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Obliquely reflected Brownian motion – technical remarks

Classical Dirichlet form approach to Markov processes is limited to
symmetric processes. Obliquely reflected Brownian motion is not
symmetric.

Non-symmetric Dirichlet form approach to obliquely reflected Brownian
motion had limited success (Kim, Kim and Yun (1998) and Duarte
(2012)).
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Parametrization of obliquely reflected Brownian motions

D – unit disc in R2

θ(x) – angle of reflection at x ∈ ∂D

THEOREM (B and Marshall; 1993)

For an arbitrary measurable θ, obliquely reflected Brownian motion X in D
with the oblique angle of reflection θ exists.

Lions and Sznitman (1984), Harrison, Landau and Shepp (1985),
Varadhan and Williams (1985)
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Jumps on the boundary
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Parametrization of obliquely reflected Brownian motions

D – unit disc in R2

θ(x) – angle of reflection at x ∈ ∂D

θ ↔ (h, µ)

h(x)dx – stationary distribution
µ – rate of rotation
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Parametrization of obliquely reflected Brownian motions

D – unit disc in R2

θ(x) – angle of reflection at x ∈ ∂D

θ ↔ (h, µ)

h(x)dx – stationary distribution
µ – rate of rotation
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Parametrization of obliquely reflected Brownian motions

D – unit disc in R2

THEOREM (forthcoming; B, Chen, Marshall, Ramanan)

h(z) =
< exp(θ̃(z)− iθ(z))

π<(e−iθ(0))
=
< exp(θ̃(z)− iθ(z))

π cos θ(0)
, z ∈ D,

µ = tan θ(0) =

∫
D

tan θ(z)h(z)dz ,

θ(z) = − arg
(
h(z) + i h̃(z)− iµ/π

)
, z ∈ D.

Harrison, Landau and Shepp (1985): smooth θ
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Rate of rotation of obliquely reflected Brownian motion

THEOREM (forthcoming; B, Chen, Marshall, Ramanan)

1 Assume that θ is C 2. Then, with probability 1, X is continuous and,
therefore, argXt is well defined for t > 0. The distributions of
1
t argXt − µ converge to the Cauchy distribution when t →∞.

2 Let arg∗ Xt be argXt “without large excursions from ∂D.” Then, a.s.,

lim
t→∞

arg∗ Xt/t = µ.

Krzysztof Burdzy Reflected Brownian motion



Obliquely reflected Brownian motion in fractal domains

D – simply connected bounded open set in R2

THEOREM (forthcoming; B, Chen, Marshall, Ramanan)

For every positive harmonic function h in D with L1 norm equal to 1 and
every real number µ, there exists a (unique in distribution) obliquely
reflected Brownian motion in D with the stationary distribution h(x)dx
and rate of rotation µ.
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Rotation rate field

Let D be the unit disc and µ(z) be the rate of rotation around z ∈ D. In
other words, the distributions of 1

t arg(Xt − z)− µ(z) converge to the
Cauchy distribution when t →∞.

THEOREM (forthcoming; B, Chen, Marshall, Ramanan)

The function µ(z) is harmonic in D.
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Rotation rate field

D – unit disc in R2

θ(x) – angle of reflection at x ∈ ∂D
h(x)dx – stationary distribution
µ(z) – rate of rotation around z

θ ↔ (h, µ(0))↔ {µ(z)}z∈D

Arrows indicate one to one mappings. Are the mappings surjective?
In the first case, yes.
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Rotation rate field – limitations

Suppose that φ(z) is harmonic in the unit disc D. φ(z) does not have to
be positive.

For each φ there exists b0 ≥ 0 such that for all a ∈ R and b ∈ [0, b0], the
function µ(z) = a + bφ(z) is the rotation field of an obliquely reflected
Brownian motion in D.

