Franel, Landau 1924,
Koksma 1951)

For higher moments the calculations become intractable, but sub-
stantial information on the tails can be drawn from estimates for the
SUmMS




History
N

Iv(a) = - Y et

«
N =) ()

)2&

Erdds (1940) In(1) < Clog N forall (n;)
Gl (1949)
In(1) < Clloglog N)? for all (ny) and this is precise

Harman and Dyer (1986)

exp(clog N/loglog N) a=1/2
WO e ((log MA-1/8-220) 123 a <1

\
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Aistleitner, B. & Seip (2013)

exp (ca(logNlog log N)l/Q) 0<a<1/2

]N(Oz) <K ' B
exp (ca(log N)'~%(loglog N)™?) 1/2 < a <1

Bondarenko & Seip (2014)
In(1/2) < exp (c(logNlog3 N/ log log N)l/Z)

Montgomery (1977)

. (log T)'
sup |((a+1t)| > exp | c
ogth’ | ! ( " (loglog T)°

Hilberdink (2009), Aistleitner (2014)  Lower bound via resonance
method
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Theorem 1. (Aistleitner, B. & Seip 2013) For f € BV and any (n;.)

Z ci(log logk)! < o0
suffices for a.e. convergence of » ¢ f(ngx) for v > 4 but not for
v < 2.

Lewko and Radziwill (2014)  Critical exponent is v = 2.
Theorem 2. (B & Weber 2014) Let f(z) = 3 ape®™ ™ e L2,

0.0
g(r) =Y laml®s  h(n) =) dg(d).
k=1 dn
Then ) ¢ f(kx) converges a.e. provided

O
Z cih(l{)(log k)? < oo,
k=1

and this is optimal except the logarithmic factor.
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For example, if |ag| = O(k™?), s > 1/2, then the condition reduces
to

o0

Z 0201_25<k)(10g k)2 < 00, o1_9s(k) = Z JL—2s
v ik

Behaviour of Z]kvzl f(npz) for ”concrete” (nj.)

Erdss (1962) N—L/2 Z]kvzl sinnpx N N(0,1/2) provided ny
arows faster than eVE and this is sharp

Below this growth speed, the validity of CLT depends on the number
theoretic properties of (n;.) and the question is usually intractable.

Conjecture: nj = " satisfies CLT for any o > 0.
Kaufman (1980) Valid for ng = ek for almost all ¢
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A classical ”concrete”system: {k’a}

Diophantine approximation:

N N
> =alp,g) / ™0t + O(vg)
k=1 0
provided
p & 1
- — 12 < — 0O0<qg<4N

Hardy and Littlewood (1914, 1923), Walfisz (1930), Fiedler, Jurkat
& Korner (1977), Jurkat & Van Horne (1981, 1982, 1983), Marklof
(1999, 2003)

Marklof (2003) Limit distribution of N —1/2 Z]kvzl f(k*x) for a large
class of f’s
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Lacunary sequences

Behavior of {nra} for exponentially growing ny.

N—00

N
o k) —
lim \/Nkz:l f2¥x)=0 ae

Kac (1946) Under smoothness conditions

N—00

N
. 1 k 9 2
lim —— 2"r) — N (0,0 for some o > ()
~ g—lﬁf( ) —>q N(0,07)

Erdés-Fortet (1949) Fails for f((2F — 1)z) |
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Theorem (Aistleitner & B. 2010) The sequence f(ngx) satisfies the
CLT for all "nice” f iff the number of solutions of the equation

an;. + bn; = c, 1<k I<N
is o(N) for any fixed a, b # 0, uniformly in c.

Empirical process

Philipp (1975) If ng_1/ng > q > 1, then

N
0 <li D < .e.
im sup \/ oglog v N{nga}) <ooae

For 1.i.d. sequences

N 1
Nesoo \/10g e NPN{GD =5 as
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Open problems:

(a) Value of limsup?
(b) Is the limsup constant a.e.?

(¢) What is the limit distribution of v/ N Dy (ngz)?
Fukuyama (2008)  ny = a®

Y = V42/9 if a =2
1 — 2
Yig = \/(a + Lafa —2) if @ > 4 is an even integer,
2v/(a —1)3
V 1
Yig = 0 if @ > 3 is an odd integer
24/ a — 1

First values:  /42/9, 1/3/2, +/10/27, \/6/4, \/42/10
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Fukuyama, Aistleitner (2010)  There exists a lacunary (nj) with
nonconstant limsup

0.8

0.7

0.6 -

0.9 -

0.4 . .
0.0 0.5 1.0

Limsup function for ny = 28 — 1
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Aistleitner and Berkes (2013): Limit distribution of v/ ND y(a”z)
Gaussian process with "fractal” covariance




