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Overview

Mathematical population genetics: the study of mathematical

models of evolving populations.

By comparing predictions from models to observations, we can

draw inferences about how populations evolve and the causes of

genetic variability.

Focus on natural selection. Some individuals have a selective

advantage over others.



The Model

Consider a population with N individuals.

Each individual independently acquires mutations at times of a
rate µN Poisson process. (µN = mutation rate)

Mutations are beneficial. An individual with j mutations (called
“type j”) at time t has fitness

max{1 + sN(j −M(t)), 0},

where M(t) is the average number of mutations of the N indi-
viduals at time t. (sN = selective benefit from a mutation)

Each individual independently lives for an exponential(1) time.

When an individual dies, its replacement is chosen at random
from the population, with probability proportional to fitness.

Although model is simple, much is unknown about how the pop-
ulation behaves.



Questions of Interest

1. Speed of evolution: how fast does M(t) increase?

2. What is the distribution of the fitnesses of individuals in the

population at a given time?

3. How can we describe the genealogy of the population?



One mutation at a time

If sN = s > 0 and

µN �
1

N logN
,

there will be only one beneficial mutation in population at a time
that has not already spread to the entire population.

Mutations happen at rate NµN . Then the number of individuals
with the mutation behaves like an asymmetric random walk.

With probability approximately s, a selective sweep occurs, and
the beneficial mutation spreads to the entire population.

Exponential waiting time with rate NµNs until first selective
sweep, another exponential waiting time until next one, etc.

If mutations happen faster, so more than one beneficial mutation
is in the population at a time, analysis is much more complicated.



Previous Non-Rigorous Work

Detailed non-rigorous work has been done on this model:

Rouzine, Wakeley, and Coffin (2003)
Desai and Fisher (2007)
Beerenwinkel et. al. (2007)
Brunet, Rouzine, and Wilke (2008)
Rouzine, Brunet, and Wilke (2008)
Park, Simon, and Krug (2010)

They obtained precise estimates on the speed of evolution. They
concluded that the distribution of fitnesses of individuals at a
fixed time t is Gaussian, leading to a “Gaussian traveling wave.”
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Previous Non-Rigorous Work, continued

Neher and Hallatschek (2013) and Desai, Walczak, and Fisher

(2013) argued that the genealogy of the population is given by

the Bolthausen-Sznitman coalescent.

Goal: For some range of µN and sN , obtain rigorously:

• The speed of evolution.

• The Gaussian shape for the distribution of fitnesses.

• The genealogy of the population.



Previous Rigorous Work

Durrett and Mayberry (2011) consider the case with sN = s > 0
and µN ∼ N−β, where 0 < β < 1. If Tj is the first time some
individual has j mutations,

Tj − Tj−1

logN
→p tj,

where (tj)
∞
j=1 is a sequence of constants depending on s and β.

They also calculated the distribution of fitnesses at a fixed time.
Only finitely many types present in the population at once.

Yu, Etheridge, and Cutherbertson (2010) considered similar model
with sN = s > 0 and µN = µ > 0. They showed that for all δ > 0,

E[M(t)]

t
≥ (logN)1−δ

for sufficiently large N .

Kelly (2013) studied model of Yu, Etheridge, and Cuthbertson
and showed that

lim sup
t→∞

E[M(t)]

t
≤

C logN

(log logN)2
.



Assumptions

1. lim
N→∞

logN

log(sN/µN) log(1/sN)
=∞.

2. lim
N→∞

logN

[log(sN/µN)]2
log

(
logN

log(sN/µN)

)
= 0.

3. lim
N→∞

sN logN

log(sN/µN)
= 0.

Assumptions imply sN → 0 and N−a � µN � sbN for all a, b > 0.

Suppose 1/2 < c < 1 and 0 < d < 1− c. Assumptions hold if:

µN = e−(logN)c, e−(logN)d ≤ sN ≤
1√

logN
.

Hereafter, we write µ and s for µN and sN .



Beginning of the process

Let Xj(t) be the number of individuals at time t with j mutations.

When t is small, X0(t) ≈ N and M(t) ≈ 0.

