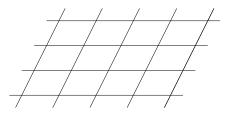
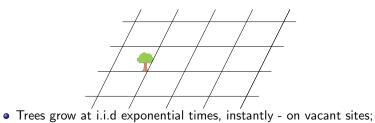
Planar lattices do not recover from forest fires

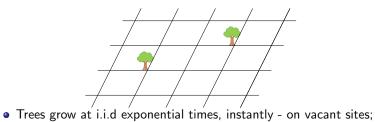
Ioan Manolescu Joint work with Demeter Kiss and Vladas Sidoravicius

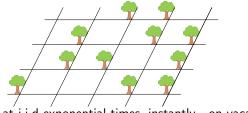
8 May 2015

• • • • • • • • • • • • •

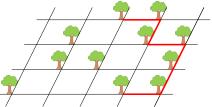








• Trees grow at i.i.d exponential times, instantly - on vacant sites;



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns

- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns

- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ...



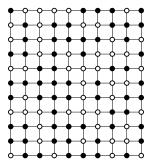
- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ...

- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

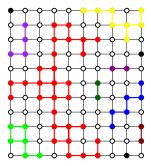
- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

Question: Does this make sense?

Percolation on \mathbb{Z}^2 with parameter $p \in [0, 1]$: \mathbb{P}_p vertices are open with probability p, closed with probability 1 - p, independently.

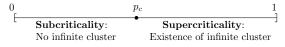


Percolation on \mathbb{Z}^2 with parameter $p \in [0, 1]$: \mathbb{P}_p vertices are open with probability p, closed with probability 1 - p, independently.



vertices are open with probability p, closed with probability 1 - p, independently.

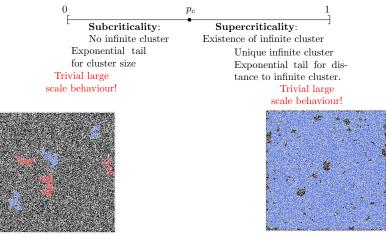
Question: is there an infinite connected component?



イロト 不得下 イヨト イヨト

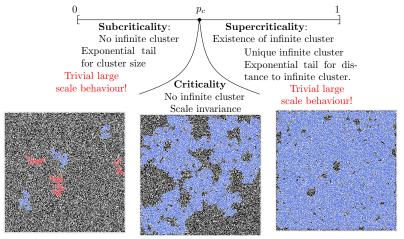
vertices are open with probability p, closed with probability 1 - p, independently.

Question: is there an infinite connected component?



Percolation on \mathbb{Z}^2 with parameter $p \in [0, 1]$: \mathbb{P}_p vertices are open with probability p, closed with probability 1 - p, independently.

Question: is there an infinite connected component?



vertices are open with probability p, closed with probability 1 - p, independently.

At p_c... Crossing probabilities do not degenerate. (RSW)

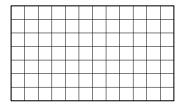
$$\forall n, \mathbf{P}_{p_c}\left[\underbrace{\frown}_{2n}^{n}n\right] \geq \epsilon$$

<ロ> (日) (日) (日) (日) (日)

vertices are open with probability p, closed with probability 1 - p, independently.

At p_c... Crossing probabilities do not degenerate. (RSW)

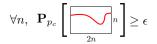
$$\forall n, \mathbf{P}_{p_c}\left[\underbrace{\frown}_{2n}^{n}n\right] \geq \epsilon$$

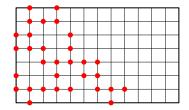


<ロ> (日) (日) (日) (日) (日)

vertices are open with probability p, closed with probability 1 - p, independently.

At p_c... Crossing probabilities do not degenerate. (RSW)

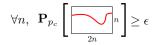


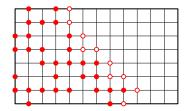


・ロン ・四 と ・ ヨ と ・ ヨ と …

vertices are open with probability p, closed with probability 1 - p, independently.

