
LONG RANGE DEPENDENCE IN ANALYSIS AND
NUMBER THEORY

Continued fractions x ∈ (0, 1) irrational

x =
1

a1 +
1

a2+
1

a3+...

expansion

a1(x) = [1/x], an+1(x) = a1(T
nx), Tx = {1/x}

Gauss (1821) Letter to Laplace

µ(x ∈ (0, 1) : Tnx ≤ t) −→ 1

log 2

∫ t

0

1

1 + u
du

and asked for the speed of convergence

Kusmin (1928) rn = O(e−c
√
n)

In today’s language: The sequence (an) is stationary and ψ-mixing
with respect to the Gaussian measure with nearly exponential speed
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Khinchin (1923): Small denominator problem For almost all α∣∣∣∣α− p

q

∣∣∣∣ < f (q)

q2
i.o. iff

∞∑
k=1

f (k)

k
= ∞

Erdős-Kac (1939) ω(n) = # of prime divisors of n

1

N
#

{
n ≤ N :

ω(n)− log logN√
log logN

≤ x

}
−→ 1√

2π

x∫
−∞

e−u
2/2 du

Salem-Zygmund (1947) nk+1/nk ≥ q > 1

N−1/2
N∑
k=1

sin 2πnkx
d−→ N(0, 1/2)

Rosenblatt (1956) Start of ”purely probabilistic” theory
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Mandelbrot, Van Ness (1968) Study of the R/S statistic of
water level of river Nile (H ≈ 0.77 instead of H = 0.5)

Data show long range dependence/long memory
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(Xn) stationary Gaussian, covariance rn ∼ n−α, Ef (X1)
2 <∞

Limit distribution of 1
AN

∑N
k=1 f (Xk)

α > 1 Gaussian

α < 1 nongaussian, depending on the first nonzero coefficient in the
Hermite-expansion of f

(a) Sensitive dependence on f
(b) Combinatorial formalism for moments and cumulants (diagram
formula)
(c) Unusual behavior of empirical process (semi-deterministic instead
of Gaussian)
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Probability theory of {nα}

Kronecker (1876) {nα} is dense if α is irrational
Sierpinski, Bohl, Weyl (1910) Uniformly distributed mod 1

(xn) ⊂ (0, 1) is UD if

1

N
#
{
k ≤ N : xk ∈ (a, b)

}
−→ b− a

a b( )
0 1

DN (x1, . . . , xN ) = sup
0≤a<b≤1

∣∣∣∣N(a, b)

N
− (b− a)

∣∣∣∣ = sup
x

|FN (x)− x|

↙
# of terms of x1, . . . , xN in (a, b)
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Ostrowski, Khinchin, Hardy & Littlewood (1921–1924) The asymp-
totic behavior of DN ({nα}) is closely connected to the continued
fraction digits of α

Khinchin (1924)

DN ({kα}) = O

(
(logN)1+ε

N

)
a.e. for ε > 0

Kesten (1964)

DN ({kα}) ∼ 2

π2
logN log logN

N
in measure

Chung & Smirnov (1948, 1944) For i.i.d. sequences (ξk)

DN ({ξk}) = O

(√
log logN

N

)
a.s.
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Super-uniformity of the billiard path

Beck (2010) A ⊂ [0, 1]2 fix, speed =1

For (1− ε)-almost all starting positions

|
∫ T

0
IA(X(t))dt− Tµ(A)| ≤ cε

√
log T , T ≥ T0
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Strong law of large numbers

f (x + 1) = f (x),

∫ 1

0
f (x)dx = 0

Khinchin conjecture (1923)

lim
N→∞

1

N

N∑
k=1

f (kx) = 0 a.e.

Disproved by Marstrand (1970) Bounded counterexample exists

Koksma (1953) Let f (x) =
∑
k∈Z ake

2πikx Fourier series
∞∑
k=1

|ak|2w(k) <∞ suffices with w(k) =
∑
d|k

1/d = σ−1(k)

Bourgain (1989) New counterexample via metric entropy criterion
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Theorem. (B. & Weber 2014) Koksma’s condition
∞∑
k=1

|ak|2w(k) <∞, w(k) =
∑
d|k

1/d

is optimal for the strong law.

Note: w(k) = O(log log k), limN→∞
1
N

∑N
k=1w(k) =

6
π2

Three series criterion

The series
∑∞
k=1 ckf (kx) converges a.e. if

∑∞
k=1 c

2
k <∞

Valid if f (x) = sin 2πx Carleson (1966)
Fails if f (x) = sgn sin 2πx Nikishin (1970)

No precise criteria exist even for stepfunctions f
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Calculus for moments: GCD calculus

For f ∈ BV∫ 1

0

 N∑
k=1

f (nkx)

2

dx ≤ C

N∑
k,ℓ=1

(nk, nℓ)
2

nknℓ
GCD sum

and for f (x) = x − [x] − 1/2 this is sharp (Franel, Landau 1924,
Koksma 1951)

For higher moments the calculations become intractable, but sub-
stantial information on the tails can be drawn from estimates for the
sums

