Cooperative branching and pathwise duality for monotone systems

Jan M. Swart (Prague)

joint with A. Sturm (Göttingen)

Friday, February 26th, 2016

3 ×

Pathwise duality for monotone systems

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

- Pathwise duality for monotone systems
- Cooperative branching

イロン イヨン イヨン イヨン

æ

For general sets S, T, let $\mathcal{F}(S, T)$ denote the set of all functions $f: S \to T$.

Let S, T be finite sets. A linear operator $A : \mathcal{F}(T, \mathbb{R}) \to \mathcal{F}(S, \mathbb{R})$ is uniquely characterized by its matrix $(A(x, y))_{x \in S, y \in T}$ through the formula

$$Af(x) := \sum_{y \in T} A(x, y) f(y) \qquad (x \in S).$$

A linear operator $K : \mathcal{F}(T, \mathbb{R}) \to \mathcal{F}(S, \mathbb{R})$ is a *probability kernel* from S to T if and only if

$$\mathcal{K}(x,y) \geq 0 \quad ext{and} \quad \sum_{z \in \mathcal{T}} \mathcal{K}(x,z) = 1 \qquad (x \in \mathcal{S}, \ y \in \mathcal{T}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let K be a probability kernel from S to T.

A random mapping representation of K is an $\mathcal{F}(S, T)$ -valued random variable M such that

$$K(x,y) = \mathbb{P}[M(x) = y]$$
 $(x \in S, y \in T).$

We say that K is *representable* in $\mathcal{G} \subset \mathcal{F}(S, T)$ if M can be chosen so that it takes values in \mathcal{G} .

For partially ordered sets S, T, let $\mathcal{F}_{mon}(S, T)$ be the set of all monotone maps $m: S \to T$, i.e., those for which $x \leq x'$ implies $m(x) \leq m(x')$.

A probability kernel K is called *monotone* if

$$Kf \in \mathcal{F}_{\mathrm{mon}}(S,\mathbb{R}) \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T,\mathbb{R}),$$

and monotonically representable if K is representable in $\mathcal{F}_{mon}(S, T)$.

Monotonical representability implies monotonicity:

$$f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}) \quad \text{and} \quad x \leq x' \quad \Rightarrow$$

 $Kf(x) = \mathbb{E} \big[f \big(M(x) \big) \big] \leq \mathbb{E} \big[f \big(M(x') \big) \big] = Kf(x').$

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross (unpublished)) discovered that the converse does not hold. There are counterexamples with $S = T = \{0, 1\}^2$.

On the positive side, Kamae, Krengel & O'Brien (1977) and Fill & Machida (2001) have shown that:

(Sufficient conditions for monotone representability) Let S, T be finite partially ordered sets and assume that at least one of the following conditions is satisfied:

- (i) *S* is totally ordered.
- (ii) *T* is totally ordered.

Then any monotone probability kernel from S to T is monotonically representable.

・ 同 ト ・ ヨ ト ・ ヨ ト

In particular, setting $S = \{1, 2\}$, this proves that if μ_1, μ_2 are probability laws on T such that

$$\mu_1 f \leq \mu_2 f \quad \forall f \in \mathcal{F}_{\mathrm{mon}}(T, \mathbb{R}),$$

then it is possible to couple random variables M_1, M_2 with laws μ_1, μ_2 such that $M_1 \leq M_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let S be finite. By definition, a Markov semigroup is a collection of probability kernels $(P_t)_{t>0}$ on S such that

$$P_0 = \lim_{t \downarrow 0} P_t = 1 \quad \text{and} \quad P_s P_t = P_{s+t}.$$

Each Markov semigroup is of the form

$$P_t := e^{tG} = \sum_{n=0}^{\infty} \frac{1}{n!} t^n G^n \qquad (t \ge 0),$$

where the generator G satisfies

$$G(x,y) \ge 0 \quad (x
eq y) \quad ext{and} \quad \sum_{y \in S} G(x,y) = 0 \quad (x \in S).$$

By definition, G is representable in $\mathcal{G} \subset \mathcal{F}(S,S)$ if G can be written as

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \big(f(m(x)) - f(x) \big),$$

where $(r_m)_{m \in \mathcal{G}}$ are nonnegative constants (rates).

