Cooperative branching and pathwise duality for monotone systems

Jan M. Swart (Prague)
joint with A. Sturm (Göttingen)
Friday, February 26th, 2016

Outline

- Pathwise duality for monotone systems

Outline

- Pathwise duality for monotone systems
- Cooperative branching

Probability kernels

For general sets S, T, let $\mathcal{F}(S, T)$ denote the set of all functions $f: S \rightarrow T$.

Let S, T be finite sets. A linear operator $A: \mathcal{F}(T, \mathbb{R}) \rightarrow \mathcal{F}(S, \mathbb{R})$ is uniquely characterized by its matrix $(A(x, y))_{x \in S,} y \in T$ through the formula

$$
A f(x):=\sum_{y \in T} A(x, y) f(y) \quad(x \in S)
$$

A linear operator $K: \mathcal{F}(T, \mathbb{R}) \rightarrow \mathcal{F}(S, \mathbb{R})$ is a probability kernel from S to T if and only if

$$
K(x, y) \geq 0 \quad \text { and } \quad \sum_{z \in T} K(x, z)=1 \quad(x \in S, y \in T)
$$

Random mapping representations

Let K be a probability kernel from S to T.
A random mapping representation of K is an $\mathcal{F}(S, T)$-valued random variable M such that

$$
K(x, y)=\mathbb{P}[M(x)=y] \quad(x \in S, y \in T)
$$

We say that K is representable in $\mathcal{G} \subset \mathcal{F}(S, T)$ if M can be chosen so that it takes values in \mathcal{G}.

Monotone probability kernels

For partially ordered sets S, T, let $\mathcal{F}_{\text {mon }}(S, T)$ be the set of all monotone maps $m: S \rightarrow T$, i.e., those for which $x \leq x^{\prime}$ implies $m(x) \leq m\left(x^{\prime}\right)$.
A probability kernel K is called monotone if

$$
K f \in \mathcal{F}_{\mathrm{mon}}(S, \mathbb{R}) \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R})
$$

and monotonically representable if K is representable in $\mathcal{F}_{\text {mon }}(S, T)$.
Monotonical representability implies monotonicity:

$$
\begin{aligned}
& f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}) \quad \text { and } \quad x \leq x^{\prime} \quad \Rightarrow \\
& \quad K f(x)=\mathbb{E}[f(M(x))] \leq \mathbb{E}\left[f\left(M\left(x^{\prime}\right)\right)\right]=K f\left(x^{\prime}\right)
\end{aligned}
$$

Monotone probability kernels

J.A. Fill \& M. Machida (AOP 2001) (and also D.A. Ross (unpublished)) discovered that the converse does not hold. There are counterexamples with $S=T=\{0,1\}^{2}$.

On the positive side, Kamae, Krengel \& O'Brien (1977) and Fill \& Machida (2001) have shown that:
(Sufficient conditions for monotone representability)
Let S, T be finite partially ordered sets and assume that at least one of the following conditions is satisfied:
(i) S is totally ordered.
(ii) T is totally ordered.

Then any monotone probability kernel from S to T is monotonically representable.

Stochastic order

In particular, setting $S=\{1,2\}$, this proves that if μ_{1}, μ_{2} are probability laws on T such that

$$
\mu_{1} f \leq \mu_{2} f \quad \forall f \in \mathcal{F}_{\text {mon }}(T, \mathbb{R})
$$

then it is possible to couple random variables M_{1}, M_{2} with laws μ_{1}, μ_{2} such that $M_{1} \leq M_{2}$.

Markov semigroups

Let S be finite. By definition, a Markov semigroup is a collection of probability kernels $\left(P_{t}\right)_{t \geq 0}$ on S such that

$$
P_{0}=\lim _{t \downarrow 0} P_{t}=1 \quad \text { and } \quad P_{s} P_{t}=P_{s+t}
$$

Each Markov semigroup is of the form

$$
P_{t}:=e^{t G}=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} G^{n} \quad(t \geq 0)
$$

where the generator G satisfies

$$
G(x, y) \geq 0 \quad(x \neq y) \quad \text { and } \quad \sum_{y \in S} G(x, y)=0 \quad(x \in S)
$$

Representability of semigroups

By definition, G is representable in $\mathcal{G} \subset \mathcal{F}(S, S)$ if G can be written as

$$
G f(x)=\sum_{m \in \mathcal{G}} r_{m}(f(m(x))-f(x)),
$$

where $\left(r_{m}\right)_{m \in \mathcal{G}}$ are nonnegative constants (rates).

