# Liouville quantum gravity and the Brownian map 

Jason Miller and Scott Sheffield

Cambridge and MIT

October 30, 2015

## Overview

Part I: Introduction

Part II: An axiomatic characterization of the Brownian map
Part III: The QLE $(8 / 3,0)$ metric on $\sqrt{8 / 3}-\operatorname{LQG}$

## Part I: Introduction

## Random planar maps



- A planar map is a finite graph together with an embedding in the plane so that no edges cross


## Random planar maps



- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of edges


## Random planar maps



- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation if each face has 4 adjacent edges


## Random planar maps



- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation if each face has 4 adjacent edges
- Think of a quadrangulation as a metric space where we use the graph distance


## Random planar maps



- A planar map is a finite graph together with an embedding in the plane so that no edges cross
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation if each face has 4 adjacent edges
- Think of a quadrangulation as a metric space where we use the graph distance
- Interested in uniformly random quadrangulations with $n$ faces - random planar map (RPM)

Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)

## Structure of large random planar maps



- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
(Simulation due to J.F. Marckert)


## Structure of large random planar maps



- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)


## Structure of large random planar maps



- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
(Simulation due to J.F. Marckert)


## Structure of large random planar maps



- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)
(Simulation due to J.F. Marckert)


## Structure of large random planar maps


(Simulation due to J.F. Marckert)

- Diameter is $n^{1 / 4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1 / 4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)
- The Brownian map (TBM) comes equipped with an area measure which is the limit of the rescaled measure on RPM which assigns unit mass for each vertex


## Liouville quantum gravity

- D planar domain


## Liouville quantum gravity

- D planar domain
- The Gaussian free field (GFF) $h$ on $D$ is the Gaussian process with covariance $\operatorname{cov}(h(x), h(y))=G(x, y)$ where $G$ is the Green's function for $\Delta$ on $D$


## Liouville quantum gravity

- D planar domain
- The Gaussian free field (GFF) $h$ on $D$ is the Gaussian process with covariance $\operatorname{cov}(h(x), h(y))=G(x, y)$ where $G$ is the Green's function for $\Delta$ on $D$
- Since $G(x, y) \sim-\log |x-y|$ for $x \sim y$, the GFF is not a function, but rather a distribution


## Liouville quantum gravity

- D planar domain
- The Gaussian free field (GFF) $h$ on $D$ is the Gaussian process with covariance $\operatorname{cov}(h(x), h(y))=G(x, y)$ where $G$ is the Green's function for $\Delta$ on $D$
- Since $G(x, y) \sim-\log |x-y|$ for $x \sim y$, the GFF is not a function, but rather a distribution
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$


## Liouville quantum gravity

- D planar domain
- The Gaussian free field (GFF) $h$ on $D$ is the Gaussian process with covariance $\operatorname{cov}(h(x), h(y))=G(x, y)$ where $G$ is the Green's function for $\Delta$ on $D$
- Since $G(x, y) \sim-\log |x-y|$ for $x \sim y$, the GFF is not a function, but rather a distribution
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure


## Liouville quantum gravity

- D planar domain
- The Gaussian free field (GFF) $h$ on $D$ is the Gaussian process with covariance $\operatorname{cov}(h(x), h(y))=G(x, y)$ where $G$ is the Green's function for $\Delta$ on $D$
- Since $G(x, y) \sim-\log |x-y|$ for $x \sim y$, the GFF is not a function, but rather a distribution
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure
- LQG has a conformal structure (compute angles, etc...) and an area measure


## Liouville quantum gravity

- D planar domain
- The Gaussian free field (GFF) $h$ on $D$ is the Gaussian process with covariance $\operatorname{cov}(h(x), h(y))=G(x, y)$ where $G$ is the Green's function for $\Delta$ on $D$
- Since $G(x, y) \sim-\log |x-y|$ for $x \sim y$, the GFF is not a function, but rather a distribution
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure
- LQG has a conformal structure (compute angles, etc...) and an area measure
- In constrast, TBM has a metric structure and an area measure


## Liouville quantum gravity

- D planar domain
- The Gaussian free field (GFF) $h$ on $D$ is the Gaussian process with covariance $\operatorname{cov}(h(x), h(y))=G(x, y)$ where $G$ is the Green's function for $\Delta$ on $D$
- Since $G(x, y) \sim-\log |x-y|$ for $x \sim y$, the GFF is not a function, but rather a distribution
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$
- So far, only made sense of as an area measure using a regularization procedure
- LQG has a conformal structure (compute angles, etc...) and an area measure
- In constrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other's structure and showing they are equivalent.