At p_c... Crossing probabilities do not degenerate. (RSW)

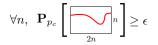


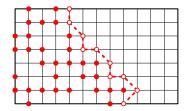


イロン イヨン イヨン イヨン

vertices are open with probability p, closed with probability 1 - p, independently.

At p_c... Crossing probabilities do not degenerate. (RSW)

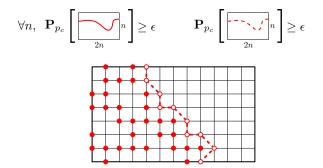




<ロ> (日) (日) (日) (日) (日)

vertices are open with probability p, closed with probability 1 - p, independently.

At p_c... Crossing probabilities do not degenerate. (RSW)

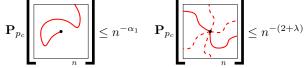


・ロト ・四ト ・ヨト ・ヨト

vertices are open with probability p, closed with probability 1 - p, independently.

At p_c... Crossing probabilities do not degenerate. (RSW) Existence of **critical exponents** (arm exponents)

$$\forall n, \mathbf{P}_{p_c} \left[\underbrace{\boxed{}}_{2n}^{n} \right] \geq \epsilon \qquad \mathbf{P}_{p_c} \left[\underbrace{\boxed{}}_{2n}^{n} \right] \geq \epsilon$$

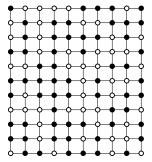


(a)

What is self-destructive percolation?

A planar lattice: here \mathbb{Z}^2 . Let $p, \delta \in [0, 1]$. Two (site) percolation configurations:

• ω - intensity p (measure \mathbb{P}_p).

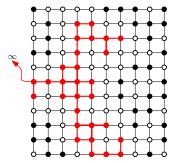


< ロ > < 同 > < 三 > < 三

What is self-destructive percolation?

A planar lattice: here \mathbb{Z}^2 . Let $p, \delta \in [0, 1]$. Two (site) percolation configurations:

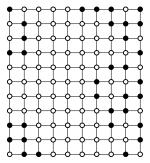
• ω - intensity p (measure \mathbb{P}_p).



What is self-destructive percolation?

A planar lattice: here \mathbb{Z}^2 . Let $p, \delta \in [0, 1]$. Two (site) percolation configurations:

• ω - intensity p (measure \mathbb{P}_p).



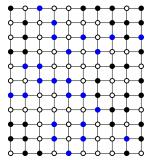
< ロ > < 同 > < 三 > < 三

What is self-destructive percolation?

A planar lattice: here \mathbb{Z}^2 . Let $p, \delta \in [0, 1]$. Two (site) percolation configurations:

- ω intensity p (measure \mathbb{P}_p).
- σ intensity δ (small).

$$\omega \xrightarrow{\text{close } \infty \text{-cluster}} \overline{\omega} \xrightarrow{\text{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \vee \sigma.$$



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

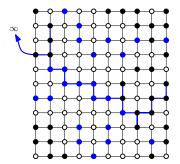
What is self-destructive percolation?

A planar lattice: here \mathbb{Z}^2 . Let $p, \delta \in [0, 1]$. Two (site) percolation configurations:

- ω intensity p (measure \mathbb{P}_p).
- σ intensity δ (small).

$$\omega \xrightarrow{\text{close } \infty \text{-cluster}} \overline{\omega} \xrightarrow{\text{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \lor \sigma.$$

$$\delta_{c}(p) = \sup\{\delta : \mathbb{P}_{p,\delta}(0 \stackrel{\overline{\omega}^{o}}{\longleftrightarrow} \infty) = 0\}.$$



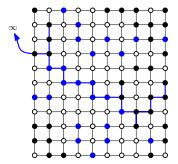
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is self-destructive percolation?