(Representability of semigroups)

Assume that \mathcal{G} is closed under composition and contains the identity map. Then the following statements are equivalent:
(i) G can be represented in \mathcal{G}.
(ii) P_{t} can be represented in \mathcal{G} for all $t \geq 0$.

Stochastic flows

Proof of $\mathbf{(i)} \Rightarrow \mathbf{(i i)}$ Let ω be a Poisson subset of $\mathcal{G} \times \mathbb{R}$ with local intensity $r_{m} \mathrm{~d} t$ and let $\omega_{s, u}:=\{(m, t) \in \omega: s<t \leq u\}$.
Define random maps $\left(\mathbf{X}_{s, u}\right)_{s \leq u}$ by composing the maps in $\omega_{s, u}$ in the order of the time at which they occur:

$$
\begin{aligned}
\mathbf{X}_{s, u} & :=m_{n} \circ \cdots \circ m_{1} \\
\quad \text { with } \quad \omega_{s, u} & =\left\{\left(m_{1}, t_{1}\right), \ldots,\left(m_{n}, t_{n}\right)\right\}, \quad t_{1}<\cdots<t_{n} .
\end{aligned}
$$

The $\left(\mathbf{X}_{s, u}\right)_{s \leq u}$ form a stochastic flow:

$$
\mathbf{X}_{s, s}=1 \quad \text { and } \quad \mathbf{X}_{t, u} \circ \mathbf{X}_{s, u} \quad(s \leq t \leq u)
$$

with independent increments:
$\mathbf{X}_{t_{0}, t_{1}}, \ldots, \mathbf{X}_{t_{n-1}, t_{n}}$ independent for $t_{0}<\cdots<t_{n}$.

Stochastic flows

If X_{0} is independent of ω, then

$$
X_{t}:=\mathbf{X}_{0, t}\left(X_{0}\right) \quad(t \geq 0)
$$

defines a Markov process $\left(X_{t}\right)_{t \geq 0}$ with generator G, and

$$
P_{t}(x, y)=\mathbb{P}\left[\mathbf{X}_{0, t}(x)=y\right]
$$

gives the desired random mapping representation of the Markov semigroup $\left(P_{t}\right)_{t \geq 0}$ with generator G.

We call the Poisson set ω a graphical representation of X.
Note: We have defined $\mathbf{X}_{s, t}$ right-continuous in s and t. As a result, $\left(X_{t}\right)_{t \geq 0}$ has right-continuous sample paths.

Duality

Two Markov processes X and Y with state spaces S and T are dual with duality function $\psi: S \times T \rightarrow \mathbb{R}$ iff

$$
\mathbb{E}\left[\psi\left(X_{t}, Y_{0}\right)\right]=\mathbb{E}\left[\psi\left(X_{0}, Y_{t}\right)\right] \quad(*) .
$$

for all deterministic initial states X_{0} and Y_{0}.
If $(*)$ holds for deterministic initial states, then also for random initial states, provided X_{t} is independent of Y_{0} and X_{0} is independent of Y_{t}.

In terms of semigroups $\left(P_{t}\right)_{t \geq 0},\left(Q_{t}\right)_{t \geq 0}$ and generators G, H, duality says

$$
\begin{aligned}
P_{t} \psi & =\psi Q_{t}^{\dagger} \quad(t \geq 0) \\
\Leftrightarrow \quad G \psi & =\psi H^{\dagger}
\end{aligned}
$$

where A^{\dagger} denotes the adjoint of a matrix A.

Pathwise duality

Two maps $m: S \rightarrow S$ and $\hat{m}: T \rightarrow T$ are dual w.r.t. the duality function ψ iff

$$
\psi(m(x), y)=\psi(x, \hat{m}(y)) \quad(x \in S, y \in T)
$$

Two stochastic flows $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$ and $\left(\mathbf{Y}_{s, t}\right)_{s \leq t}$ with independent increments are dual w.r.t. the duality function ψ if:
(i) A.s. $\forall s \leq t$, the maps $\mathbf{X}_{s-, t-}$ and $\mathbf{Y}_{-t,-s}$ are dual w.r.t. ψ.
(ii) $\left(\mathbf{X}_{t_{0}-, t_{1}-}, \mathbf{Y}_{-t_{1},-t_{0}}\right), \ldots,\left(\mathbf{X}_{t_{n-1}, t_{n}}, \mathbf{Y}_{-t_{n},-t_{n-1}}\right)$ are independent for $t_{0}<\cdots<t_{n}$.
To get a sensible definition, we have to take the left-continuous modification $\mathbf{X}_{s-, t-}$ (if $\mathbf{Y}_{s, t}$ is right-continuous as usual).