## Canonical embedding of TBM into $\mathbf{S}^{2}$

- TBM is an abstract metric measure space homeomorphic to $\mathbf{S}^{2}$, but it does not obviously come with a canonical embedding into $\mathbf{S}^{2}$


## Canonical embedding of TBM into $\mathbf{S}^{2}$

- TBM is an abstract metric measure space homeomorphic to $\mathbf{S}^{2}$, but it does not obviously come with a canonical embedding into $\mathbf{S}^{2}$
- It is believed that there should be a "natural embedding" of TBM into $\mathbf{S}^{2}$ and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$


## Canonical embedding of TBM into $\mathbf{S}^{2}$

- TBM is an abstract metric measure space homeomorphic to $\mathbf{S}^{2}$, but it does not obviously come with a canonical embedding into $\mathbf{S}^{2}$
- It is believed that there should be a "natural embedding" of TBM into $\mathbf{S}^{2}$ and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$

- Discrete approach: take a uniformly random planar map and embed it conformally into $\mathbf{S}^{2}$ (circle packing, uniformization, etc...), then in the $n \rightarrow \infty$ limit it converges to a form of $\sqrt{8 / 3}-L Q G$.


## Canonical embedding of TBM into $\mathbf{S}^{2}$

- TBM is an abstract metric measure space homeomorphic to $\mathbf{S}^{2}$, but it does not obviously come with a canonical embedding into $\mathbf{S}^{2}$
- It is believed that there should be a "natural embedding" of TBM into $\mathbf{S}^{2}$ and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$

- Discrete approach: take a uniformly random planar map and embed it conformally into $\mathbf{S}^{2}$ (circle packing, uniformization, etc...), then in the $n \rightarrow \infty$ limit it converges to a form of $\sqrt{8 / 3}-L Q G$. Not the approach we will describe today ...


## Main result

Theorem (M., Sheffield)
Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$.

## Main result

Theorem (M., Sheffield)
Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

## Main result

Theorem (M., Sheffield)
Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$


## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)


## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$


## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure)


## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, $(M, d, \mu)$ and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.


## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, $(M, d, \mu)$ and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.

Comments

## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, $(M, d, \mu)$ and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.


## Comments

1. Construction is purely in the continuum

## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, $(M, d, \mu)$ and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.


## Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}$-LQG using the growth process $\operatorname{QLE}(8 / 3,0)$

## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, $(M, d, \mu)$ and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.


## Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}-\mathrm{LQG}$ using the growth process $\operatorname{QLE}(8 / 3,0)$
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM

## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, $(M, d, \mu)$ and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.


## Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}$-LQG using the growth process $\operatorname{QLE}(8 / 3,0)$
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
4. Separate argument shows that the embedding of TBM into $\sqrt{8 / 3}$-LQG is determined by TBM

## Main result

## Theorem (M., Sheffield)

Suppose that $(M, d, \mu)$ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi:(M, d) \rightarrow \mathbf{S}^{2}$ such that the pushforward of $\mu$ by $\varphi$ has the law of a $\sqrt{8 / 3}-L Q G$ sphere $\left(\mathbf{S}^{2}, h\right)$. Moreover,

- $\varphi$ is determined by $(M, d, \mu)$ (TBM determines its conformal structure)
- $(M, d, \mu)$ and $\varphi$ are determined by $\left(\mathbf{S}^{2}, h\right)$ (LQG determines its metric structure) That is, $(M, d, \mu)$ and $\left(\mathbf{S}^{2}, h\right)$ are equivalent.


## Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8 / 3}$-LQG using the growth process $\operatorname{QLE}(8 / 3,0)$
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
4. Separate argument shows that the embedding of TBM into $\sqrt{8 / 3}$-LQG is determined by TBM
5. Metric construction is for the $\sqrt{8 / 3}$-LQG sphere. By absolute continuity, can construct a metric on any $\sqrt{8 / 3}$-LQG surface.

## Part II:

## An axiomatic characterization of the Brownian map

## Brownian map review



- $X_{t}$ standard Brownian excursion on $[0,1]$


## Brownian map review



- $X_{t}$ standard Brownian excursion on $[0,1]$ - encodes a CRT $\mathcal{T}$ (dual tree)


## Brownian map review





Dual root

- $X_{t}$ standard Brownian excursion on $[0,1]$ - encodes a CRT $\mathcal{T}$ (dual tree)
- Given $X_{t}, Y_{t}$ Gaussian with covariance $\operatorname{cov}\left(Y_{a}, Y_{b}\right)=\inf \left\{X_{r}: r \in[a, b]\right\}$ (so $Y_{t}$ is a Brownian motion on the branches of $\mathcal{T}$ ).


