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Overview

Mathematical population genetics: the study of mathematical
models of evolving populations.

By comparing predictions from models to observations, we can
draw inferences about how populations evolve and the causes of
genetic variability.

Focus on natural selection. Some individuals have a selective
advantage over others.



The Model
Consider a population with N individuals.

Each individual independently acquires mutations at times of a
rate up Poisson process. (upy = mutation rate)

Mutations are beneficial. An individual with j mutations (called
“type j5"") at time t has fitness

max{1l +sy(j — M(¢)), O},

where M (t) is the average number of mutations of the N indi-
viduals at time t. (s = selective benefit from a mutation)

Each individual independently lives for an exponential(1l) time.

When an individual dies, its replacement is chosen at random
from the population, with probability proportional to fitnhess.

Although model is simple, much is unknown about how the pop-
ulation behaves.



Questions of Interest

. Speed of evolution: how fast does M (t) increase?

. What is the distribution of the fitnesses of individuals in the
population at a given time?

. How can we describe the genealogy of the population?



One mutation at a time

If sy =s>0 and
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there will be only one beneficial mutation in population at a time
that has not already spread to the entire population.

Mutations happen at rate Nuy. Then the number of individuals
with the mutation behaves like an asymmetric random walk.

With probability approximately s, a selective sweep occurs, and
the beneficial mutation spreads to the entire population.

Exponential waiting time with rate Nupys until first selective
sweep, another exponential waiting time until next one, etc.

If mutations happen faster, so more than one beneficial mutation
IS in the population at a time, analysis is much more complicated.



Previous Non-Rigorous Work

Detailed non-rigorous work has been done on this model:

Rouzine, Wakeley, and Coffin (2003)
Desai and Fisher (2007)
Beerenwinkel et. al. (2007)

Brunet, Rouzine, and Wilke (2008)
Rouzine, Brunet, and Wilke (2008)
Park, Simon, and Krug (2010)

They obtained precise estimates on the speed of evolution. They
concluded that the distribution of fithesses of individuals at a
fixed time t is Gaussian, leading to a “Gaussian traveling wave.”

number

fitness



Previous Non-Rigorous Work, continued

Neher and Hallatschek (2013) and Desai, Walczak, and Fisher
(2013) argued that the genealogy of the population is given by
the Bolthausen-Sznitman coalescent.

Goal: For some range of up) and sp, obtain rigorously:
e [ he speed of evolution.
e [ he Gaussian shape for the distribution of fitnesses.

e [ he genealogy of the population.



Previous Rigorous Work

Durrett and Mayberry (2011) consider the case with sy = s> 0
and uy ~ N7P, where 0 < 8 < 1. If T} is the first time some
individual has 3 mutations,

=11
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where (tj)j’-ozl is a sequence of constants depending on s and §.

They also calculated the distribution of fithesses at a fixed time.
Only finitely many types present in the population at once.

Yu, Etheridge, and Cutherbertson (2010) considered similar model
with sy = s> 0 and uy = u > 0. They showed that for all 6 > O,
E[M(2)]

t > (log N)1 0

for sufficiently large N.

Kelly (2013) studied model of Yu, Etheridge, and Cuthbertson
and showed that

EM(t C'log N
lim sup [M(@)] < J .
t—00 t (loglog N)?2



Assumptions

log N
1. lim d — 0.
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= 0.
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Assumptions imply sy — 0 and N7% < py < s%; for all a,b > 0.

Suppose 1/2 <c<1and 0<d<1l—c. Assumptions hold if:

1
VIOgN

uy = e (109N, e~ (lPg )" < 5\ <

Hereafter, we write pu and s for up and syy.



Beginning of the process

Let X;(t) be the number of individuals at time ¢ with j mutations.

When t is small, Xg(t) ~ N and M(t) = O.

Approximate by multitype branching process:. type j individual
gives birth at rate 1 + js, dies at rate 1, mutates to type 5+ 1
at rate u. We get

Np(est — 1)

S

BIX1(0] & [ wBXo()] - e du s

By induction,

BIX;(1)] ~ Z_‘;‘:(est 1)l



Validity of the approximation

The approximation

B, (0] ~ 2 (et — 1y

.

can only hold as long as M (t) ~ 0. This requires X1(t) < N, for

which we need
1 S
t < —log (—) = ay-.
S L

Second-moment arguments show give X;(t) ~ E[X;(t)] when
t <apn and 53 < kp, Where

_ log N
 log(s/p)’

N

For j < ky, we have P(X;(eay) > 0) — 1.

For j > ky, it is not true that X,(t) = E[X;(t)].



Evolution of type 5 individuals
Let 7, = min{t: X;_1(t) > s/u}.

Stage 0: Before time 7;, typically no type j individuals appear.

Stage 1: Between times T and Tid1 type 5 — 1 individuals
acquire mutations, causing the type 5 population to emerge.