(Representability of semigroups)

Assume that G is closed under composition and contains the identity map. Then the following statements are equivalent:

- (i) G can be represented in \mathcal{G} .
- (ii) P_t can be represented in \mathcal{G} for all $t \geq 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Stochastic flows

Proof of (i) \Rightarrow (ii) Let ω be a Poisson subset of $\mathcal{G} \times \mathbb{R}$ with local intensity $r_m dt$ and let $\omega_{s,u} := \{(m, t) \in \omega : s < t \le u\}$. Define random maps $(\mathbf{X}_{s,u})_{s \le u}$ by composing the maps in $\omega_{s,u}$ in the order of the time at which they occur:

$$\mathbf{X}_{s,u} := m_n \circ \cdots \circ m_1$$

with $\omega_{s,u} = \{(m_1, t_1), \dots, (m_n, t_n)\}, \quad t_1 < \cdots < t_n.$

The $(\mathbf{X}_{s,u})_{s \leq u}$ form a stochastic flow:

$$\mathbf{X}_{s,s} = 1$$
 and $\mathbf{X}_{t,u} \circ \mathbf{X}_{s,u}$ $(s \leq t \leq u)$,

with independent increments:

$$\mathbf{X}_{t_0,t_1}, \ldots, \mathbf{X}_{t_{n-1},t_n}$$
 independent for $t_0 < \cdots < t_n$.

If X_0 is independent of ω , then

$$X_t := \mathbf{X}_{0,t}(X_0) \qquad (t \ge 0)$$

defines a Markov process $(X_t)_{t\geq 0}$ with generator G, and

$$P_t(x,y) = \mathbb{P}[\mathbf{X}_{0,t}(x) = y]$$

gives the desired random mapping representation of the Markov semigroup $(P_t)_{t\geq 0}$ with generator G.

We call the Poisson set ω a graphical representation of X.

Note: We have defined $\mathbf{X}_{s,t}$ right-continuous in s and t. As a result, $(X_t)_{t\geq 0}$ has right-continuous sample paths.

Duality

Two Markov processes X and Y with state spaces S and T are dual with duality function $\psi : S \times T \to \mathbb{R}$ iff

$$\mathbb{E}\big[\psi(X_t,Y_0)\big] = \mathbb{E}\big[\psi(X_0,Y_t)\big] \qquad (*).$$

for all deterministic initial states X_0 and Y_0 .

If (*) holds for deterministic initial states, then also for random initial states, provided X_t is independent of Y_0 and X_0 is independent of Y_t .

In terms of semigroups $(P_t)_{t\geq 0}, (Q_t)_{t\geq 0}$ and generators G, H, duality says

$$egin{aligned} & P_t\psi=\psi Q_t^\dagger & (t\geq 0), \ & G\psi=\psi H^\dagger, \end{aligned}$$

where A^{\dagger} denotes the adjoint of a matrix A.

 \Leftrightarrow

Two maps $m: S \to S$ and $\hat{m}: T \to T$ are *dual* w.r.t. the duality function ψ iff

$$\psi(m(x), y) = \psi(x, \hat{m}(y)) \qquad (x \in S, y \in T).$$

Two stochastic flows $(\mathbf{X}_{s,t})_{s \leq t}$ and $(\mathbf{Y}_{s,t})_{s \leq t}$ with independent increments are *dual* w.r.t. the duality function ψ if:

To get a sensible definition, we have to take the left-continuous modification $\mathbf{X}_{s-,t-}$ (if $\mathbf{Y}_{s,t}$ is right-continuous as usual).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Two Markov processes X and Y are *pathwise dual* if they can be constructed from stochastic flows that are dual. Pathwise duality implies duality:

$$\mathbb{E}[\psi(X_t, Y_0)] = \mathbb{E}[\psi(\mathbf{X}_{0-,t-}(X_0), Y_0)]$$

= $\mathbb{E}[\psi(X_0, \mathbf{Y}_{-t,0}(Y_0))] = \mathbb{E}[\psi(X_0, Y_t)].$

Even though pathwise duality is much stronger than duality, lots of well-known dualities can be realized as pathwise dualities.