## Brownian map review



Dual root

- $X_{t}$ standard Brownian excursion on $[0,1]$ - encodes a CRT $\mathcal{T}$ (dual tree)
- Given $X_{t}, Y_{t}$ Gaussian with covariance $\operatorname{cov}\left(Y_{a}, Y_{b}\right)=\inf \left\{X_{r}: r \in[a, b]\right\}$ (so $Y_{t}$ is a Brownian motion on the branches of $\mathcal{T}$ ). $Y_{t}$ encodes a tree $\mathcal{G}$ (geodesic tree).


## Brownian map review




- $X_{t}$ standard Brownian excursion on $[0,1]$ - encodes a CRT $\mathcal{T}$ (dual tree)
- Given $X_{t}, Y_{t}$ Gaussian with covariance $\operatorname{cov}\left(Y_{a}, Y_{b}\right)=\inf \left\{X_{r}: r \in[a, b]\right\}$ (so $Y_{t}$ is a Brownian motion on the branches of $\mathcal{T}$ ). $Y_{t}$ encodes a tree $\mathcal{G}$ (geodesic tree).
- Glue together by declaring points on red and green lines to be equivalent.


## Brownian map review



- $X_{t}$ standard Brownian excursion on $[0,1]$ - encodes a CRT $\mathcal{T}$ (dual tree)
- Given $X_{t}, Y_{t}$ Gaussian with covariance $\operatorname{cov}\left(Y_{a}, Y_{b}\right)=\inf \left\{X_{r}: r \in[a, b]\right\}$ (so $Y_{t}$ is a Brownian motion on the branches of $\mathcal{T}$ ). $Y_{t}$ encodes a tree $\mathcal{G}$ (geodesic tree).
- Glue together by declaring points on red and green lines to be equivalent. Metric quotient of $\mathcal{G}$ gives the metric for the Brownian map.


## Brownian map review




- $X_{t}$ standard Brownian excursion on $[0,1]$ - encodes a CRT $\mathcal{T}$ (dual tree)
- Given $X_{t}, Y_{t}$ Gaussian with covariance $\operatorname{cov}\left(Y_{a}, Y_{b}\right)=\inf \left\{X_{r}: r \in[a, b]\right\}$ (so $Y_{t}$ is a Brownian motion on the branches of $\mathcal{T}$ ). $Y_{t}$ encodes a tree $\mathcal{G}$ (geodesic tree).
- Glue together by declaring points on red and green lines to be equivalent. Metric quotient of $\mathcal{G}$ gives the metric for the Brownian map.
- Projection of Lebesgue measure on $[0,1]$ gives the measure $\mu$

What resampling properties should TBM have?


## Axioms which characterize TBM

## Theorem (M., Sheffield)

The Brownian map is the unique measure on measure-endowed, doubly marked, geodesic metric spheres $(M, d, \mu, x, y)$ such that:

1. Its law is invariant under resampling $x$ and $y$ independently from $\mu$

## Axioms which characterize TBM

## Theorem (M., Sheffield)

The Brownian map is the unique measure on measure-endowed, doubly marked, geodesic metric spheres ( $M, d, \mu, x, y$ ) such that:

1. Its law is invariant under resampling $x$ and $y$ independently from $\mu$
2. On the event that $d(x, y)>r$, with $s=d(x, y)-r$ or $s=r$

## Axioms which characterize TBM

## Theorem (M., Sheffield)

The Brownian map is the unique measure on measure-endowed, doubly marked, geodesic metric spheres $(M, d, \mu, x, y)$ such that:

1. Its law is invariant under resampling $x$ and $y$ independently from $\mu$
2. On the event that $d(x, y)>r$, with $s=d(x, y)-r$ or $s=r$
(a) There is a notion of boundary length $L_{s}$ of $\partial B^{\bullet}(x, s)$ such that $M \backslash B^{\bullet}(x, s)$ and $B^{\bullet}(x, s)$ are conditionally independent given $L_{s}$ and their conditional laws are scale invariant

## Axioms which characterize TBM

## Theorem (M., Sheffield)

The Brownian map is the unique measure on measure-endowed, doubly marked, geodesic metric spheres $(M, d, \mu, x, y)$ such that:

1. Its law is invariant under resampling $x$ and $y$ independently from $\mu$
2. On the event that $d(x, y)>r$, with $s=d(x, y)-r$ or $s=r$
(a) There is a notion of boundary length $L_{s}$ of $\partial B^{\bullet}(x, s)$ such that $M \backslash B^{\bullet}(x, s)$ and $B^{\bullet}(x, s)$ are conditionally independent given $L_{s}$ and their conditional laws are scale invariant
(b) If $s=d(x, y)-r, \partial B^{\bullet}(x, s)$ is equipped with a measure $\nu_{s}$ with mass $L_{s}$ such that if $z_{1}$ is uniform from $\nu_{s}$ and $z_{2}, \ldots, z_{n}$ are evenly spaced on $\partial B^{\bullet}(x, s)$, then the $n$ slices produced by cutting $B^{\bullet}(x, s)$ along leftmost geodesics from $z_{i}$ to $x$ are conditionally independent with law depending only on $L_{s} / n$ and in a scale invariant way.

## Axioms which characterize TBM

## Theorem (M., Sheffield)

The Brownian map is the unique measure on measure-endowed, doubly marked, geodesic metric spheres $(M, d, \mu, x, y)$ such that:

1. Its law is invariant under resampling $x$ and $y$ independently from $\mu$
2. On the event that $d(x, y)>r$, with $s=d(x, y)-r$ or $s=r$
(a) There is a notion of boundary length $L_{s}$ of $\partial B^{\bullet}(x, s)$ such that $M \backslash B^{\bullet}(x, s)$ and $B^{\bullet}(x, s)$ are conditionally independent given $L_{s}$ and their conditional laws are scale invariant
(b) If $s=d(x, y)-r, \partial B^{\bullet}(x, s)$ is equipped with a measure $\nu_{s}$ with mass $L_{s}$ such that if $z_{1}$ is uniform from $\nu_{s}$ and $z_{2}, \ldots, z_{n}$ are evenly spaced on $\partial B^{\bullet}(x, s)$, then the $n$ slices produced by cutting $B^{\bullet}(x, s)$ along leftmost geodesics from $z_{i}$ to $x$ are conditionally independent with law depending only on $L_{s} / n$ and in a scale invariant way.

Comments: To be precise, one has to choose the $\sigma$-algebras for these random variables.

## Axioms which characterize TBM

## Theorem (M., Sheffield)

The Brownian map is the unique measure on measure-endowed, doubly marked, geodesic metric spheres ( $M, d, \mu, x, y$ ) such that:

1. Its law is invariant under resampling $x$ and $y$ independently from $\mu$
2. On the event that $d(x, y)>r$, with $s=d(x, y)-r$ or $s=r$
(a) There is a notion of boundary length $L_{s}$ of $\partial B^{\bullet}(x, s)$ such that $M \backslash B^{\bullet}(x, s)$ and $B^{\bullet}(x, s)$ are conditionally independent given $L_{s}$ and their conditional laws are scale invariant
(b) If $s=d(x, y)-r, \partial B^{\bullet}(x, s)$ is equipped with a measure $\nu_{s}$ with mass $L_{s}$ such that if $z_{1}$ is uniform from $\nu_{s}$ and $z_{2}, \ldots, z_{n}$ are evenly spaced on $\partial B^{\bullet}(x, s)$, then the $n$ slices produced by cutting $B^{\bullet}(x, s)$ along leftmost geodesics from $z_{i}$ to $x$ are conditionally independent with law depending only on $L_{s} / n$ and in a scale invariant way.

Comments: To be precise, one has to choose the $\sigma$-algebras for these random variables. Leads to interesting measurability questions, e.g., is the event that a metric space is geodesic and homeomorphic to $\mathbf{S}^{2}$ measurable wrt the Borel $\sigma$-algebra in the Gromov-Hausdorff topology?

## Breadth-first construction



- The usual construction of TBM is described in a depth-first manner


## Breadth-first construction



- The usual construction of TBM is described in a depth-first manner
- To begin to prove the theorem, need to give a breadth-first description of TBM


## Breadth-first construction



- The usual construction of TBM is described in a depth-first manner
- To begin to prove the theorem, need to give a breadth-first description of TBM
- To do this, need to be able to:


## Breadth-first construction



- The usual construction of TBM is described in a depth-first manner
- To begin to prove the theorem, need to give a breadth-first description of TBM
- To do this, need to be able to:
- Make sense of the "boundary length" measure for metric ball boundaries


## Breadth-first construction



- The usual construction of TBM is described in a depth-first manner
- To begin to prove the theorem, need to give a breadth-first description of TBM
- To do this, need to be able to:
- Make sense of the "boundary length" measure for metric ball boundaries
- Construct the law of a "Brownian disk" with given boundary length which describes the unexplored region in TBM when performing a metric exploration


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$.



## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.



## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.

- Geodesic from a uniform point to root


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.

- Geodesic from a uniform point to root


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.

- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.

- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Add geodesic from midpoint
- $A_{i}$ successive merging times (independent)


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.

- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Add geodesic from midpoint
- $A_{i}$ successive merging times (independent)
- $A=\max \left(A_{1}, A_{2}\right)$ and $A_{i} \stackrel{d}{=} 2^{-\beta} A$


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is a one parameter family of laws.
- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Geodesics from four equally spaced points


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is a one parameter family of laws.
- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Geodesics from four equally spaced points
- $A_{i}$ successive merging times (independent)


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is a one parameter family of laws.
- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Geodesics from four equally spaced points
- $A_{i}$ successive merging times (independent)
- $A=\max \left(A_{1}, \ldots, A_{4}\right)$ and $A_{i} \stackrel{d}{=} 2^{-2 \beta} A$


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is a one parameter family of laws.
- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Geodesics from four equally spaced points
- $A_{i}$ successive merging times (independent)
- $A=\max \left(A_{1}, \ldots, A_{4}\right)$ and $A_{i} \stackrel{d}{=} 2^{-2 \beta} A$
- Iterating this procedure determines the law of $A$


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is a one parameter family of laws.
- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Geodesics from four equally spaced points
- $A_{i}$ successive merging times (independent)
- $A=\max \left(A_{1}, \ldots, A_{4}\right)$ and $A_{i} \stackrel{d}{=} 2^{-2 \beta} A$
- Iterating this procedure determines the law of $A$
- Determines the law of the geodesic tree from ball boundary


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is a one parameter family of laws.
- Geodesic from a uniform point to root
- Second geodesic from 1 unit clockwise to right
- $A$ is the merging time
- Geodesics from four equally spaced points
- $A_{i}$ successive merging times (independent)
- $A=\max \left(A_{1}, \ldots, A_{4}\right)$ and $A_{i} \stackrel{d}{=} 2^{-2 \beta} A$
- Iterating this procedure determines the law of $A$
- Determines the law of the geodesic tree from ball boundary
- By varying radii and using inside-outside independence, determines law of geodesic tree

Consequence of slice independence
Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.


A merging time for geodesics 1 unit apart

## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.
- A merging time for geodesics 1 unit apart
- Know $A=\max \left(A_{1}, \ldots, A_{2^{n}}\right)$ for $A_{i} \stackrel{d}{=} 2^{-n \beta} A$ i.i.d.


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.
- A merging time for geodesics 1 unit apart
- Know $A=\max \left(A_{1}, \ldots, A_{2^{n}}\right)$ for
$A_{i} \stackrel{d}{=} 2^{-n \beta} A$ i.i.d.
- Implies $\mathbf{P}[A \leq r]=q^{r^{-1 / \beta}}$, some $q \in(0,1)$


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.
- A merging time for geodesics 1 unit apart
- Know $A=\max \left(A_{1}, \ldots, A_{2^{n}}\right)$ for $A_{i} \stackrel{d}{=} 2^{-n \beta} A$ i.i.d.
- Implies $\mathbf{P}[A \leq r]=q^{r^{-1 / \beta}}$, some $q \in(0,1)$
- Same holds for TBM with $\beta=1 / 2$


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.
- A merging time for geodesics 1 unit apart
- Know $A=\max \left(A_{1}, \ldots, A_{2^{n}}\right)$ for

$$
A_{i} \stackrel{d}{=} 2^{-n \beta} A \text { i.i.d. }
$$

- Implies $\mathbf{P}[A \leq r]=q^{r^{-1 / \beta}}$, some $q \in(0,1)$
- Same holds for TBM with $\beta=1 / 2$
- To finish coupling geodesic tree with TBM geodesic tree, need to show that theorem assumptions imply $\beta=1 / 2$


## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.
- A merging time for geodesics 1 unit apart
- Know $A=\max \left(A_{1}, \ldots, A_{2^{n}}\right)$ for

$$
A_{i} \stackrel{d}{=} 2^{-n \beta} A \text { i.i.d. }
$$

- Implies $\mathbf{P}[A \leq r]=q^{r^{-1 / \beta}}$, some $q \in(0,1)$
- Same holds for TBM with $\beta=1 / 2$
- To finish coupling geodesic tree with TBM geodesic tree, need to show that theorem assumptions imply $\beta=1 / 2$

1. use scale invariance to see that expected area in a disk given boundary length $L$ is $L^{2 \beta+1}$