A planar lattice: here \mathbb{Z}^2 . Let $p, \delta \in [0, 1]$. Two (site) percolation configurations:

- ω intensity p (measure \mathbb{P}_p).
- σ intensity δ (small).

$$\omega \xrightarrow{\text{close } \infty \text{-cluster}} \overline{\omega} \xrightarrow{\text{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \vee \sigma.$$
$$\delta_c(p) = \sup\{\delta : \mathbb{P}_{p,\delta}(0 \xleftarrow{\overline{\omega}^{\delta}} \infty) = 0\}.$$

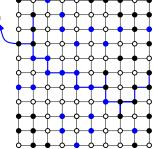


イロト イポト イヨト イヨト

Question: $\delta_c(p) \to 0$ as $p \searrow p_c$?

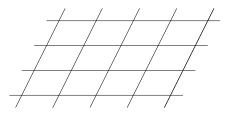
What is self-destructive percolation?

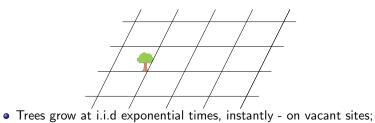
A planar lattice: here
$$\mathbb{Z}^2$$
.
Let $p, \delta \in [0, 1]$.
Two (site) percolation configurations:
• ω - intensity p (measure \mathbb{P}_p).
• σ - intensity δ (small).
 $\omega \xrightarrow{\text{close } \infty - \text{cluster}} \overline{\omega} \xrightarrow{\text{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \vee \sigma$.
 $\delta_c(p) = \sup\{\delta : \mathbb{P}_{p,\delta}(0 \stackrel{\overline{\omega}^{\delta}}{\longleftrightarrow} \infty) = 0\}.$

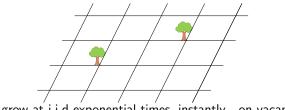


Theorem [Kiss, M., Sidoravicius] : There exists $\delta > 0$ such that, for all $p > p_c$, $\mathbb{P}_{p,\delta}(\text{infinite cluster in }\overline{\omega}^{\delta}) = 0.$

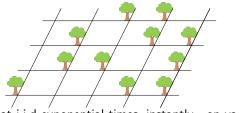
In particular $\lim_{p\to p_c} \delta_c(p) > 0$



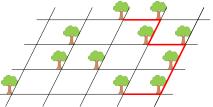




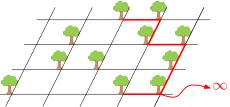
• Trees grow at i.i.d exponential times, instantly - on vacant sites;



• Trees grow at i.i.d exponential times, instantly - on vacant sites;

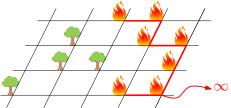


- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns

イロト イポト イヨト イヨ



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns

イロト イポト イヨト イヨ



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ...

- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ...

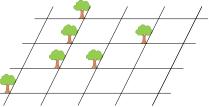
< □ > < 同 > < 回 > < Ξ > < Ξ

- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

Question: Does this make sense?

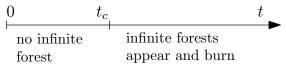


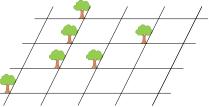
- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

Question: Does this make sense?

- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

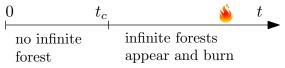
Question: Does this make sense?





- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

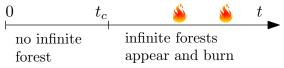
Question: Does this make sense?



イロト イポト イヨト イヨ

- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

Question: Does this make sense?

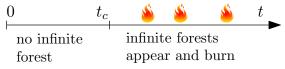


イロト イポト イヨト イヨ



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

Question: Does this make sense?





- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

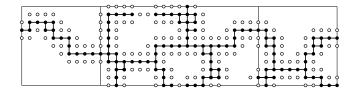
Question: Does this make sense?