Stage 2: After Ti+1, type j population is well-established. Fur-
ther mutations from type 57— 1 to type 53 have a negligible effect.
Type 5 population grows at a predictable rate. For t > Tit1

s t
X;(1) % exp (/T s(j — M(w)) du>.

J+1



Stage 1 in more detail

For t € [Tj,Tj_|_1],

s (
X;_1(t) = —exp (/ s(j—1—M(u)) du).
H Tj
Let Q(t) = max{j: X,;(t) > 0} — M(¢t). Then
X 1(t) = EQSQ(T]‘)@—T;’)7
L
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if t—1; > 1/s.



Speed of evolution
Recall X;(t) ~ S(QT)+(=7)  get equal to s/p to get

1 S
Tj—l—l_Tj SQ(T])log( >

We will see that Q(7;) =~ 2log N/[log(s/u)] for large j, so rate at
which mutations take hold:

1 S 2slog N
~ Q Tj ~ 5
Ti+1—T7; log(s/p) [log(s/u)]
2s10g(Ns)

Desai and Fisher (2007):
[log(s/u)]?

2slog(IN,/sp)
[log((s/m) l0g(N/51))]?

Rouzine, Brunet, and Wilke (2008):

They used similar heuristics, but assumed the population was in
equilibrium. EXxpressions are equivalent under our assumptions.



Estimation of Q(t)

X;(t) surpasses X;_1(t) around time 7j+ay. [ay = (1/s)109(s/u)]
M(t) is approximately the value of ¢ such that r;, =t — ay.
Q(t) is approximately the number of 7; between t —ay and t.
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Rate at which the T; appear:
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After scaling,

log(s/p)
log N

t .
QWNQ%QQ):{e fo<t<1

ftt_l g(u) du ift>1.

Let U(t) be expected number of renewals by time ¢t when times
between renewals are independent Uniform(0,1).

Then U'(t) = q(t) for all t >0, so lim q(t) = 2.
t—00



Precise Result

Theorem (Schweinsberg, 2015): Suppose assumptions 1, 2,
and 3 hold. Let K be a compact subset of (0,1)U(1,00). Then

log(s/p)
sup ant) —q(t)| —p O.
sup | =10 L Qant) — a(t)]
Also, let
iy ={0 ifo<t<1
T 14+ g du i > 1
Then
log(s/u)
sSup M(ant) —m(t)| —p O,
SUP | g N (ant) ()| —p

where —, denotes convergence in probability as N — oco.

Remark: The convergence is not guaranteed at t = 1 because q
and m are not continuous at 1. Near time ap, the mean number
of mutations rapidly increases from 0 to ky = (logN)/log(s/u).



Comments about proof

1. Fort e [Tj,Tj_|_]_], approximate Xj(t) by a supercritical branch-
ing process with immigration.

2. For t > 7;41, control fluctuations in X,(¢) using second mo-
ment arguments, similar to Durrett and Mayberry (2011).

3. Challenge: We want to approximate
s t

X,;(t) = —exp /

H Tj+1

but M(u) is random and depends on X;(u).

s(j — M(u)) dU>

Solution: Show that the approximation works when M (u)
stays in a tube, and that M (u) stays in a tube as long as the
approximation works.

4. Challenge: Natural to consider population in equilibrium,
don’t rigorously understand the stationary distribution.

Solution: Follow process as it moves towards equilibrium.



Distribution of Fithesses

If Z ~ N(u,02), and let f be the density of Z. Then

flu+0O\ _ 2
'°g< () )‘ 252

1
Let Vi =T -+ (1 -+ T)aN, which is time when type 5 peaks.

2k N
Let j(t) be the value of j for which «; is closest to apt.

Theorem (Schweinsberg, 2015): Let € > 0. Let £ € Z. There
exists t(e) such that for each fixed ¢t > t(¢e),

lirm P( 109 (Xj(t)H(’Yj(t))) +£2[|09(3/M)]2
12
_ €llog(s/u)] ) _ 0
log N

Resembles Gaussian with variance 0% = 2log N/[log(s/u)]?.
However, 012\, — 0, so one type dominates.



Coalescent Processes

Sample n individuals at random from a population. Follow their
ancestral lines backwards in time. The lineages coalesce, until
they are all traced back to a common ancestor.

Represent by a stochastic process (IN(¢),t > 0) taking its values
in the set of partitions of {1,...,n}.

Kingman’s Coalescent (Kingman, 1982): Only two lineages
merge at a time. Each pair of lineages merges at rate one.

Coalescents with multiple mergers (Pitman, 1999; Sagitov,
1999): Many lineages can merge at once.



Bolthausen-Sznitman coalescent

When there are b lineages, each k-tuple (2 < k < b) of lineages
merges at rate

1
Aok = /o p*2(1 — p)>F dp.

Consider a Poisson point process on [0,00) x (0, 1] with intensity
dt x p~2 dp.

Begin with n lineages at time 0. If (¢,p) is a point of this Poisson
process, then at time ¢, there is a merger event in which each
lineage independently participates with probability p.