## Consequence of slice independence

- Slice independence and scale invariance restrict the form of the geodesic tree from the boundary of a filled metric ball back to the root and the boundary length process $L_{r}$. Will see there is one parameter family of laws.
- A merging time for geodesics 1 unit apart
- Know $A=\max \left(A_{1}, \ldots, A_{2^{n}}\right)$ for

$$
A_{i} \stackrel{d}{=} 2^{-n \beta} A \text { i.i.d. }
$$

- Implies $\mathbf{P}[A \leq r]=q^{r^{-1 / \beta}}$, some $q \in(0,1)$
- Same holds for TBM with $\beta=1 / 2$
- To finish coupling geodesic tree with TBM geodesic tree, need to show that theorem assumptions imply $\beta=1 / 2$

1. use scale invariance to see that expected area in a disk given boundary length $L$ is $L^{2 \beta+1}$
2. Lévy process argument gives that expected area in a disk as one explores towards the "center" is a martingale iff $\beta=1 / 2$

## Part III:

## The $\operatorname{QLE}(8 / 3,0)$ metric on $\sqrt{8 / 3}-\mathrm{LQG}$

## Overview of metric construction

- Construct a metric on $\sqrt{8 / 3}$-LQG by making sense of the scaling limit of first passage percolation, a growth process we call $\operatorname{QLE}(8 / 3,0)$


## Overview of metric construction

- Construct a metric on $\sqrt{8 / 3}$-LQG by making sense of the scaling limit of first passage percolation, a growth process we call $\operatorname{QLE}(8 / 3,0)$
- Member of a family of growth processes we call $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ which we conjecture describe the scaling limits of DLA and DBM on LQG surfaces


## Overview of metric construction

- Construct a metric on $\sqrt{8 / 3}$-LQG by making sense of the scaling limit of first passage percolation, a growth process we call $\operatorname{QLE}(8 / 3,0)$
- Member of a family of growth processes we call $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ which we conjecture describe the scaling limits of DLA and DBM on LQG surfaces
- It will not be a priori obvious that $\operatorname{QLE}(8 / 3,0)$ defines a metric


## Overview of metric construction

- Construct a metric on $\sqrt{8 / 3}$-LQG by making sense of the scaling limit of first passage percolation, a growth process we call $\operatorname{QLE}(8 / 3,0)$
- Member of a family of growth processes we call $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ which we conjecture describe the scaling limits of DLA and DBM on LQG surfaces
- It will not be a priori obvious that $\operatorname{QLE}(8 / 3,0)$ defines a metric
- We will extract the metric property by building on the reversibility of SLE ${ }_{6}$


## First passage percolation review

- Associate with a graph $(V, E)$ i.i.d. $\exp (1)$ edge weights



## First passage percolation review

- Associate with a graph $(V, E)$ i.i.d. $\exp (1)$ edge weights



## First passage percolation review

- Associate with a graph $(V, E)$ i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)



## First passage percolation review

- Associate with a graph $(V, E)$ i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- Goal: understand perturbed metric



## First passage percolation review

- Associate with a graph $(V, E)$ i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- Goal: understand perturbed metric
- If the graph has enough isotropy, one would expect that at large scales the perturbed metric behaves like the underlying graph metric



## First passage percolation review

- Associate with a graph $(V, E)$ i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- Goal: understand perturbed metric
- If the graph has enough isotropy, one would expect that at large scales the perturbed metric behaves like the underlying graph metric

- There is a Markovian way of growing a metric ball in FPP: the Eden growth model


## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).



## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).


Important observations:

- Conditional law of map given ball at time $n$ only depends on the boundary lengths of the outside components.


## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).


Important observations:

- Conditional law of map given ball at time $n$ only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.


## Eden model on random planar maps I

- RPM, random vertex $x$. Perform FPP from $x$ (Angel's peeling process).


Important observations:

- Conditional law of map given ball at time $n$ only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall)

## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat



## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.


## Eden model on random planar maps II

## Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball


## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$


## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of SLE $_{6}$



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of SLE $_{6}$
- Resample the tip according to boundary length



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of $\mathrm{SLE}_{6}$
- Resample the tip according to boundary length
- Repeat



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of $\mathrm{SLE}_{6}$
- Resample the tip according to boundary length
- Repeat



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of $\mathrm{SLE}_{6}$
- Resample the tip according to boundary length
- Repeat



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of $\mathrm{SLE}_{6}$
- Resample the tip according to boundary length
- Repeat



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of $\mathrm{SLE}_{6}$
- Resample the tip according to boundary length
- Repeat



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage



## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.


## Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point $x$
- Draw $\delta$ units of SLE $_{6}$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.
$\operatorname{QLE}(8 / 3,0)$ is $\mathrm{SLE}_{6}$ with tip re-randomization.


Discrete approximation of $\operatorname{QLE}(8 / 3,0)$. Metric ball on a $\sqrt{8 / 3}-\mathrm{LQG}$

## $\operatorname{QLE}(8 / 3,0)$ defines a metric on $\sqrt{8 / 3}-\mathrm{LQG}$

- At this point, we have a growth process which is a natural candidate to define a metric on $\sqrt{8 / 3}$-LQG.


## $\operatorname{QLE}(8 / 3,0)$ defines a metric on $\sqrt{8 / 3}-\mathrm{LQG}$

- At this point, we have a growth process which is a natural candidate to define a metric on $\sqrt{8 / 3}$-LQG.
- How do we show that this defines a metric?


## $\operatorname{QLE}(8 / 3,0)$ defines a metric on $\sqrt{8 / 3}-\mathrm{LQG}$

- At this point, we have a growth process which is a natural candidate to define a metric on $\sqrt{8 / 3}-L Q G$.
- How do we show that this defines a metric?
- As a start, at least show that we get a metric defined on an i.i.d. sequence of points $\left(x_{n}\right)$ chosen from the $\sqrt{8 / 3}$-LQG measure, which is determined by the GFF


## $\operatorname{QLE}(8 / 3,0)$ defines a metric on $\sqrt{8 / 3}-\mathrm{LQG}$

- At this point, we have a growth process which is a natural candidate to define a metric on $\sqrt{8 / 3}-L Q G$.
- How do we show that this defines a metric?
- As a start, at least show that we get a metric defined on an i.i.d. sequence of points $\left(x_{n}\right)$ chosen from the $\sqrt{8 / 3}$-LQG measure, which is determined by the GFF
- For each $x_{n}$, let $K_{t}^{n}$ be a $\operatorname{QLE}(8 / 3,0)$ starting from $x_{n}$ sampled conditionally independently given the GFF


## $\operatorname{QLE}(8 / 3,0)$ defines a metric on $\sqrt{8 / 3}-\mathrm{LQG}$

- At this point, we have a growth process which is a natural candidate to define a metric on $\sqrt{8 / 3}-L Q G$.
- How do we show that this defines a metric?
- As a start, at least show that we get a metric defined on an i.i.d. sequence of points $\left(x_{n}\right)$ chosen from the $\sqrt{8 / 3}$-LQG measure, which is determined by the GFF
- For each $x_{n}$, let $K_{t}^{n}$ be a $\operatorname{QLE}(8 / 3,0)$ starting from $x_{n}$ sampled conditionally independently given the GFF
- Define $d\left(x_{n}, x_{m}\right)$ to be the first time that $K_{t}^{n}$ swallows $x_{m}$


## $\operatorname{QLE}(8 / 3,0)$ defines a metric on $\sqrt{8 / 3}-\mathrm{LQG}$

- At this point, we have a growth process which is a natural candidate to define a metric on $\sqrt{8 / 3}-L Q G$.
- How do we show that this defines a metric?
- As a start, at least show that we get a metric defined on an i.i.d. sequence of points $\left(x_{n}\right)$ chosen from the $\sqrt{8 / 3}$-LQG measure, which is determined by the GFF
- For each $x_{n}$, let $K_{t}^{n}$ be a $\operatorname{QLE}(8 / 3,0)$ starting from $x_{n}$ sampled conditionally independently given the GFF
- Define $d\left(x_{n}, x_{m}\right)$ to be the first time that $K_{t}^{n}$ swallows $x_{m}$
- Need to check:
- Symmetry: $d\left(x_{n}, x_{m}\right)=d\left(x_{m}, x_{n}\right)$ for all $m, n$
- Triangle inequality: $d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{k}\right)+d\left(x_{k}, x_{m}\right)$ for all $n, k, m$