Pathwise duality

Two Markov processes X and Y are pathwise dual if they can be constructed from stochastic flows that are dual. Pathwise duality implies duality:

$$
\begin{aligned}
& \mathbb{E}\left[\psi\left(X_{t}, Y_{0}\right)\right]=\mathbb{E}\left[\psi\left(\mathbf{X}_{0-, t-}\left(X_{0}\right), Y_{0}\right)\right] \\
& \quad=\mathbb{E}\left[\psi\left(X_{0}, \mathbf{Y}_{-t, 0}\left(Y_{0}\right)\right)\right]=\mathbb{E}\left[\psi\left(X_{0}, Y_{t}\right)\right]
\end{aligned}
$$

Even though pathwise duality is much stronger than duality, lots of well-known dualities can be realized as pathwise dualities.

Pathwise duality

(Pathwise duality) If the generators G and H of X and Y have random mapping representations of the form

$$
\begin{aligned}
& G f(x)=\sum_{m \in \mathcal{G}} r_{m}(f(m(x))-f(x)), \\
& H f(x)=\sum_{m \in \mathcal{G}} r_{m}(f(\hat{m}(y))-f(y)),
\end{aligned}
$$

where each map \hat{m} is a dual of m, then X and Y are pathwise dual.
Proof Given a graphical representation ω of X, we can define a graphical representation $\hat{\omega}$ for Y by

$$
\hat{\omega}:=\{(\hat{m},-t):(m, t) \in \omega\} .
$$

Then the stochastic flows $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$ and $\left(\mathbf{Y}_{s, t}\right)_{s \leq t}$ associated with ω and $\hat{\omega}$ are dual.

Pathwise duality

In this picture

$$
\mathbf{X}_{0, t}=m_{4} \circ \cdots \circ m_{1} \quad \text { is dual to } \quad \mathbf{Y}_{-t, 0}=\hat{m}_{1} \circ \cdots \circ \hat{m}_{4} .
$$

Invariant subspaces

Let $\mathcal{P}(S)$ be the set of all subsets of S.
Let $m^{-1}: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ denote the inverse image map

$$
m^{-1}(A):=\{x \in S: m(x) \in A\}
$$

Observation m^{-1} is dual to m w.r.t. to the duality function

$$
\psi(x, A):=1_{\{x \in A\}}
$$

Consequence Each Markov process X with state space S (and given random mapping representation) has a pathwise dual Y with state space $\mathcal{P}(S)$ and generator

$$
H f(A):=\sum_{m \in \mathcal{G}} r_{m}\left(f\left(m^{-1}(A)\right)-f(A)\right)
$$

In practise, this dual is not very useful since the space $\mathcal{P}(S)$ is very big. Useful duals are associated with invariant subspaces of $\underset{\underline{\underline{\underline{P}}}}{\underline{\underline{P}}}(S)_{\underline{\underline{\underline{\varepsilon}}}}$

A bit of order theory

Let S be a finite partially ordered space. The "upset" and "downset" of $A \subset S$ are defined as

$$
\begin{aligned}
& A^{\uparrow}:=\{x \in S: x \geq a \text { for some } a \in A\}, \\
& A^{\downarrow}:=\{x \in S: x \leq a \text { for some } a \in A\} .
\end{aligned}
$$

A set $A \subset S$ is increasing (resp. decreasing) if $A^{\uparrow}=A$ (resp. $A^{\downarrow}=A$) and a principal filter (resp. principal ideal) if A is of the form $A=\{a\}^{\uparrow}$ (resp. $\left.A=\{a\}^{\downarrow}\right)$ for some $a \in S$. We let

$$
\begin{aligned}
\mathcal{P}_{\mathrm{inc}}(S) & :=\{A \subset S: A \text { is increasing }\} \\
\mathcal{P}_{\mathrm{linc}}(S) & :=\{A \subset S: A \text { is a principal filter }\}, \\
\mathcal{P}_{\mathrm{dec}}(S) & :=\{A \subset S: A \text { is decreasing }\} \\
\mathcal{P}_{!\mathrm{dec}}(S) & :=\{A \subset S: A \text { is a principal ideal }\} .
\end{aligned}
$$