Pathwise duality

(Pathwise duality) *If the generators G and H of X and Y have random mapping representations of the form*

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m(f(m(x)) - f(x)),$$

$$Hf(x) = \sum_{m \in \mathcal{G}} r_m(f(\hat{m}(y)) - f(y)),$$

where each map \hat{m} is a dual of m, then X and Y are pathwise dual.

Proof Given a graphical representation ω of X, we can define a graphical representation $\hat{\omega}$ for Y by

$$\hat{\omega} := \{(\hat{m}, -t) : (m, t) \in \omega\}.$$

Then the stochastic flows $(\mathbf{X}_{s,t})_{s \leq t}$ and $(\mathbf{Y}_{s,t})_{s \leq t}$ associated with ω and $\hat{\omega}$ are dual.

ヨト イヨト イヨト

In this picture

 $\mathbf{X}_{0,t} = m_4 \circ \cdots \circ m_1$ is dual to $\mathbf{Y}_{-t,0} = \hat{m}_1 \circ \cdots \circ \hat{m}_4$.

→ 注→ 注

Invariant subspaces

Let $\mathcal{P}(S)$ be the set of all subsets of S. Let $m^{-1}: \mathcal{P}(S) \to \mathcal{P}(S)$ denote the *inverse image map*

$$m^{-1}(A) := \{x \in S : m(x) \in A\}.$$

Observation m^{-1} is dual to m w.r.t. to the duality function

$$\psi(x,A) := 1_{\{x \in A\}}.$$

Consequence Each Markov process X with state space S (and given random mapping representation) has a pathwise dual Y with state space $\mathcal{P}(S)$ and generator

$$Hf(A) := \sum_{m \in \mathcal{G}} r_m \big(f(m^{-1}(A)) - f(A) \big)$$

In practise, this dual is not very useful since the space $\mathcal{P}(S)$ is very big. Useful duals are associated with invariant subspaces of $\mathcal{P}(S)$.

A bit of order theory

Let S be a finite partially ordered space. The "upset" and "downset" of $A \subset S$ are defined as

$$A^{\uparrow} := \{ x \in S : x \ge a \text{ for some } a \in A \},\ A^{\downarrow} := \{ x \in S : x \le a \text{ for some } a \in A \}.$$

A set $A \subset S$ is increasing (resp. decreasing) if $A^{\uparrow} = A$ (resp. $A^{\downarrow} = A$) and a principal filter (resp. principal ideal) if A is of the form $A = \{a\}^{\uparrow}$ (resp. $A = \{a\}^{\downarrow}$) for some $a \in S$. We let

$$\begin{split} \mathcal{P}_{\mathrm{inc}}(S) &:= \{ A \subset S : A \text{ is increasing} \}, \\ \mathcal{P}_{\mathrm{linc}}(S) &:= \{ A \subset S : A \text{ is a principal filter} \}, \\ \mathcal{P}_{\mathrm{dec}}(S) &:= \{ A \subset S : A \text{ is decreasing} \}, \\ \mathcal{P}_{\mathrm{ldec}}(S) &:= \{ A \subset S : A \text{ is a principal ideal} \}. \end{split}$$

A bit of order theory

A partially ordered set S is bounded from below resp. above if there exists an element 0 resp. 1 such that

$$0 \le x$$
 $(x \in S)$ resp. $x \le 1$ $(x \in S)$.

A *lattice* is a partially ordered set such that for every $x, y \in S$ there exist $x \lor y \in S$ and $x \land y \in S$ called the *supremum* or *join* and *infimum* or *meet* of x and y, respectively, such that

$$\{x\}^{\uparrow} \cap \{y\}^{\uparrow} = \{x \lor y\}^{\uparrow} \text{ and } \{x\}^{\downarrow} \cap \{y\}^{\downarrow} = \{x \land y\}^{\downarrow}.$$

Finite lattices are bounded from below and above.