## $\operatorname{QLE}(8 / 3,0)$ defines a metric on $\sqrt{8 / 3}-\mathrm{LQG}$

- At this point, we have a growth process which is a natural candidate to define a metric on $\sqrt{8 / 3}-L Q G$.
- How do we show that this defines a metric?
- As a start, at least show that we get a metric defined on an i.i.d. sequence of points $\left(x_{n}\right)$ chosen from the $\sqrt{8 / 3}$-LQG measure, which is determined by the GFF
- For each $x_{n}$, let $K_{t}^{n}$ be a $\operatorname{QLE}(8 / 3,0)$ starting from $x_{n}$ sampled conditionally independently given the GFF
- Define $d\left(x_{n}, x_{m}\right)$ to be the first time that $K_{t}^{n}$ swallows $x_{m}$
- Need to check:
- Symmetry: $d\left(x_{n}, x_{m}\right)=d\left(x_{m}, x_{n}\right)$ for all $m, n$
- Triangle inequality: $d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{k}\right)+d\left(x_{k}, x_{m}\right)$ for all $n, k, m$
- Idea: use a strategy developed by Sheffield, Watson, Wu in the context of CLE ${ }_{4}$
- Gives (at a high level) conditions which imply that a family of growth processes (candidates for metric balls starting from a collection of points in the space) define a metric space.


## Checking the metric property

$y$

- $x, y$ distinct points in a metric space $(M, d)$


## Checking the metric property


$y$

- $x, y$ distinct points in a metric space $(M, d)$
- Pick $U \in[0,1]$ uniform and grow $B(x, r)$ for $r=U d(x, y)$


## Checking the metric property



- $x, y$ distinct points in a metric space $(M, d)$
- Pick $U \in[0,1]$ uniform and grow $B(x, r)$ for $r=U d(x, y)$
- Let $s$ be the smallest radius so that $B(y, s)$ barely intersects $B(x, r)$


## Checking the metric property



- $x, y$ distinct points in a metric space $(M, d)$
- Pick $U \in[0,1]$ uniform and grow $B(x, r)$ for $r=U d(x, y)$
- Let $s$ be the smallest radius so that $B(y, s)$ barely intersects $B(x, r)$
- As $s=(1-U) d(x, y)=V d(x, y)$ for $V \in[0,1]$ uniform, get the same picture if drawn in the opposite order


## Emergence of TBM in $\sqrt{8 / 3}-\mathrm{LQG}$

- Boundary length process for $\operatorname{QLE}(8 / 3,0)$ evolves in same way as in TBM
- Continuous state branching process with branching mechanism $\psi(u)=u^{3 / 2}$


## Emergence of TBM in $\sqrt{8 / 3}-\mathrm{LQG}$

- Boundary length process for $\operatorname{QLE}(8 / 3,0)$ evolves in same way as in TBM
- Continuous state branching process with branching mechanism $\psi(u)=u^{3 / 2}$
- Bubbles cut off by $\operatorname{QLE}(8 / 3,0)$ growth distributed uniformly on the boundary


## Emergence of TBM in $\sqrt{8 / 3}-\mathrm{LQG}$

- Boundary length process for $\operatorname{QLE}(8 / 3,0)$ evolves in same way as in TBM
- Continuous state branching process with branching mechanism $\psi(u)=u^{3 / 2}$
- Bubbles cut off by $\operatorname{QLE}(8 / 3,0)$ growth distributed uniformly on the boundary
- Profile of distances from a uniformly chosen point same as in TBM


## Finishing the proof

- Show that the metric space thus defined is homeomorphic to $\mathbf{S}^{2}$ and geodesic (size and shape estimates for $\operatorname{QLE}(8 / 3,0)$ - GFF calculations)


## Finishing the proof

- Show that the metric space thus defined is homeomorphic to $\mathbf{S}^{2}$ and geodesic (size and shape estimates for $\mathrm{QLE}(8 / 3,0)$ - GFF calculations)
- Show that the resulting metric space satisfies an axiomatic characterization of TBM


## Finishing the proof

- Show that the metric space thus defined is homeomorphic to $\mathbf{S}^{2}$ and geodesic (size and shape estimates for $\operatorname{QLE}(8 / 3,0)$ - GFF calculations)
- Show that the resulting metric space satisfies an axiomatic characterization of TBM
- Show that the metric space structure of TBM determines the $\sqrt{8 / 3}$-LQG surface


## Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$ ?


## Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$ ?
- What is their dimension?


## Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$ ?
- What is their dimension?
- What about $\gamma \neq \sqrt{8 / 3}$ ?


## Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$ ?
- What is their dimension?
- What about $\gamma \neq \sqrt{8 / 3}$ ?
- Is there an explicit description of the metric space structure (like for TBM)?


## Further questions

- What is the law of the geodesics for $\sqrt{8 / 3}-\mathrm{LQG}$ ?
- What is their dimension?
- What about $\gamma \neq \sqrt{8 / 3}$ ?
- Is there an explicit description of the metric space structure (like for TBM)?
- What is the dimension of the metric space?


## Thanks!