A bit of order theory

A partially ordered set S is bounded from below resp. above if there exists an element 0 resp. 1 such that

$$
0 \leq x \quad(x \in S) \quad \text { resp. } x \leq 1 \quad(x \in S)
$$

A lattice is a partially ordered set such that for every $x, y \in S$ there exist $x \vee y \in S$ and $x \wedge y \in S$ called the supremum or join and infimum or meet of x and y, respectively, such that

$$
\{x\}^{\uparrow} \cap\{y\}^{\uparrow}=\{x \vee y\}^{\uparrow} \quad \text { and } \quad\{x\}^{\downarrow} \cap\{y\}^{\downarrow}=\{x \wedge y\}^{\downarrow}
$$

Finite lattices are bounded from below and above.
A map $m: S \rightarrow S$ is additive if

$$
m(0)=0 \quad \text { and } \quad m(x \vee y)=m(x) \vee m(y) \quad(x, y \in S)
$$

Monotone and additive maps

(Monotone and additive maps)
(i) Let S and T be partially ordered sets and let $m: S \rightarrow T$ be a map. Then m is monotone if and only if

$$
m^{-1}(A) \in \mathcal{P}_{\mathrm{dec}}(S) \text { for all } A \in \mathcal{P}_{\mathrm{dec}}(T)
$$

(ii) If S and T are finite lattices, then m is additive if and only if

$$
m^{-1}(A) \in \mathcal{P}_{!\mathrm{dec}}(S) \text { for all } A \in \mathcal{P}_{!\operatorname{dec}}(S)
$$

Dual spaces

Let S be a partially ordered set. A dual of S is a partially ordered set S^{\prime} together with a bijection $S \ni x \mapsto x^{\prime} \in S^{\prime}$ such that

$$
x \leq y \quad \text { if and only if } \quad x^{\prime} \geq y^{\prime}
$$

Example 1: For any partially ordered set S, we may take $S^{\prime}:=S$ but equipped with the reversed order, and $x \mapsto x^{\prime}$ the identity map.

Example 2: If Λ is a set and $S \subset \mathcal{P}(\Lambda)$ is a set of subsets of Λ, equipped with the partial order of inclusion, then we may take for $x^{\prime}:=\Lambda \backslash x$ the complement of x and $S^{\prime}:=\left\{x^{\prime}: x \in S\right\}$.

Additive systems duality

Let X be a Markov process in a finite lattice S.
Assume that the generator of X is representable in additive maps.
Then X has a pathwise dual that takes values in the invariant subspace $\mathcal{P}_{\text {!dec }}(S) \subset \mathcal{P}(S)$.
A convenient way to encode an element $A \in \mathcal{P}_{\text {!dec }}(S)$ is to write

$$
A=\left\{y^{\prime}\right\}^{\downarrow} \quad \text { with } \quad y \in S^{\prime}
$$

Identifying $\mathcal{P}_{\text {!dec }}(S) \cong S^{\prime}$, the duality function becomes

$$
\psi(x, y)=1_{\left\{x \leq y^{\prime}\right\}}=1_{\left\{y \leq x^{\prime}\right\}} \quad\left(x \in S, y \in S^{\prime}\right)
$$

(Additive duality) A map $m: S \rightarrow S$ has a dual $m^{\prime}: S^{\prime} \rightarrow S^{\prime}$ w.r.t. ψ if and only if m is additive. The dual map m^{\prime} is unique and also an additive map.

Siegmund's duality

Let $S=\{0, \ldots, n\}$ be totally ordered and let $S^{\prime}:=S$ equipped with the reversed order.
A map $m: S \rightarrow S$ is additive iff m is monotone and $m(0)=0$. Each such map has a dual $m^{\prime}: S^{\prime} \rightarrow S^{\prime}$ that is monotone and satisfies $m(n)=n$.
(Siegmund's dual) Let X be a monotone Markov process in S such that 0 is a trap. Then X has a dual Y w.r.t. to the duality function $\psi(x, y):=1_{\{x \leq y\}}$. The dual process is also monotone and has n as a trap. Moreover, the duality can be realized in a pathwise way.