IN (α) =
1

N

N∑
k,l=1

(nk, nℓ)
2α

(nknℓ)
α
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History

IN (α) =
1

N

N∑
k,l=1

(nk, nℓ)
2α

(nknℓ)
α

Erdős (1940) IN (1) ≤ C logN for all (nk)

Gál (1949)

IN (1) ≤ C(log logN)2 for all (nk) and this is precise

Harman and Dyer (1986)

IN (α) ≪

 exp(c logN/ log logN) α = 1/2

exp
(
(logN)(4−4α)/(3−2α)

)
1/2 < α < 1
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Aistleitner, B. & Seip (2013)

IN (α) ≪

exp
(
cα(logN log logN)1/2

)
0 < α < 1/2

exp
(
cα(logN)1−α(log logN)−α

)
1/2 < α < 1

Bondarenko & Seip (2014)

IN (1/2) ≪ exp
(
c(logN log3N/ log logN)1/2

)
Montgomery (1977)

sup
0≤t≤T

|ζ(α + it)| ≥ exp

(
cα

(log T )1−α

(log log T )α

)
Hilberdink (2009), Aistleitner (2014) Lower bound via resonance
method
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Theorem 1. (Aistleitner, B. & Seip 2013) For f ∈ BV and any (nk)∑
c2k(log log k)

γ <∞
suffices for a.e. convergence of

∑
ckf (nkx) for γ > 4 but not for

γ < 2.

Lewko and Radziwill (2014) Critical exponent is γ = 2.

Theorem 2. (B & Weber 2014) Let f (x) =
∑
ake

2πikx ∈ L2,

g(r) =
∞∑
k=1

|ark|2, h(n) =
∑
d|n

dg(d).

Then
∑
ckf (kx) converges a.e. provided

∞∑
k=1

c2kh(k)(log k)
2 <∞.

and this is optimal except the logarithmic factor.
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For example, if |ak| = O(k−s), s > 1/2, then the condition reduces
to

∞∑
k=1

c2kσ1−2s(k)(log k)
2 <∞, σ1−2s(k) =

∑
d|k

d1−2s

Behaviour of
∑N
k=1 f (nkx) for ”concrete” (nk)

Erdős (1962) N−1/2∑N
k=1 sinnkx

d−→ N(0, 1/2) provided nk

grows faster than ec
√
k and this is sharp

Below this growth speed, the validity of CLT depends on the number
theoretic properties of (nk) and the question is usually intractable.

Conjecture: nk = ek
α
satisfies CLT for any α > 0.

Kaufman (1980) Valid for nk = eck
α
for almost all c
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A classical ”concrete”system: {k2α}
Diophantine approximation:

N∑
k=1

eπik
2x = α(p, q)

∫ N

0
eπit

2ξ/qdt +O(
√
q)

provided

x =
p

q
+
ξ

q
, |ξ| ≤ 1

4N
, 0 < q ≤ 4N

Hardy and Littlewood (1914, 1923), Walfisz (1930), Fiedler, Jurkat
& Körner (1977), Jurkat & Van Horne (1981, 1982, 1983), Marklof
(1999, 2003)

Marklof (2003) Limit distribution of N−1/2∑N
k=1 f (k

2x) for a large
class of f ’s
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Lacunary sequences

Behavior of {nkα} for exponentially growing nk

lim
N→∞

1√
N

N∑
k=1

f (2kx) = 0 a.e.

Kac (1946) Under smoothness conditions

lim
N→∞

1√
N

N∑
k=1

f (2kx) −→d N(0, σ2) for some σ2 ≥ 0

Erdős-Fortet (1949) Fails for f ((2k − 1)x) !
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Theorem (Aistleitner & B. 2010) The sequence f (nkx) satisfies the
CLT for all ”nice” f iff the number of solutions of the equation

ank + bnl = c, 1 ≤ k, l ≤ N

is o(N) for any fixed a, b ̸= 0, uniformly in c.

Empirical process

Philipp (1975) If nk+1/nk ≥ q > 1, then

0 < lim sup
N→∞

√
N

log logN
DN ({nkx}) <∞ a.e.

For i.i.d. sequences

lim sup
N→∞

√
N

log logN
DN ({ξk}) =

1

2
a.s.
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Open problems:

(a) Value of limsup?
(b) Is the limsup constant a.e.?
(c) What is the limit distribution of

√
NDN (nkx)?

Fukuyama (2008) nk = ak

Σa =
√
42/9 if a = 2

Σa =

√
(a + 1)a(a− 2)

2
√
(a− 1)3

if a ≥ 4 is an even integer,

Σa =

√
a + 1

2
√
a− 1

if a ≥ 3 is an odd integer

First values:
√
42/9, 1/

√
2,
√

10/27,
√
6/4,

√
42/10
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Fukuyama, Aistleitner (2010) There exists a lacunary (nk) with
nonconstant limsup

Limsup function for nk = 2k − 1
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Aistleitner and Berkes (2013): Limit distribution of
√
NDN (akx)

Gaussian process with ”fractal” covariance
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