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Erdős-Rényi random graph

Random graph G(n, p) on n vertices: each edge is present
independently with probability p.

Let Cnk be the size of the kth largest component.

Phase transition: let p = c/n where c > 0.

c < 1 : Cn1 on order log n

c = 1 : Cn1 on order n2/3

c > 1 : Cn1 ∼ θ(c)n for some θ(c) > 0.



Erdős-Rényi random graph process

Random graph process: start with empty graph on n vertices at
time t = 0. Each absent edge arrives at rate 1/n.

State at time t has distribution G(n, p) where p = 1− e−t/n ≈ t/n.

Let Cnk (t) be the size of the kth largest component at time t.

t < 1 : Cn1 (t) on order log n

t = 1 : Cn1 (t) on order n2/3

t > 1 : Cn1 (t) ∼ θ(t)n.

“multiplicative coalescence”: blocks size a, b merge at rate ∝ ab.



Define vnk (t) =
# vertices in components of size k at time t

n
.

Then vnk (t)
d→ vk(t) as n→∞ for each k and each t, where

vk(t) =
kk−1

k!
e−kttk−1.

t < 1 : vk(t) decays exponentially,
∑
k

vk(t) = 1.

t = 1 : vk(t) on order k−3/2 as k →∞.

t > 1 : vk(t) decays exponentially,
∑
k

vk(t) = 1− θ(t) < 1.

(simple approximation by a branching process with Poisson(t)
offspring distribution)



Mean-field forest-fire model (Ráth and Tóth 2009):

Start with empty graph on n vertices. Each absent edge arrives at
rate 1/n. In addition, each vertex is struck by lightning at rate
λ(n). When lightning strikes a vertex, remove all the edges in its
component.



Mean-field “frozen percolation” (Ráth 2009):

Start with empty graph on n vertices. Each absent edge arrives at
rate 1/n. In addition, each vertex is struck by lightning at rate
λ(n). When lightning strikes a vertex, remove all the edges AND
all the vertices in its component.

The frozen percolation model has a useful distributional property.
At any time t, conditional on the graph having m remaining
vertices, its distribution is that of G

(
m, 1− e−t/n

)
≈ G(m, t/n).

Particularly interesting cases: when 1/n� λ(n)� 1 as n→∞.
Then we see “self-organised criticality”.



Criticality: Ising model



Critical Ising simulation (1000 × 1000):



1/n� λ(n)� 1.

vnk (t) =
# vertices in components of size k at time t

n
.

Frozen percolation: vnk (t)
d→ vk(t) as n→∞ for each k and

each t, where

vk(t) =


kk−1

k!
e−kttk−1, t ≤ 1

1

t
vk(1), t > 1.

(Rath 2009)



1/n� λ(n)� 1.

vnk (t) =
# vertices in components of size k at time t

n
.

Forest fire: vnk (t)
d→ vk(t) as n→∞ for each k and each t, where

t ≤ 1 : vk(t) =
kk−1

k!
e−kttk−1

t > 1 :

∞∑
l=k

vl(t) ∼ c(t)k−1/2.

We expect that as t→∞,

vk(t)→ vk(∞) = 2

(
2k − 2
k − 1

)
4−k

k
.

vk(∞) is of order k−3/2 as k →∞, and corresponds to the
distribution of the number of leaves of a critical binary branching
process. (Rath and Toth 2009)



Erdős-Rényi process: scaling window

Let Cnk (t) be the size of the kth largest component at time t.

t < 1 : Cn1 (t) on order log n

t = 1 : Cn1 (t), . . . , C
n
k (t) all on order n2/3

t > 1 : Cn1 (t) ∼ θ(t)n, Cn2 (t) on order log t

Scaling window of width order n−1/3.

If t = 1 + unn
−1/3, then

if un → −∞ :
Cn

1 (t)

n2/3
d→ 0

if un → u ∈ (−∞,∞) :
Cn

1 (t)

n2/3
converges in distribution to a non-trivial limit.

if un →∞ :
Cn

1 (t)

n2/3
d→∞.



Scaling window: convergence of the process to the
multiplicative coalescent

Under appropriate rescaling, the evolution of large components of
the random graph in the “scaling window” around t = 1 converges
as n→∞:(

n−2/3Cn1

(
1 + un−1/3

)
, n−2/3Cn2

(
1 + un−1/3

)
, . . .

)
u∈R

=⇒ (X1(u),X2(u), . . . )u∈R .

X (u) is a version of the multiplicative coalescent, by which we
mean a random process with state space

`↓2 = {x1, x2, · · · : x1 ≥ x2 ≥ · · · ≥ 0,
∑

x2i <∞}

in which any pair of blocks of size a and b merge at rate ab to
form a block of size a+ b.

This version is called the standard multiplicative coalescent.