Additive particle systems

Let $S=\mathcal{P}(\Lambda)$ with Λ a finite set, and let $x \mapsto x^{\prime} \in S^{\prime}:=\mathcal{P}(\Lambda)$ denote the complement map $x^{\prime}:=\Lambda \backslash x$.
(Additive particle systems) Let X be a Markov process in S whose generator can be represented in additive maps. Then X has a pathwise dual Y w.r.t. to the duality function $\psi(x, y):=1_{\{x \cap y=\emptyset\}}$, and Y is also an additively representable Markov process.

Examples: Voter model, contact process, exclusion process, systems of coalescing random walks.

Krone's duality

Steve Krone [AAP 1999] has studied a two-stage contact process, with state space of the form $S=\{0,1,2\}^{\wedge}$. He interprets $x(i)=0,1$, or 2 as an empty site, young, or adult organism, and defines maps

$$
\begin{array}{lll}
\text { grow up } & a_{i}(x)(k):=2 & \text { if } k=i, x(i)=1, \\
\text { give birth } & b_{i j}(x)(k):=1 & \text { if } k=j, x(i)=2, x(j)=0, \\
\text { young dies } & c_{i}(x)(k):=0 & \text { if } k=i, x(i)=1, \\
\text { death } & d_{i}(x)(k):=0 & \text { if } k=i, \\
\text { grow younger } & e_{i}(x)(k):=1 & \text { if } k=i, x(i)=2,
\end{array}
$$

where in all cases not mentioned, the maps have no effect.

Krone's duality

We set $S^{\prime}:=S$ and define $S \ni x \mapsto x^{\prime} \in S^{\prime}$ by $x^{\prime}(i):=2-x(i)$.
Then the duality function becomes

$$
\psi(x, y)=1_{\left\{x \leq y^{\prime}\right\}}=1_{\{x(i)+y(i) \leq 2 \forall i \in \Lambda\}}
$$

(Krone's dual) The maps $a_{i}, b_{i j}, c_{i}, d_{i}, e_{i}$ are all additive and their duals are given by

$$
a_{i}^{\prime}=a_{i}, \quad b_{i j}^{\prime}=b_{j i}, \quad c_{i}^{\prime}=e_{i}, \quad d_{i}^{\prime}=d_{i}, \quad e_{i}^{\prime}=c_{i} .
$$

Percolation representations

Additive particle systems and their duals can be constructed in terms of open paths. In this example, X is a voter model and Y are coalescing random walks.

Percolation representations

Every additive Markov process X taking values ina finite lattice S has a percolation representation. If moreover S is a distributive lattice, then X and its dual Y can be represented together.

Monotone systems duality

Let X be a Markov process in a finite partially ordered set S. Assume that the generator of X is representable in monotone maps.
Then X has a pathwise dual that takes values in the invariant subspace $\mathcal{P}_{\text {dec }}(S) \subset \mathcal{P}(S)$.
A convenient way to encode an element $A \in \mathcal{P}_{\text {! dec }}(S)$ is to write

$$
A=\left\{B^{\prime}\right\}^{\downarrow} \quad \text { with } \quad B \subset S^{\prime}
$$

The duality function then becomes

$$
\left.\psi(x, B)=1_{\left\{x \leq b^{\prime}\right.} \text { for some } b \in B\right\}
$$

For a monotone $m: S \rightarrow S$, we define $m^{\dagger}: \mathcal{P}\left(S^{\prime}\right) \rightarrow \mathcal{P}\left(S^{\prime}\right)$ and $m^{*}: \mathcal{P}\left(S^{\prime}\right) \rightarrow \mathcal{P}\left(S^{\prime}\right)$ by

$$
m^{\dagger}(B)^{\prime}:=\left(m^{-1}\left(B^{\prime \downarrow}\right)\right)_{\max } \quad \text { and } \quad m^{*}(B)^{\prime}:=\bigcup_{x \in B}\left(m^{-1}\left(\left\{x^{\prime}\right\}^{\downarrow}\right)\right)_{\max }
$$

Monotone systems duality

(Gray's (1986) dual) The maps m^{\dagger} and m^{*} are both dual to m w.r.t. ψ. Moreover,

$$
\begin{aligned}
& m^{\dagger}(B)=m^{\dagger}(B)_{\min }=m^{*}(B)_{\min } \\
& m^{*}(B \cup C)=m^{*}(B) \cup m^{*}(C)
\end{aligned}
$$

In the special case that S is a lattice and m is additive,

$$
m^{*}(B)=m^{\prime}(B):=\left\{m^{\prime}(y): y \in B\right\}
$$

where m^{\prime} is the additive dual of m.