Approximate by multitype branching process: type j individual

gives birth at rate 1 + js, dies at rate 1, mutates to type j + 1

at rate µ. We get

E[X1(t)] ≈
∫ t

0
µE[X0(u)] · es(t−u) du ≈

Nµ(est − 1)

s
.

By induction,

E[Xj(t)] ≈
Nµj

sjj!
(est − 1)j.



Validity of the approximation

The approximation

E[Xj(t)] ≈
Nµj

sjj!
(est − 1)j

can only hold as long as M(t) ≈ 0. This requires X1(t)� N , for
which we need

t ≤
1

s
log

(
s

µ

)
= aN .

Second-moment arguments show give Xj(t) ≈ E[Xj(t)] when
t ≤ aN and j ≤ kN , where

kN =
logN

log(s/µ)
.

For j ≤ kN , we have P (Xj(εaN) > 0)→ 1.

For j > kN , it is not true that Xj(t) ≈ E[Xj(t)].



Evolution of type j individuals

Let τj = min{t : Xj−1(t) ≥ s/µ}.

Stage 0: Before time τj, typically no type j individuals appear.

Stage 1: Between times τj and τj+1, type j − 1 individuals

acquire mutations, causing the type j population to emerge.

Stage 2: After τj+1, type j population is well-established. Fur-

ther mutations from type j−1 to type j have a negligible effect.

Type j population grows at a predictable rate. For t ≥ τj+1,

Xj(t) ≈
s

µ
exp

( ∫ t
τj+1

s(j −M(u)) du

)
.



Stage 1 in more detail

For t ∈ [τj, τj+1],

Xj−1(t) ≈
s

µ
exp

( ∫ t
τj
s(j − 1−M(u)) du

)
.

Let Q(t) = max{j : Xj(t) > 0} −M(t). Then

Xj−1(t) ≈
s

µ
esQ(τj)(t−τj),

so

Xj(t) ≈
∫ t
τj
µ ·

s

µ
esQ(τj)(u−τj) · es(Q(τj)+1)(t−u) du

= ses(Q(τj)+1)(t−τj)
∫ t
τj
e−s(u−τj) du

≈ es(Q(τj)+1)(t−τj)

if t− τj � 1/s.



Speed of evolution

Recall Xj(t) ≈ es(Q(τj)+1)(t−τj). Set equal to s/µ to get

τj+1 − τj ≈
1

sQ(τj)
log

(
s

µ

)
.

We will see that Q(τj) ≈ 2 logN/[log(s/µ)] for large j, so rate at

which mutations take hold:

1

τj+1 − τj
≈

s

log(s/µ)
Q(τj) ≈

2s logN

[log(s/µ)]2

Desai and Fisher (2007):
2s log(Ns)

[log(s/µ)]2

Rouzine, Brunet, and Wilke (2008):
2s log(N

√
sµ)

[log((s/µ) log(N
√
sµ))]2

They used similar heuristics, but assumed the population was in

equilibrium. Expressions are equivalent under our assumptions.



Estimation of Q(t)

Xj(t) surpasses Xj−1(t) around time τj+aN . [aN = (1/s) log(s/µ)]
M(t) is approximately the value of i such that τi ≈ t− aN .
Q(t) is approximately the number of τj between t− aN and t.

x x x x x x x x
t− aN tτjτi τi+1 τj−1

Rate at which the τj appear:

1

τj+1 − τj
=

s

log(s/µ)
Q(τj).

After scaling,

log(s/µ)

logN
Q(aNt) ≈ q(t) =

{
et if 0 ≤ t < 1∫ t
t−1 q(u) du if t ≥ 1.

Let U(t) be expected number of renewals by time t when times
between renewals are independent Uniform(0,1).

Then U ′(t) = q(t) for all t ≥ 0, so lim
t→∞

q(t) = 2.



Precise Result

Theorem (Schweinsberg, 2015): Suppose assumptions 1, 2,

and 3 hold. Let K be a compact subset of (0,1)∪ (1,∞). Then

sup
t∈K

∣∣∣∣∣log(s/µ)

logN
Q(aNt)− q(t)

∣∣∣∣∣→p 0.

Also, let

m(t) =

{
0 if 0 ≤ t < 1
1 +

∫ t−1
0 q(u) du if t ≥ 1.