- Trees grow at i.i.d exponential times, instantly on vacant sites;
- As soon as an infinite forest (i.e. cluster) is formed, it instantly burns
- Trees then continue to grow ... and burn

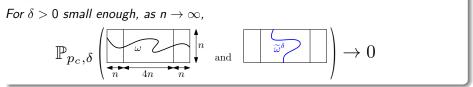
Question: Does this make sense?

 $\begin{array}{c|cccc} 0 & t_c & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ no \ infinite & \\ forest & & appear \ and \ burn \end{array}$

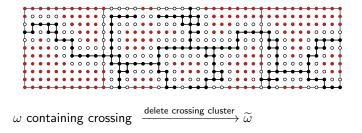


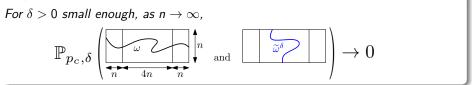
 ω containing crossing

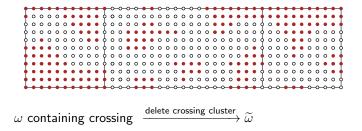
Proposition

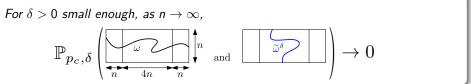


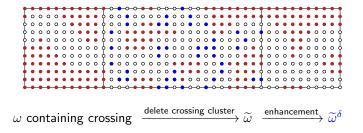
・ロン ・回 と ・ ヨン・

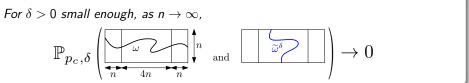


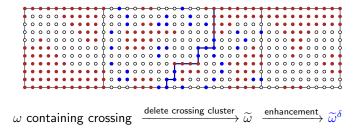


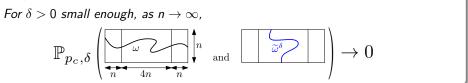


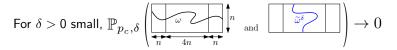


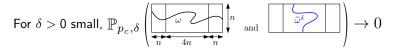






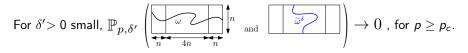






For $p_1 \geq p_2$ and δ_1, δ_2 such that $p_1 + (1-p_1)\delta_1 \leq p_2 + (1-p_2)\delta_2$,

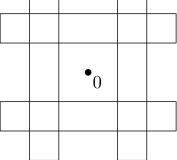
$$\mathbb{P}_{p_1,\delta_1} \leq_{st} \mathbb{P}_{p_2,\delta_2}.$$



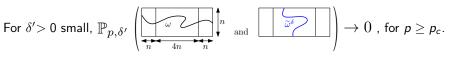
For $p_1 \geq p_2$ and δ_1, δ_2 such that $p_1 + (1-p_1)\delta_1 \leq p_2 + (1-p_2)\delta_2$,

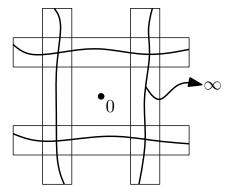
$$\mathbb{P}_{p_1,\delta_1} \leq_{st} \mathbb{P}_{p_2,\delta_2}.$$



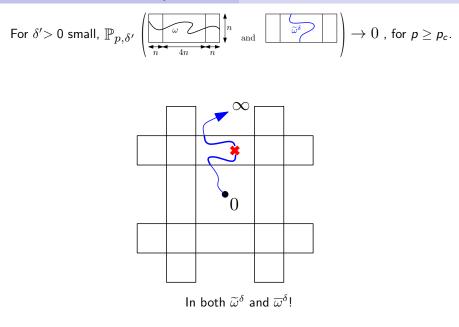


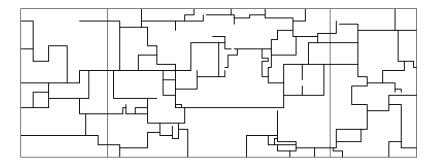
<ロ> (日) (日) (日) (日) (日)



