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Random planar maps

I A planar map is a finite graph together with an
embedding in the plane so that no edges cross

I Its faces are the connected components of the
complement of edges

I A map is a quadrangulation if each face has 4
adjacent edges

I Think of a quadrangulation as a metric space where
we use the graph distance

I Interested in uniformly random quadrangulations
with n faces — random planar map (RPM)
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Structure of large random planar maps

(Simulation due to J.F. Marckert)

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)

I The Brownian map (TBM) comes equipped
with an area measure which is the limit of the
rescaled measure on RPM which assigns unit
mass for each vertex
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Liouville quantum gravity

I D planar domain

I The Gaussian free field (GFF) h on D is the Gaussian process with covariance
cov(h(x), h(y)) = G(x , y) where G is the Green’s function for ∆ on D

I Since G(x , y) ∼ − log |x − y | for x ∼ y , the GFF is not a function, but rather a
distribution

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2)

I So far, only made sense of as an area measure using a regularization procedure

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In constrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing

they are equivalent.
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Canonical embedding of TBM into S2

I TBM is an abstract metric measure space homeomorphic to S2, but it does not
obviously come with a canonical embedding into S2

I It is believed that there should be a “natural embedding” of TBM into S2 and that
the embedded surface is described by a form of Liouville quantum gravity (LQG)
with γ =

√
8/3

ψ

I Discrete approach: take a uniformly random planar map and embed it conformally
into S2 (circle packing, uniformization, etc...), then in the n→∞ limit it converges
to a form of

√
8/3-LQG. Not the approach we will describe today ...
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Main result

Theorem (M., Sheffield)
Suppose that (M, d , µ) is an instance of TBM. Then there exists a Hölder
homeomorphism ϕ : (M, d)→ S2 such that the pushforward of µ by ϕ has the law of a√

8/3-LQG sphere (S2, h).

Moreover,

I ϕ is determined by (M, d , µ) (TBM determines its conformal structure)

I (M, d , µ) and ϕ are determined by (S2, h) (LQG determines its metric structure)

That is, (M, d , µ) and (S2, h) are equivalent.

Comments

1. Construction is purely in the continuum

2. Proof by endowing a metric space structure directly on
√

8/3-LQG using the growth
process QLE(8/3, 0)

3. Resulting metric space structure is shown to satisfy axioms which characterize TBM

4. Separate argument shows that the embedding of TBM into
√

8/3-LQG is determined by
TBM

5. Metric construction is for the
√

8/3-LQG sphere. By absolute continuity, can construct a

metric on any
√

8/3-LQG surface.
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Part II:

An axiomatic characterization of the
Brownian map
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Brownian map review

t

Xt

I Xt standard Brownian excursion on [0, 1]

— encodes a CRT T (dual tree)

I Given Xt , Yt Gaussian with covariance cov(Ya,Yb) = inf{Xr : r ∈ [a, b]} (so Yt is a
Brownian motion on the branches of T ).

Yt encodes a tree G (geodesic tree).

I Glue together by declaring points on red and green lines to be equivalent.

Metric
quotient of G gives the metric for the Brownian map.

I Projection of Lebesgue measure on [0, 1] gives the measure µ
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What resampling properties should TBM have?
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Axioms which characterize TBM

Theorem (M., Sheffield)
The Brownian map is the unique measure on measure-endowed, doubly marked, geodesic
metric spheres (M, d , µ, x , y) such that:

1. Its law is invariant under resampling x and y independently from µ

2. On the event that d(x , y) > r , with s = d(x , y)− r or s = r

(a) There is a notion of boundary length Ls of ∂B•(x , s) such that M \ B•(x , s)
and B•(x , s) are conditionally independent given Ls and their conditional laws
are scale invariant

(b) If s = d(x , y)− r , ∂B•(x , s) is equipped with a measure νs with mass Ls such
that if z1 is uniform from νs and z2, . . . , zn are evenly spaced on ∂B•(x , s),
then the n slices produced by cutting B•(x , s) along leftmost geodesics from zi
to x are conditionally independent with law depending only on Ls/n and in a
scale invariant way.

Comments: To be precise, one has to choose the σ-algebras for these random variables.

Leads to interesting measurability questions, e.g., is the event that a metric space is

geodesic and homeomorphic to S2 measurable wrt the Borel σ-algebra in the

Gromov-Hausdorff topology?
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Breadth-first construction

t

Xt

C−Yt

Dual root

Root

I The usual construction of TBM is described in a depth-first manner

I To begin to prove the theorem, need to give a breadth-first description of TBM

I To do this, need to be able to:

I Make sense of the “boundary length” measure for metric ball boundaries
I Construct the law of a “Brownian disk” with given boundary length which

describes the unexplored region in TBM when performing a metric exploration
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Consequence of slice independence

I Slice independence and scale invariance restrict the form of the geodesic tree from
the boundary of a filled metric ball back to the root and the boundary length
process Lr .

Will see there is one parameter family of laws.

I Geodesic from a uniform point to root

I Second geodesic from 1 unit clockwise to
right

I A is the merging time

I Add geodesic from midpoint

I Ai successive merging times (independent)

I A = max(A1,A2) and Ai
d
= 2−βA
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Consequence of slice independence
I Slice independence and scale invariance restrict the form of the geodesic tree from

the boundary of a filled metric ball back to the root and the boundary length
process Lr . Will see there is a one parameter family of laws.