A map $m: S \rightarrow S$ is additive if

$$m(0) = 0$$
 and $m(x \lor y) = m(x) \lor m(y)$ $(x, y \in S)$.

(Monotone and additive maps)

(i) Let S and T be partially ordered sets and let $m : S \to T$ be a map. Then m is monotone if and only if

$$m^{-1}(A) \in \mathcal{P}_{\operatorname{dec}}(S)$$
 for all $A \in \mathcal{P}_{\operatorname{dec}}(T)$.

(ii) If S and T are finite lattices, then m is additive if and only if $m^{-1}(A) \in \mathcal{P}_{!dec}(S)$ for all $A \in \mathcal{P}_{!dec}(S)$.

Let S be a partially ordered set. A *dual* of S is a partially ordered set S' together with a bijection $S \ni x \mapsto x' \in S'$ such that

 $x \le y$ if and only if $x' \ge y'$.

Example 1: For any partially ordered set S, we may take S' := S but equipped with the reversed order, and $x \mapsto x'$ the identity map.

Example 2: If Λ is a set and $S \subset \mathcal{P}(\Lambda)$ is a set of subsets of Λ , equipped with the partial order of inclusion, then we may take for $x' := \Lambda \setminus x$ the complement of x and $S' := \{x' : x \in S\}$.

Let X be a Markov process in a finite lattice S.

Assume that the generator of X is representable in additive maps. Then X has a pathwise dual that takes values in the invariant subspace $\mathcal{P}_{!dec}(S) \subset \mathcal{P}(S)$.

A convenient way to encode an element $A \in \mathcal{P}_{! ext{dec}}(S)$ is to write

$$A = \{y'\}^{\downarrow}$$
 with $y \in S'$.

Identifying $\mathcal{P}_{!\mathrm{dec}}(S)\cong S'$, the duality function becomes

$$\psi(x,y) = 1_{\{x \le y'\}} = 1_{\{y \le x'\}}$$
 $(x \in S, y \in S').$

(Additive duality) A map $m : S \to S$ has a dual $m' : S' \to S'$ w.r.t. ψ if and only if m is additive. The dual map m' is unique and also an additive map.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $S = \{0, ..., n\}$ be totally ordered and let S' := S equipped with the reversed order. A map $m : S \to S$ is additive iff m is monotone and m(0) = 0. Each such map has a dual $m' : S' \to S'$ that is monotone and satisfies m(n) = n.

(Siegmund's dual) Let X be a monotone Markov process in S such that 0 is a trap. Then X has a dual Y w.r.t. to the duality function $\psi(x, y) := 1_{\{x \le y\}}$. The dual process is also monotone and has n as a trap. Moreover, the duality can be realized in a pathwise way.

(四) (日) (日)

Let $S = \mathcal{P}(\Lambda)$ with Λ a finite set, and let $x \mapsto x' \in S' := \mathcal{P}(\Lambda)$ denote the complement map $x' := \Lambda \backslash x$.

(Additive particle systems) Let X be a Markov process in S whose generator can be represented in additive maps. Then X has a pathwise dual Y w.r.t. to the duality function $\psi(x,y) := 1_{\{x \cap y = \emptyset\}}$, and Y is also an additively representable Markov process.

Examples: Voter model, contact process, exclusion process, systems of coalescing random walks.

・ 同 ト ・ ヨ ト ・ ヨ ト

Steve Krone [AAP 1999] has studied a two-stage contact process, with state space of the form $S = \{0, 1, 2\}^{\Lambda}$. He interprets x(i) = 0, 1, or 2 as an empty site, young, or adult organism, and defines maps

grow up	$a_i(x)(k) := 2$	$\text{if } k=i, \ x(i)=1,$
give birth	$b_{ij}(x)(k) := 1$	if $k = j$, $x(i) = 2$, $x(j) = 0$,
young dies	$c_i(x)(k) := 0$	if $k = i, x(i) = 1,$
death	$d_i(x)(k) := 0$	if $k = i$,
grow younger	$e_i(x)(k) := 1$	$\text{if } k=i, \ x(i)=2,$

where in all cases not mentioned, the maps have no effect.