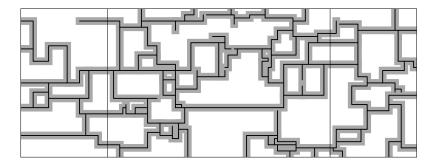


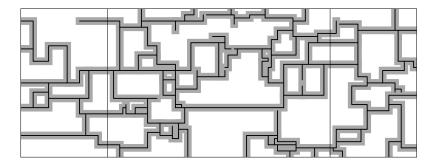
<ロ> (日) (日) (日) (日) (日)

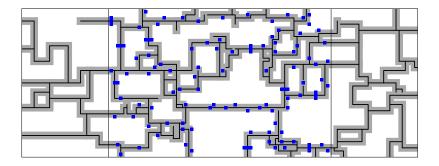


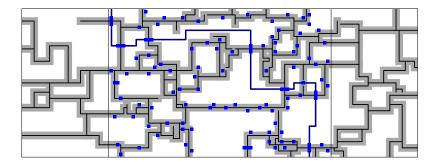


▲□→ ▲圖→ ▲温→ ▲温→



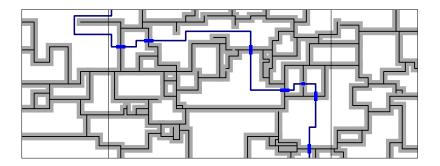






 γ - vertical crossing with minimal number of enhanced points.

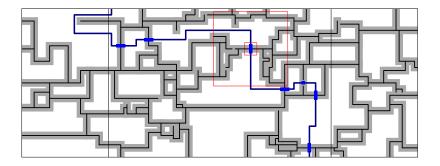
イロン イロン イヨン イヨン

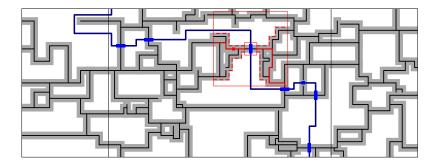


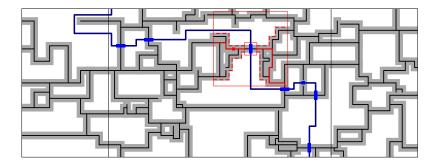
 γ - vertical crossing with minimal number of enhanced points.

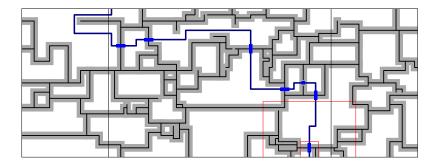
 $\mathcal{X} = \{ \text{enhanced points used by } \gamma \}.$ If no crossing $\mathcal{X} = \emptyset$.

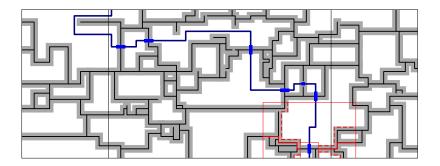
$$\mathbb{P}_{p_c,\delta}(\text{vertical crossing in }\widetilde{\omega}^{\delta}) = \sum_{X \neq \emptyset} \mathbb{P}_{p_c,\delta}(\mathcal{X} = X).$$