I Geodesic from a uniform point to root

I Second geodesic from 1 unit clockwise to
right

I A is the merging time

I Geodesics from four equally spaced points

I Ai successive merging times (independent)

I A = max(A1, . . . ,A4) and Ai
d
= 2−2βA

I Iterating this procedure determines the law
of A

I Determines the law of the geodesic tree
from ball boundary

I By varying radii and using inside-outside
independence, determines law of geodesic
tree
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Consequence of slice independence
I Slice independence and scale invariance restrict the form of the geodesic tree from

the boundary of a filled metric ball back to the root and the boundary length
process Lr . Will see there is one parameter family of laws.

I A merging time for geodesics 1 unit apart

I Know A = max(A1, . . . ,A2n ) for

Ai
d
= 2−nβA i.i.d.

I Implies P[A ≤ r ] = qr−1/β

, some q ∈ (0, 1)

I Same holds for TBM with β = 1/2

I To finish coupling geodesic tree with TBM
geodesic tree, need to show that theorem
assumptions imply β = 1/2

1. use scale invariance to see that
expected area in a disk given boundary
length L is L2β+1

2. Lévy process argument gives that
expected area in a disk as one explores
towards the “center” is a martingale
iff β = 1/2
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Part III:

The QLE(8/3, 0) metric on
√

8/3-LQG
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Overview of metric construction

I Construct a metric on
√

8/3-LQG by making sense of the scaling limit of first
passage percolation, a growth process we call QLE(8/3, 0)

I Member of a family of growth processes we call QLE(γ2, η) which we
conjecture describe the scaling limits of DLA and DBM on LQG surfaces

I It will not be a priori obvious that QLE(8/3, 0) defines a metric

I We will extract the metric property by building on the reversibility of SLE6
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First passage percolation review

I Associate with a graph (V ,E) i.i.d. exp(1)
edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I Goal: understand perturbed metric

I If the graph has enough isotropy, one would
expect that at large scales the perturbed
metric behaves like the underlying graph
metric

I There is a Markovian way of growing a
metric ball in FPP: the Eden growth model
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Eden model on random planar maps I

I RPM, random vertex x . Perform FPP from x (Angel’s peeling process).

Important observations:

I Conditional law of map given ball at time n only depends on the boundary lengths of
the outside components.

Exploration respects the Markovian structure of the map.

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric

(now proved by Curien and Le Gall)
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Eden model on random planar maps II

Variant:

I Pick two edges on outer boundary
of cluster

I Color vertices between edges blue
and yellow

I Color vertices on rest of map blue
or yellow with prob. 1

2

I Explore percolation (blue/yellow)
interface

I Forget colors

I Repeat

I This exploration also respects the Markovian structure of the map.

I Expect that at large scales this growth process looks the same as FPP, hence the
same as the graph metric ball
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Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization.
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Discrete approximation of QLE(8/3, 0). Metric ball on a
√

8/3-LQG
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QLE(8/3, 0) defines a metric on
√

8/3-LQG

I At this point, we have a growth process which is a natural candidate to define a
metric on

√
8/3-LQG.

I How do we show that this defines a metric?

I As a start, at least show that we get a metric defined on an i.i.d. sequence of points
(xn) chosen from the

√
8/3-LQG measure, which is determined by the GFF

I For each xn, let K n
t be a QLE(8/3, 0) starting from xn sampled conditionally

independently given the GFF

I Define d(xn, xm) to be the first time that K n
t swallows xm

I Need to check:

I Symmetry: d(xn, xm) = d(xm, xn) for all m, n
I Triangle inequality: d(xn, xm) ≤ d(xn, xk) + d(xk , xm) for all n, k,m

I Idea: use a strategy developed by Sheffield, Watson, Wu in the context of CLE4

I Gives (at a high level) conditions which imply that a family of growth
processes (candidates for metric balls starting from a collection of points in
the space) define a metric space.
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Checking the metric property

x
y

I x , y distinct points in a metric space (M, d)

I Pick U ∈ [0, 1] uniform and grow B(x , r) for r = Ud(x , y)

I Let s be the smallest radius so that B(y , s) barely intersects B(x , r)

I As s = (1− U)d(x , y) = Vd(x , y) for V ∈ [0, 1] uniform, get the same picture if
drawn in the opposite order
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Emergence of TBM in
√

8/3-LQG

I Boundary length process for QLE(8/3, 0) evolves in same way as in TBM

I Continuous state branching process with branching mechanism ψ(u) = u3/2

I Bubbles cut off by QLE(8/3, 0) growth distributed uniformly on the boundary

I Profile of distances from a uniformly chosen point same as in TBM
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Finishing the proof

I Show that the metric space thus defined is homeomorphic to S2 and geodesic (size
and shape estimates for QLE(8/3, 0) — GFF calculations)

I Show that the resulting metric space satisfies an axiomatic characterization of TBM

I Show that the metric space structure of TBM determines the
√

8/3-LQG surface
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Further questions

I What is the law of the geodesics for
√

8/3-LQG?

I What is their dimension?

I What about γ 6=
√

8/3?

I Is there an explicit description of the metric space structure (like for TBM)?
I What is the dimension of the metric space?
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Thanks!
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