We set S' := S and define $S \ni x \mapsto x' \in S'$ by x'(i) := 2 - x(i). Then the duality function becomes

$$\psi(x,y) = 1_{\{x \le y'\}} = 1_{\{x(i) + y(i) \le 2 \forall i \in \Lambda\}}$$

(Krone's dual) The maps $a_i, b_{ij}, c_i, d_i, e_i$ are all additive and their duals are given by

$$a_i'=a_i, \quad b_{ij}'=b_{ji}, \quad c_i'=e_i, \quad d_i'=d_i, \quad e_i'=c_i.$$

Percolation representations

Additive particle systems and their duals can be constructed in terms of open paths. In this example, X is a voter model and Y are coalescing random walks.

Percolation representations

Every additive Markov process X taking values ina finite lattice S has a percolation representation. If moreover S is a *distributive* lattice, then X and its dual Y can be represented together.

Monotone systems duality

Let X be a Markov process in a finite partially ordered set S. Assume that the generator of X is representable in monotone maps.

Then X has a pathwise dual that takes values in the invariant subspace $\mathcal{P}_{ ext{dec}}(S) \subset \mathcal{P}(S)$.

A convenient way to encode an element $A \in \mathcal{P}_{!dec}(S)$ is to write

$$A=\{B'\}^{\downarrow}$$
 with $B\subset S'.$

The duality function then becomes

$$\psi(x,B) = 1_{\{x \le b' \text{ for some } b \in B\}}$$

For a monotone $m: S \to S$, we define $m^{\dagger}: \mathcal{P}(S') \to \mathcal{P}(S')$ and $m^*: \mathcal{P}(S') \to \mathcal{P}(S')$ by

$$m^{\dagger}(B)' := (m^{-1}(B'^{\downarrow}))_{\max}$$
 and $m^{*}(B)' := \bigcup_{x \in B} (m^{-1}(\{x'\}^{\downarrow}))_{\max}.$

(Gray's (1986) dual) The maps m^{\dagger} and m^{*} are both dual to m w.r.t. ψ . Moreover,

$$m^{\dagger}(B)=m^{\dagger}(B)_{\min}=m^{*}(B)_{\min},$$

 $m^{*}(B\cup C)=m^{*}(B)\cup m^{*}(C).$

In the special case that S is a lattice and m is additive,

$$m^*(B) = m'(B) := \{m'(y) : y \in B\},\$$

where m' is the additive dual of m.

Here
$$A_{\min} := \{x \in A : x \text{ is a minimal element of } A\}$$

= $\{x \in A : \nexists y \in A, y \neq x \text{ s.t. } y \leq x\}.$

Let S be a finite lattice and let $m : S \rightarrow S$ be monotone. Then m is automatically superadditive:

$$m(x \lor y) \ge m(x) \lor m(y)$$

For monotone maps that are not additive, this inequality is strict. A good example is the *cooperative branching map*

 $\begin{array}{c} 110\mapsto 111,\\ 100\mapsto 100,\\ 010\mapsto 010, \end{array}$

which can be interpreted as two individuals cooperating to give birth to a third one.

・ 同 ト ・ ヨ ト ・ ヨ ト

DeMasi, Ferrari & Lebowitz [JSP 1986], C. Noble [AOP 1992], R. Durrett [JAP 1992], and C. Neuhauser and S.W. Pacala [AAP 1999] consider a model with cooperative branching, deaths, and fast stirring. They call this the sexual reproduction process.

伺 とう きょう とう とう

The sexual reproduction process

 $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ takes values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,
(stirring)	10	\mapsto	01	with rate	$\varepsilon^{-1},$
(stirring)	01	\mapsto	10	with rate	ε^{-1} .

The sexual reproduction process

 $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ takes values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 \mapsto	• 111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 \mapsto	• 111	with rate	$\frac{1}{2}\lambda$,
(death)	$1 \mapsto$	• 0	with rate	1,
(stirring)	$10 \mapsto$	• 01	with rate	$\varepsilon^{-1},$
(stirring)	01 \mapsto	· 10	with rate	ε^{-1} .