Rate of mergers impacting more than a fraction /(1 + =) of

lineages is 1
—2 —1
p “dp=x ~.
/w/(1+zc)

Bolthausen-Sznitman coalescent describes the genealogy when,

if the population has size K, new ‘“families’ of size at least Kx

appear at a rate proportional to :1:_1.



Genealogy of the Population
Recall the approximation X,;(t) ~ 5% (t=75) q; = Q(7;) + 1.
Usually, there will be many small type 5 families.
Consider the possibility of an unusually early mutation:
e Mutations at time u happen at rate puX,;_1(u).

e A mutation has probability approximately $q; of spreading,
then number of descendants at time ¢ is approximately

%% . .
Zest(tu) gy o exponential(1).
qu
e A successful mutation at time
1 1 B
7; + — 109 (—) + —
qu' SQj SC]j
has approximately We—Bes4(t-71) descendants at time t.

e [ he probability that there will be such a mutation with
We B > z is approximately qj_lx_l.



Tracing back ancestral lines
Sample n individuals at time anT'.

The individuals will most likely have the same type (type j) and
come from different type j ancestors at time 7,41 ~ an(T —1).
NO coalescence during this period.

Type j individuals at time Tit1 get traced back to type 3 —1
ancestors at time 7;, to type j — 2 ancestors at time 7;_1, etc.

At each step, small chance of multiple merger due to unusu-
ally early mutation, merger rates match Bolthausen-Sznitman
coalescent.

Similar heuristics appear in Desai, Walczak, and Fisher (2013)
and Neher and Hallatschek (2013).



Main coalescent result

Theorem (Schweinsberg, 2015): Fixt > 0and T > t+2. Sample
n individuals at time anyT. For 0 < u < t, let My(u) be the
partition of {1,...,n} such that ¢« and j are in the same block
if and only if the +th and jth sampled individuals have the same
ancestor at time an(T —w). Then

Jim P(My(D) = {1}, {n}) =1,

The finite-dimensional distributions of (My(1 + u),0 < u < t)
converge as N — oo to those of Bolthausen-Sznitman coalescent.



Importance of Assumption 2

Argument requires that after time Tit1 type 3 population grows
exponentially.

Recall the approximation

X;(1) v " @A) [* s gy,

7— .

We need to be able to ignore mutations after time ;4.

Contribution to integral comes when u — 7; is of order 1/s, need

1 < log N N
& T4 — T =
s Tt [log(s/1)]?

0,
which is close to Assumption 2.

When p is larger and this assumption fails:

e Type j+1 individuals start appearing before type 5 population
is fully established and growing exponentially.

° 012\, — 00, SO we could get a true Gaussian traveling wave.



Branching Brownian motion with absorption

Begin with particles in (0, c0). Each particle independently moves
according to one-dimensional Brownian motion with drift —uvyy,

5 D72

1% = — .

N (log N + 31og log N)2

Each particle splits into two at rate 1. Particles are Killed if they
reach the origin.

individuals in the population
fitness of individuals

births

deaths of unfit individuals

changes in fitness over generations

particles

positions of particles
branching events
absorption at O
movement of particles

4l

Bolthausen-Sznitman coalescent gives genealogy of particles.
Heuristic argument: Brunet, Derrida, Mueller, Munier (2006)
Rigorous argument: Berestycki, Berestycki, Schweinsberg (2013)



Comparison of models

In BBM with absorption, all individuals have the same birth rate,
but individuals with low fitness are killed.

In our model, all individuals have the same death rate, but indi-
viduals with higher fitness have a higher birth rate.

Speed of evolution: vy ~ v2 — C(log N)~2.
e Brunet-Derrida (1997): traveling wave with cutoff.
e Berard-Gouéré (2010): discrete-time population model.
e Mueller-Mytnik-Quastel (2011): FKPP equation with noise.
e Maillard (2013): BBM with N particles.

Density of particles near y roughly proportional to

) = e sin (7).

N
where Ly = (log N + 3loglog N)/+/2.

Time for two lineages to merge: O((log N)3).



Connection to two-type branching process
Suppose Type 1 individuals grow exponentially: X (t) ~ Ce?t.

A Type 1 individual gives birth to a Type 2 individual at rate wu.
Type 2 gives birth at rate b and dies at rate d, where b—d = \+s.

For large t, sizes of Type 2 “families”, properly scaled, can be ap-
proximated by Poisson process on (0, co) with intensity z—* 1dz,
where a = A/(\ + s).

Total number of Type 2 individuals has stable law of index «,
distribution of normalized family sizes is Poisson-Dirichlet(a, 0):
Durrett and Moseley (2010)
Durrett, Foo, Leder, Mayberry, and Michor (2011)
Leviyang (2012)

Let (M(t),t > 0) be the Bolthausen-Sznitman coalescent started
with n lineages. As n — oo, the distribution of the normalized
block sizes of M(t) converges to Poisson-Dirichlet(e~?t,0).

Suggests Bolthausen-Sznitman coalescent should arise if s — O.