Then

sup
t∈K

∣∣∣∣∣log(s/µ)

logN
M(aNt)−m(t)

∣∣∣∣∣→p 0,

where →p denotes convergence in probability as N →∞.

Remark: The convergence is not guaranteed at t = 1 because q

and m are not continuous at 1. Near time aN , the mean number

of mutations rapidly increases from 0 to kN = (logN)/ log(s/µ).



Comments about proof

1. For t ∈ [τj, τj+1], approximate Xj(t) by a supercritical branch-
ing process with immigration.

2. For t ≥ τj+1, control fluctuations in Xj(t) using second mo-
ment arguments, similar to Durrett and Mayberry (2011).

3. Challenge: We want to approximate

Xj(t) ≈
s

µ
exp

( ∫ t
τj+1

s(j −M(u)) du

)
but M(u) is random and depends on Xj(u).

Solution: Show that the approximation works when M(u)
stays in a tube, and that M(u) stays in a tube as long as the
approximation works.

4. Challenge: Natural to consider population in equilibrium,
don’t rigorously understand the stationary distribution.

Solution: Follow process as it moves towards equilibrium.



Distribution of Fitnesses

If Z ∼ N(µ, σ2), and let f be the density of Z. Then

log

(
f(µ+ `)

f(µ)

)
= −

`2

2σ2
.

Let γj = τj +

(
1 +

1

2kN

)
aN , which is time when type j peaks.

Let j(t) be the value of j for which γj is closest to aNt.

Theorem (Schweinsberg, 2015): Let ε > 0. Let ` ∈ Z. There
exists t(ε) such that for each fixed t > t(ε),

lim
N→∞

P

(∣∣∣∣∣ log

(
Xj(t)+`(γj(t))

Xj(t)(γj(t))

)
+
`2[log(s/µ)]2

4 logN

∣∣∣∣∣
>
ε[log(s/µ)]2

logN

)
= 0.

Resembles Gaussian with variance σ2
N = 2 logN/[log(s/µ)]2.

However, σ2
N → 0, so one type dominates.



Coalescent Processes

Sample n individuals at random from a population. Follow their

ancestral lines backwards in time. The lineages coalesce, until

they are all traced back to a common ancestor.

Represent by a stochastic process (Π(t), t ≥ 0) taking its values

in the set of partitions of {1, . . . , n}.

Kingman’s Coalescent (Kingman, 1982): Only two lineages

merge at a time. Each pair of lineages merges at rate one.

Coalescents with multiple mergers (Pitman, 1999; Sagitov,

1999): Many lineages can merge at once.
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Bolthausen-Sznitman coalescent

When there are b lineages, each k-tuple (2 ≤ k ≤ b) of lineages
merges at rate

λb,k =
∫ 1

0
pk−2(1− p)b−k dp.

Consider a Poisson point process on [0,∞)× (0,1] with intensity

dt× p−2 dp.

Begin with n lineages at time 0. If (t, p) is a point of this Poisson
process, then at time t, there is a merger event in which each
lineage independently participates with probability p.

Rate of mergers impacting more than a fraction x/(1 + x) of
lineages is ∫ 1

x/(1+x)
p−2 dp = x−1.

Bolthausen-Sznitman coalescent describes the genealogy when,
if the population has size K, new “families” of size at least Kx
appear at a rate proportional to x−1.



Genealogy of the Population

Recall the approximation Xj(t) ≈ esqj(t−τj), qj = Q(τj) + 1.

Usually, there will be many small type j families.

Consider the possibility of an unusually early mutation:

• Mutations at time u happen at rate µXj−1(u).

• A mutation has probability approximately sqj of spreading,
then number of descendants at time t is approximately

W

sqj
esqj(t−u), W ∼ exponential(1).

• A successful mutation at time

τj +
1

sqj
log

(
1

sqj

)
+

B

sqj

has approximately We−Besqj(t−τj) descendants at time t.

• The probability that there will be such a mutation with
We−B ≥ x is approximately q−1

j x−1.



Tracing back ancestral lines

Sample n individuals at time aNT .