Interpretation:

'Sexual' reproduction.

The sexual reproduction process

 $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ takes values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,
(stirring)	10	\mapsto	01	with rate	$\varepsilon^{-1},$
(stirring)	01	\mapsto	10	with rate	ε^{-1} .

Interpretation:

- 'Sexual' reproduction.
- Competition for limited space.

The sexual reproduction process

 $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ takes values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011	\mapsto	111	with rate	$\frac{1}{2}\lambda$,
(death)	1	\mapsto	0	with rate	1,
(stirring)	10	\mapsto	01	with rate	$\varepsilon^{-1},$
(stirring)	01	\mapsto	10	with rate	ε^{-1} .

Interpretation:

- 'Sexual' reproduction.
- Competition for limited space.
- Death.

向下 イヨト イヨト

The sexual reproduction process

 $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ takes values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 ⊢	\rightarrow	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 ⊢	\rightarrow	111	with rate	$\frac{1}{2}\lambda$,
(death)	1 ⊢	\rightarrow	0	with rate	1,
(stirring)	10 ⊢	\rightarrow	01	with rate	$\varepsilon^{-1},$
(stirring)	01 ⊢	\rightarrow	10	with rate	ε^{-1} .

Interpretation:

- 'Sexual' reproduction.
- Competition for limited space.
- Death.
- Migration.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	$10 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	01 \mapsto	10	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	10	with rate	$\frac{1}{2}$.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	$10 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	01 \mapsto	10	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	01	with rate	$\frac{1}{2}$,
(coal. RW)	$11 \mapsto$	10	with rate	$\frac{1}{2}$.

Interpretation:

Cooperative reproduction.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 \mapsto	111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	$10 \mapsto$	01	with rate	$\frac{1}{2},$
(coal. RW)	01 \mapsto	10	with rate	$\frac{1}{2},$
(coal. RW)	$11 \mapsto$	01	with rate	$\frac{1}{2}$,
(coal. RW)	$11 \mapsto$	10	with rate	$\frac{1}{2}$.

Interpretation:

- Cooperative reproduction.
- Competition for limited space.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	10 ⊢	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	01 ⊢	→ 10	with rate	$\frac{1}{2},$
(coal. RW)	11 H	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	11 ⊢	→ 10	with rate	$\frac{1}{2}$.

Interpretation:

- Cooperative reproduction.
- Competition for limited space.
- Migration.

Let $(X_t)_{t\geq 0}$ with $X_t = (X_t(i))_{i\in\mathbb{Z}}$ take values in the space of all configurations ... 101101001001... and evolve as:

(coop. bra.)	110 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coop. bra.)	011 ⊢	> 111	with rate	$\frac{1}{2}\lambda$,
(coal. RW)	10 ⊢	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	01 ⊢	→ 10	with rate	$\frac{1}{2},$
(coal. RW)	11 H	→ 01	with rate	$\frac{1}{2},$
(coal. RW)	11 ⊢	→ 10	with rate	$\frac{1}{2}$.

Interpretation:

- Cooperative reproduction.
- Competition for limited space.
- Migration.
- No spontaneous deaths!

A graphical representation

æ

- < ∃ >

Time = upwards, black = a particle, $\lambda = 2.333$.

・ 御 と ・ 臣 と ・ を 臣 と

Define

- The process survives if P^x [|X_t| > 1 ∀t ≥ 0] > 0 for some, and hence for all initial states with 1 < |x| < ∞ particles. Note: a single particle can neither die nor reproduce!</p>
- The process is stable if there exists an invariant law that is concentrated on nonzero states.

Monotonicity implies that there exist λ_c, λ_c' such that

- The process survives for $\lambda > \lambda_c$ and dies out for $\lambda < \lambda_c$.
- The process is stable for $\lambda > \lambda'_c$ and unstable for $\lambda < \lambda'_c$.

[Sturm & S. '14] $1 \leq \lambda_c, \lambda'_c < \infty$.

Numerically: $\lambda_c \approx \lambda_c' \approx 2.47 \pm 0.02$.

Open problem: Prove that $\lambda_c = \lambda'_c$.