Here $\quad A_{\text {min }}:=\{x \in A: x$ is a minimal element of $A\}$

$$
=\{x \in A: \nexists y \in A, y \neq x \text { s.t. } y \leq x\}
$$

Cooperative branching

Let S be a finite lattice and let $m: S \rightarrow S$ be monotone. Then m is automatically superadditive:

$$
m(x \vee y) \geq m(x) \vee m(y)
$$

For monotone maps that are not additive, this inequality is strict. A good example is the cooperative branching map

$$
\begin{aligned}
110 & \mapsto 111, \\
100 & \mapsto 100, \\
010 & \mapsto 010,
\end{aligned}
$$

which can be interpreted as two individuals cooperating to give birth to a third one.

Cooperative branching

DeMasi, Ferrari \& Lebowitz [JSP 1986], C. Noble [AOP 1992], R. Durrett [JAP 1992], and C. Neuhauser and S.W. Pacala [AAP 1999] consider a model with cooperative branching, deaths, and fast stirring. They call this the sexual reproduction process.

The sexual reproduction process

$\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ takes values in the space of all configurations ... $101101001001 \ldots$ and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(death)	1	$\mapsto 0$	with rate	1,
(stirring)	10	$\mapsto 01$	with rate	ε^{-1},
(stirring)	01	$\mapsto 10$	with rate	ε^{-1}.

The sexual reproduction process

$\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ takes values in the space of all configurations ... $101101001001 \ldots$ and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(death)	1	$\mapsto 0$	with rate	1,
(stirring)	10	$\mapsto 01$	with rate	ε^{-1},
(stirring)	01	$\mapsto 10$	with rate	ε^{-1}.

Interpretation:

- 'Sexual' reproduction.

The sexual reproduction process

$\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ takes values in the space of all configurations ... 101101001001 \ldots and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(death)	1	$\mapsto 0$	with rate	1,
(stirring)	10	$\mapsto 01$	with rate	ε^{-1},
(stirring)	01	$\mapsto 10$	with rate	ε^{-1}.

Interpretation:

- 'Sexual' reproduction.
- Competition for limited space.

The sexual reproduction process

$\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ takes values in the space of all configurations ... 101101001001 \ldots and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(death)	1	$\mapsto 0$	with rate	1,
(stirring)	10	$\mapsto 01$	with rate	ε^{-1},
(stirring)	01	$\mapsto 10$	with rate	ε^{-1}.

Interpretation:

- 'Sexual' reproduction.
- Competition for limited space.
- Death.

The sexual reproduction process

$\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ takes values in the space of all configurations ... 101101001001 \ldots and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,
(death)	1	$\mapsto 0$	with rate	1,
(stirring)	10	$\mapsto 01$	with rate	ε^{-1},
(stirring)	01	$\mapsto 10$	with rate	ε^{-1}.

Interpretation:

- 'Sexual' reproduction.
- Competition for limited space.
- Death.
- Migration.

A cooperative branching-coalescent

Let $\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ take values in the space of all configurations ... $101101001001 \ldots$ and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coal. RW)	10	\mapsto	$\mapsto 1$	with rate	$\frac{1}{2}$,
(coal. RW)	01	$\mapsto 10$	with rate	$\frac{1}{2}$,	
(coal. RW)	11	\mapsto	01	with rate	$\frac{1}{2}$,
(coal. RW)	11	\mapsto	10	with rate	$\frac{1}{2}$.

A cooperative branching-coalescent

Let $\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ take values in the space of all configurations ... $101101001001 \ldots$ and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coal. RW)	10	\mapsto		with rate	$\frac{1}{2}$,
(coal. RW)	01	$\mapsto 10$	with rate	$\frac{1}{2}$,	
(coal. RW)	11	\mapsto	01	with rate	$\frac{1}{2}$,
(coal. RW)	11	\mapsto	10	with rate	$\frac{1}{2}$.