The individuals will most likely have the same type (type j) and

come from different type j ancestors at time τj+1 ≈ aN(T − 1).

No coalescence during this period.

Type j individuals at time τj+1 get traced back to type j − 1

ancestors at time τj, to type j − 2 ancestors at time τj−1, etc.

At each step, small chance of multiple merger due to unusu-

ally early mutation, merger rates match Bolthausen-Sznitman

coalescent.

Similar heuristics appear in Desai, Walczak, and Fisher (2013)

and Neher and Hallatschek (2013).



Main coalescent result

Theorem (Schweinsberg, 2015): Fix t > 0 and T > t+2. Sample

n individuals at time aNT . For 0 ≤ u ≤ t, let ΠN(u) be the

partition of {1, . . . , n} such that i and j are in the same block

if and only if the ith and jth sampled individuals have the same

ancestor at time aN(T − u). Then

lim
N→∞

P (ΠN(1) = {{1}, . . . , {n}}) = 1.

The finite-dimensional distributions of (ΠN(1 + u),0 ≤ u ≤ t)

converge as N →∞ to those of Bolthausen-Sznitman coalescent.



Importance of Assumption 2

Argument requires that after time τj+1, type j population grows
exponentially.

Recall the approximation

Xj(t) ≈ ses(Q(τj)+1)(t−τj)
∫ t
τj
e−s(u−τj) du.

We need to be able to ignore mutations after time τj+1.

Contribution to integral comes when u− τj is of order 1/s, need

1

s
� τj+1 − τj ⇐⇒

logN

[log(s/µ)]2
→ 0,

which is close to Assumption 2.

When µ is larger and this assumption fails:

• Type j+1 individuals start appearing before type j population
is fully established and growing exponentially.

• σ2
N →∞, so we could get a true Gaussian traveling wave.



Branching Brownian motion with absorption

Begin with particles in (0,∞). Each particle independently moves

according to one-dimensional Brownian motion with drift −νN ,

νN =

√√√√2−
2π2

(logN + 3 log logN)2
.

Each particle splits into two at rate 1. Particles are killed if they

reach the origin.

particles → individuals in the population
positions of particles → fitness of individuals
branching events → births
absorption at 0 → deaths of unfit individuals
movement of particles → changes in fitness over generations

Bolthausen-Sznitman coalescent gives genealogy of particles.

Heuristic argument: Brunet, Derrida, Mueller, Munier (2006)

Rigorous argument: Berestycki, Berestycki, Schweinsberg (2013)



Comparison of models

In BBM with absorption, all individuals have the same birth rate,
but individuals with low fitness are killed.

In our model, all individuals have the same death rate, but indi-
viduals with higher fitness have a higher birth rate.

Speed of evolution: νN ≈
√

2− C(logN)−2.

• Brunet-Derrida (1997): traveling wave with cutoff.

• Berard-Gouéré (2010): discrete-time population model.

• Mueller-Mytnik-Quastel (2011): FKPP equation with noise.

• Maillard (2013): BBM with N particles.

Density of particles near y roughly proportional to

f(y) = e−νNy sin

(
πy

LN

)
,

where LN = (logN + 3 log logN)/
√

2.

Time for two lineages to merge: O((logN)3).



Connection to two-type branching process

Suppose Type 1 individuals grow exponentially: X(t) ≈ Ceλt.

A Type 1 individual gives birth to a Type 2 individual at rate µ.

Type 2 gives birth at rate b and dies at rate d, where b−d = λ+s.

For large t, sizes of Type 2 “families”, properly scaled, can be ap-

proximated by Poisson process on (0,∞) with intensity x−α−1dx,

where α = λ/(λ+ s).

Total number of Type 2 individuals has stable law of index α,

distribution of normalized family sizes is Poisson-Dirichlet(α,0):

Durrett and Moseley (2010)
Durrett, Foo, Leder, Mayberry, and Michor (2011)
Leviyang (2012)

Let (Π(t), t ≥ 0) be the Bolthausen-Sznitman coalescent started

with n lineages. As n → ∞, the distribution of the normalized

block sizes of Π(t) converges to Poisson-Dirichlet(e−t,0).

Suggests Bolthausen-Sznitman coalescent should arise if s→ 0.