・ 同 ト ・ ヨ ト ・ ヨ ト

neighboring sites.

 $\theta(\lambda) := \mathbb{P}[X_{\infty}(0) = 1]$ where X_{∞} distributed according to the upper invariant law.

Consider

$$\begin{split} & \mathbb{P}\big[|X_t|>1\big] & \text{with} \quad X_0=\delta_0+\delta_1 \quad (\text{two particles}), \\ & \mathbb{P}\big[X_t(0)=1\big] & \text{with} \quad X_0=\underline{1} \quad (\text{fully occupied}). \end{split}$$

[Bezuidenhout & Grimmett '91] For the contact process, in the subcritical regime $\lambda < \lambda_c$, both quantities decay exponentially fast to zero.

[Sturm & S. '14] For the cooperative branching-coalescent, both quantities decay not faster than as $t^{-1/2}$. For $\lambda \leq \frac{1}{2}$, this is the exact rate of convergence.

Proof of the lower bound: By monotonicity, we can estimate the cooperative branching-coalescent by a pure coalescent, for which both quantities decay like $t^{-1/2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The generator of the process has the random mapping representation

$$Gf(x) = \lambda \sum_{i \in \mathbb{Z}} \left(\frac{1}{2} f(\overrightarrow{\operatorname{coop}}_i(x)) + \frac{1}{2} f(\overrightarrow{\operatorname{coop}}_i(x)) - f(x) \right) \\ + \sum_{i \in \mathbb{Z} + \frac{1}{2}} \left(\frac{1}{2} f(\overrightarrow{\operatorname{rw}}_i(x)) + \frac{1}{2} f(\overrightarrow{\operatorname{rw}}_i(x)) - f(x) \right).$$

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Proof of the upper bound

The coalescing random walk map \vec{rw}_i is dual to the voter model map \vec{vot}_i in the sense of additive systems duality, and likewise \vec{rw}_i is dual to \vec{vot}_i .

The cooperative branching maps \overrightarrow{coop}_i and \overrightarrow{coop}_i are not additive, but they are still monotone, so we resort to Gray's dual map m^* and the duality function

$$\psi(x, Y) = 1 \{ x \le y' \text{ for some } y \in Y \}$$

= $1 \{ x \land y = 0 \text{ for some } y \in Y \},$

or equivalently,

$$\phi(x,Y) := 1 - \psi(x,Y) = 1_{\{x \land y \neq 0 \text{ for all } y \in Y\}}.$$

The dual process Y_t takes values in the space $\mathcal{P}_{\text{fin}}(\{0,1\}^{\mathbb{Z}})$ of all finite collections of "voter model configurations".

向下 イヨト イヨト

We recall that if m is an additive map, m' is its additive dual and m^* is Gray's dual map, then

$$m^*(B) = m'(B) := \{m'(y) : y \in B\}.$$

In particular, if $m = \vec{rw}_i$ or $= \vec{rw}_i$ is a coalescing random walk map, then m^* is a voter model map, applied to all configurations $y \in Y_t$ simultaneously.

In the absence of cooperative branching, Y_t is a collection of coupled voter models that evolve simultaneously.

Proof of the upper bound

For the cooperative branching maps $m = \overrightarrow{coop}_i$ and $= \overrightarrow{coop}_i$, application of Gray's dual map m^* can in some cases increase the number of elements of the set Y_t .

Proof of the upper bound

Since the full dual is (so far) too complicated to work with, we resort to a (pathwise) *subdual*, which satisfies

$$\phi(\mathbf{X}_{s,t}(x), y) \leq \phi(x, \mathbf{Y}_{-t,-s}(y)).$$

Each element of the subdual is a voter model configuration of the form

```
\cdots 000001111111000011111\cdots
```

with exactly three *interfaces*, i.e., sites where a 0 borders a 1.

Under nearest-neighbor voter dynamics, it is known that such voter configurations survive till time t with a probability that decays as $t^{-3/2}$.

For $\lambda \leq 1/2$, the probability that an element of Y_t creates another element during its lifetime is ≤ 1 and the proof follows from comparison with subcritical branching.