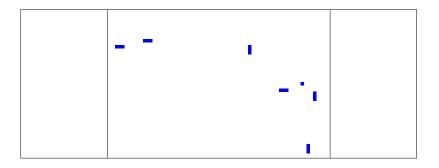


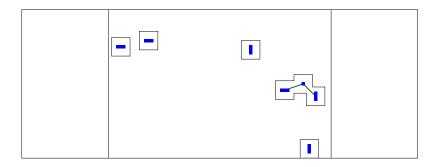


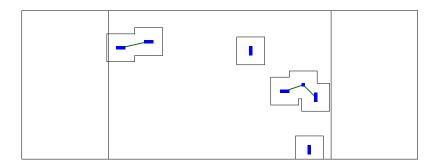


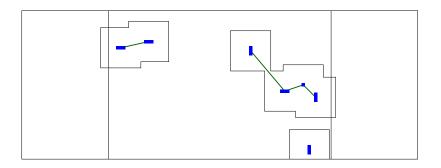


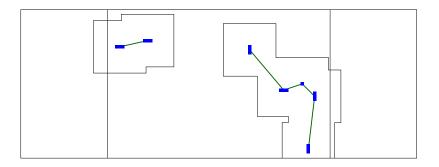
$$\mathbb{P}_{p_c}\left(\left| \underbrace{r}_{r} \right|^{R} \right) \leq \left(\frac{r}{R}\right)^{2+\lambda} \qquad \mathbb{P}_{p_c}\left(R \right| \underbrace{r}_{r} \right) \leq \left(\frac{r}{R}\right)^{2+\lambda}$$

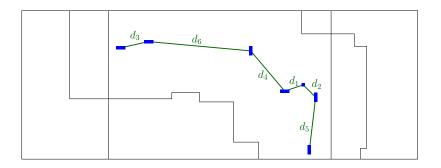


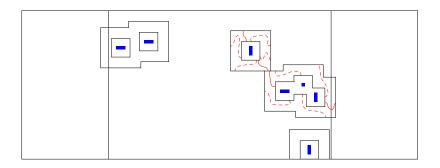


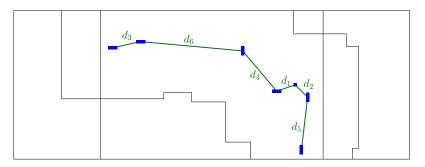








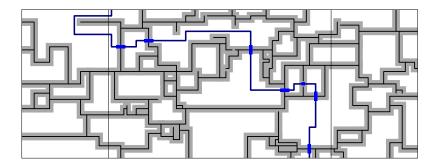




$$\mathbb{P}_{p,\delta}(\mathcal{X}=X) \leq c^k n^{-2-\lambda} \prod_j d_j^{-2-\lambda} \times \delta^k,$$

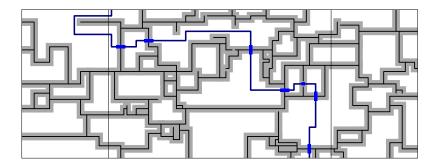
where d_1, \ldots, d_k are the merger times of X.

$$\#\{X \text{ with merger times } d_1, \ldots, d_k\} \leq C^k n^2 \prod_j d_j.$$



$$\begin{split} & \mathbb{P}(\text{vetical crossing in } \widetilde{\omega}^{\delta}) \leq n^{-\lambda} \sum_{X} \mathbb{P}_{p,\delta}(\mathcal{X} = X) \\ & \leq n^{-\lambda} \sum_{\substack{k \geq 1 \\ d_1, \dots, d_k}} \left(\delta^k c^k \prod_k d_k^{-1-\lambda} \right) = n^{-\lambda} \sum_{k \geq 1} \left(\delta c \sum_{d \geq 1} d^{-1-\lambda} \right)^k \to 0, \end{split}$$

for $\delta > 0$ small.



$$\begin{split} & \mathbb{P}(\text{vetical crossing in } \widetilde{\omega}^{\delta}) \leq n^{-\lambda} \sum_{X} \mathbb{P}_{p,\delta}(\mathcal{X} = X) \\ & \leq n^{-\lambda} \sum_{\substack{k \geq 1 \\ d_1, \dots, d_k}} \left(\delta^k c^k \prod_k d_k^{-1-\lambda} \right) = n^{-\lambda} \sum_{k \geq 1} \left(\delta c \sum_{d \geq 1} d^{-1-\lambda} \right)^k \to 0, \end{split}$$

for $\delta > 0$ small.

Thank you!

イロン イロン イヨン イヨン