Interpretation:

- Cooperative reproduction.

A cooperative branching-coalescent

Let $\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ take values in the space of all configurations ... $101101001001 \ldots$ and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coal. RW)	10	\mapsto		with rate	$\frac{1}{2}$,
(coal. RW)	01	$\mapsto 10$	with rate	$\frac{1}{2}$,	
(coal. RW)	11	\mapsto	01	with rate	$\frac{1}{2}$,
(coal. RW)	11	\mapsto	10	with rate	$\frac{1}{2}$.

Interpretation:

- Cooperative reproduction.
- Competition for limited space.

A cooperative branching-coalescent

Let $\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ take values in the space of all configurations ... $101101001001 \ldots$ and evolve as:

(coop. bra.)	110	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coop. bra.)	011	$\mapsto 111$	with rate	$\frac{1}{2} \lambda$,	
(coal. RW)	10	\mapsto		with rate	$\frac{1}{2}$,
(coal. RW)	01	$\mapsto 10$	with rate	$\frac{1}{2}$,	
(coal. RW)	11	\mapsto	$\mapsto 1$	with rate	$\frac{1}{2}$,
(coal. RW)	11	\mapsto	10	with rate	$\frac{1}{2}$.

Interpretation:

- Cooperative reproduction.
- Competition for limited space.
- Migration.

A cooperative branching-coalescent

Let $\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\left(X_{t}(i)\right)_{i \in \mathbb{Z}}$ take values in the space of all configurations ... $101101001001 \ldots$ and evolve as:

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2} \lambda$,
(coop. bra.)	011	\mapsto	$\mapsto 11$	with rate	$\frac{1}{2} \lambda$,
(coal. RW)	10	\mapsto	01	with rate	$\frac{1}{2}$,
(coal. RW)	01	\mapsto	10	with rate	$\frac{1}{2}$,
(coal. RW)	11	\mapsto	01	with rate	$\frac{1}{2}$,
(coal. RW)	11	\mapsto	10	with rate	$\frac{1}{2}$.

Interpretation:

- Cooperative reproduction.
- Competition for limited space.
- Migration.
- No spontaneous deaths!

A graphical representation

A cooperative branching-coalescent

Time $=$ upwards, black $=$ a particle, $\lambda=2.333$.

Critical points

Define

- The process survives if $\mathbb{P}^{x}\left[\left|X_{t}\right|>1 \forall t \geq 0\right]>0$ for some, and hence for all initial states with $1<|x|<\infty$ particles. Note: a single particle can neither die nor reproduce!
- The process is stable if there exists an invariant law that is concentrated on nonzero states.
Monotonicity implies that there exist $\lambda_{\mathrm{c}}, \lambda_{\mathrm{c}}^{\prime}$ such that
- The process survives for $\lambda>\lambda_{\mathrm{c}}$ and dies out for $\lambda<\lambda_{\mathrm{c}}$.
- The process is stable for $\lambda>\lambda_{\mathrm{c}}^{\prime}$ and unstable for $\lambda<\lambda_{\mathrm{c}}^{\prime}$.
[Sturm \& S. '14] $1 \leq \lambda_{\mathrm{c}}, \lambda_{\mathrm{c}}^{\prime}<\infty$.
Numerically: $\lambda_{\mathrm{c}} \approx \lambda_{\mathrm{c}}^{\prime} \approx 2.47 \pm 0.02$.
Open problem: Prove that $\lambda_{\mathrm{c}}=\lambda_{\mathrm{c}}^{\prime}$.

Critical points

$\psi(\lambda):=\mathbb{P}\left[\left|X_{t}\right|>1 \forall t \geq 0\right]$ starting with two particles on neighboring sites.
$\theta(\lambda):=\mathbb{P}\left[X_{\infty}(0)=1\right]$ where X_{∞} distributed according to the upper invariant law.