Aldous’s description of a state of the standard
multiplicative coalescent

Let B(s), s ≥ 0 be a standard Brownian motion. Define

W u(s) = B(s) + us− s2

2
,

a Brownian motion with drift u− s at time s.

Theorem
Let u ∈ R. The excursions of W u(s), s ≥ 0 above its past
minimum have the same distribution as the sizes of the blocks of
X (u), put into size-biased order.



Exploration process to find the components of a graph.

Choose v1 uniformly at random in the vertex set V .

Let v2, . . . , vk be the neighbours of v1.

Let vk+1, . . . , vk+m be the neighbours of v2 in V \ {v1, . . . , vk}.
And so on, continuing until we “run out of vertices” – we have
finished exploring one whole component, of size r say. Then
choose the next vertex vr+1 uniformly at random among those
remaining, and continue as before.



Let Xi = # neighbours of vi which are not neighbours of any
vertex v1, . . . , vi−1.

Consider the random walk with step sizes
Xi − 1 ∈ {−1, 0, 1, 2 . . . }.

I The size of the component of v1 is the time until the random
walk hits −1.

I More generally, the component sizes of the graph are the
times between successive minima in the random walk.

The components appear in size-biased order in the exploration
process.

For G(n, p), n large,

X1, X2, X3, · · · ≈ i.i.d. Binomial(n, p).

Note: there is some freedom in the order in which we “expand”
the vertices in this exploration process (depth first? breadth first?
something else?)



Aldous’s description of a state of the standard
multiplicative coalescent

Let B(s), s ≥ 0 be a standard Brownian motion. Define

W u(s) = B(s) + us− s2

2
,

a Brownian motion with drift u− s at time s.

Theorem
Let u ∈ R. The excursions of W u(s), s ≥ 0 above its past
minimum have the same distribution as the sizes of the blocks of
X (u), put into size-biased order.



Aldous: how to describe the process X (u), u ∈ R?

Theorem (Armendariz)

Aldous’s construction, taken simultaneously for each u, based on
the same underlying Brownian motion B, corresponds to the whole
process X (u), u ∈ R.



1D representation of random graph process

Let v1 = vertex chosen uniformly at random

v2 = first vertex to be joined by an edge to v1

v3 = first vertex outisde {v1, v2} to be joined by an edge to {v1, v2}
...

vk+1 = first vertex outside {v1, . . . , vk} to be

joined by an edge to {v1, . . . , vk}.

Then at every time t in the random graph process, each
component consists of an interval of vertices of the form
{va, va+1, . . . , va+m}; all coalescences involve neighbouring blocks.

The components appear in size-biased order.

This coupling of the order of expansion of the vertices for the
exploration processes at different times leads to the claimed limit
for the process in the scaling window.



1D representation of the frozen percolation model

I only neighbouring blocks can coalesce

I only the leftmost block can be hit by lightning

To achieve this, we define

v1 = first vertex to be hit by lightning

v2 = first vertex in V \ {v1} to be

hit by lightning or joined to v1 by an edge

...

vk+1 = first vertex in V \ {v1, v2, . . . , vk} to be

hit by lightning or joined to {v1, . . . , vk} by an edge.



Frozen percolation with λ(n) = λn−1/3 for some fixed λ > 0.

Theorem
Let bn = 1 + 1

3λ log(n)n
−1/3.(

n−2/3Cn1

(
bn + sn−1/3

)
, n−2/3Cn2

(
bn + sn−1/3

)
, . . .

)
s∈R

=⇒
(
X λ1 (s),X λ2 (s), . . .

)
s∈R

.

Here X λ is a

“multiplicative coalescent with linear deletion”

which is an `↓2-valued process such that

I any pair of blocks with size a and b merge at rate ab

I any block of size a is deleted at rate λa.



The multiplicative coalescent with linear deletion process X λ(s)
can be described through its window process U(s).

U(s) is a Markov process which drifts up at rate 1 (representing
coalescence) and jumps down (representing deletion).

U(s) can be read off as a deterministic function of the state X λ(s).
Conditional on U(s) = u, X λ(s) has the distribution of X (u)
(where X (.) is the standard multiplicate coalescent, without
deletion).

“Window process” because U describes the corresponding position
in the scaling window of the original random graph process.

U(s) converges to a stationary distribution as s→∞, and
correspondingly so does the whole process X λ(s) itself.



Convergence results / conjectures

Fix λ > 0 and let λ(n) = λn−1/3.

(1) Already stated above: for frozen percolation

n−2/3Cn

(
1 +

λ log n

3
n−1/3 + sn−1/3

)
s∈R

=⇒ X λ(s)s∈R

(2) Same for forest fire.

(3) For frozen percolation, for any t > 1,

n−2/3Cn
(
t+ sn−1/3

)
s∈R

converges to a stationary version of the MCLD.

(4) Conjecture: same for forest fire.

(5) Conjecture: same for forest fire in stationarity.