The subcritical regime

Consider

$$
\begin{array}{lll}
\mathbb{P}\left[\left|X_{t}\right|>1\right] & \text { with } & X_{0}=\delta_{0}+\delta_{1} \quad \text { (two particles) } \\
\mathbb{P}\left[X_{t}(0)=1\right] & \text { with } \quad X_{0}=\underline{1} \quad \text { (fully occupied) }
\end{array}
$$

[Bezuidenhout \& Grimmett '91] For the contact process, in the subcritical regime $\lambda<\lambda_{\text {c }}$, both quantities decay exponentially fast to zero.
[Sturm \& S. '14] For the cooperative branching-coalescent, both quantities decay not faster than as $t^{-1 / 2}$. For $\lambda \leq \frac{1}{2}$, this is the exact rate of convergence.
Proof of the lower bound: By monotonicity, we can estimate the cooperative branching-coalescent by a pure coalescent, for which both quantities decay like $t^{-1 / 2}$.

Proof of the upper bound

The generator of the process has the random mapping representation

$$
\begin{aligned}
G f(x)= & \lambda \sum_{i \in \mathbb{Z}}\left(\frac{1}{2} f\left(\overrightarrow{\operatorname{coop}}_{i}(x)\right)+\frac{1}{2} f\left(\operatorname{coo}_{i}(x)\right)-f(x)\right) \\
& +\sum_{i \in \mathbb{Z}+\frac{1}{2}}\left(\frac{1}{2} f\left(\overrightarrow{\mathrm{rw}}_{i}(x)\right)+\frac{1}{2} f({\underset{\mathrm{rw}}{i}}(x))-f(x)\right)
\end{aligned}
$$

Proof of the upper bound

The coalescing random walk map $\overrightarrow{\mathrm{rw}} ;$ is dual to the voter model map vot $_{i}$ in the sense of additive systems duality, and likewise $\stackrel{\text { rw }}{i}^{\overleftarrow{ }}$ is dual to $\overrightarrow{v o t}_{i}$.

Proof of the upper bound

The cooperative branching maps $\overrightarrow{\mathrm{coop}_{i}}$ and $\operatorname{cö}^{\leftarrow} \mathrm{p}_{i}$ are not additive, but they are still monotone, so we resort to Gray's dual map m* and the duality function

$$
\begin{aligned}
\psi(x, Y) & \left.=1_{\left\{x \leq y^{\prime}\right.} \text { for some } y \in Y\right\} \\
& \left.=1_{\{x \wedge y=0} \text { for some } y \in Y\right\}
\end{aligned}
$$

or equivalently,

$$
\phi(x, Y):=1-\psi(x, Y)=1_{\{x \wedge y \neq 0 \text { for all } y \in Y\}}
$$

The dual process Y_{t} takes values in the space $\mathcal{P}_{\text {fin }}\left(\{0,1\}^{\mathbb{Z}}\right)$ of all finite collections of "voter model configurations".

Proof of the upper bound

We recall that if m is an additive map, m^{\prime} is its additive dual and m^{*} is Gray's dual map, then

$$
m^{*}(B)=m^{\prime}(B):=\left\{m^{\prime}(y): y \in B\right\}
$$

In particular, if $m=\overrightarrow{\mathrm{rw}}_{i}$ or $=\stackrel{\overleftarrow{\mathrm{r}}}{i}^{\text {is a coalescing random walk }}$ map, then m^{*} is a voter model map, applied to all configurations $y \in Y_{t}$ simultaneously.

In the absence of cooperative branching, Y_{t} is a collection of coupled voter models that evolve simultaneously.

Proof of the upper bound

For the cooperative branching maps $m=\overrightarrow{\mathrm{oop}_{i}}$ and $=\mathrm{coo}_{i}{ }_{i}$, application of Gray's dual map m^{*} can in some cases increase the number of elements of the set Y_{t}.

Proof of the upper bound

Since the full dual is (so far) too complicated to work with, we resort to a (pathwise) subdual, which satisfies

$$
\phi\left(\mathbf{X}_{s, t}(x), y\right) \leq \phi\left(x, \mathbf{Y}_{-t,-s}(y)\right)
$$

Each element of the subdual is a voter model configuration of the form
... 000001111111000011111 ...
with exactly three interfaces, i.e., sites where a 0 borders a 1.
Under nearest-neighbor voter dynamics, it is known that such voter configurations survive till time t with a probability that decays as $t^{-3 / 2}$.

For $\lambda \leq 1 / 2$, the probability that an element of Y_{t} creates another element during its lifetime is ≤ 1 and the proof follows from comparison with subcritical branching.