For b > b0, the function µ(z) = a + bφ(z) does not represent the rotation
field of an obliquely reflected Brownian motion in D.
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Obliquely reflected Brownian motion in fractal domains
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Smooth domain approximation

D ⊂ R2 – open bounded simply connected set
Dk ⊂ Dk+1,

⋃
k Dk = D, Dk have smooth boundaries

θk(x) – reflection angle; x ∈ ∂Dk

X k – obliquely reflected Brownian motion in Dk

THEOREM (forthcoming; B, Chen, Marshall, Ramanan)

Suppose that θk converge as k →∞. Then obliquely reflected Brownian
motions X k converge, as k →∞, to a process in D.

We apply conformal invariance of Brownian motion.
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Integrability of harmonic functions

Let δD(x) = dist(x , ∂D) and x0 ∈ D. We say that D is a John domain
with John constant cJ > 0 if each x ∈ D can be joined to x0 by a
rectifiable curve γ such that δD(y) ≥ cJ`(γ(x , y)) for all y ∈ γ, where
γ(x , y) is the subarc of γ from x to y and `(γ(x , y)) is the length of
γ(x , y).

THEOREM (Aikawa, 2000)

(i) If D ⊂ R2 is a bounded John domain with John constant cJ ≥ 7/8
then all positive harmonic functions in D are in L1(D).

(ii) If D ⊂ R2 is a bounded Lipschitz domain with constant λ < 1 then
all positive harmonic functions in D are in L1(D).

(iii) There exists a bounded Lipschitz domain D with constant λ = 1 and
a positive harmonic function h in D which is not in L1(D).
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Bounded harmonic functions

The modulus of continuity of f is ωf (a) = sup|x−y |<a |f (x)− f (y)| and f

is Dini continuous if
∫ b
0 (ωf (a)/a)da <∞ for some b > 0.

THEOREM

(i) (Garnett, 2007) If θ is Dini continuous then h is bounded.

(ii) Suppose that ω is an increasing continuous concave function on
[0, π/2] such that ω(0) = 0, ω(π/2) = π/4, and∫ π/2
0 (ω(a)/a)da =∞. Then there exists θ such that ωθ(a) = ω(a)

for a ≤ π/2 and h is unbounded.
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Myopic conditioning

D ⊂ Rd – open bounded connected set
ε > 0
X ε
t – a continuous process in D

DEFINITION (Myopic Brownian motion)

Given {X ε
t , 0 ≤ t ≤ kε}, the process {X ε

t , kε ≤ t ≤ (k + 1)ε} is Brownian
motion conditioned not to hit Dc (during the time interval [kε, (k + 1)ε]).

THEOREM (B, Chen)

Processes X ε converge weakly, as ε→ 0, to reflected Brownian motion in
D.
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Myopic conditioning (2)

D ⊂ Rd – open bounded connected set, ε > 0
Given {X ε

t , 0 ≤ t ≤ kε}, the process {X ε
t , kε ≤ t ≤ (k + 1)ε} is Brownian

motion conditioned not to hit Dc during the time interval [kε, (k + 1)ε].

B – Brownian motion in Rd , τD = inf{t ≥ 0 : Bt /∈ D}
Y ε
k = X ε

kε, k ≥ 1
mε(dx) = Px(τD > ε)dx

LEMMA (B, Chen)

(i) mε → Lebesgue measure on D as ε→ 0.
(ii) mε(dx) is a reversible (stationary) measure for Y ε

k .
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Increasing families of domains

D ⊂ Rd – open bounded connected set
Dk ⊂ Dk+1,

⋃
k Dk = D, Dk have smooth boundaries

X k – reflected Brownian motion in Dk

THEOREM (B, Chen; 1998)

Reflected Brownian motions X k converge, as k →∞, to reflected
Brownian motion in D.
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Invariance principle for reflected random walks

D – open connected bounded set
X k – reflected random walk on D ∩ (2−kZ2)
X k can jump along an edge if the edge is in D

THEOREM (B, Chen; 2008)

Assume that D is an extension domain. Then reflected random walks X k ,
with sped-up clocks, converge weakly to reflected Brownian motion in D,
as k →∞.

Examples of extension domains.

1 Smooth domains

2 Lipschitz domains

3 Uniform domains

4 NTA domains

5 Von Koch snowflake
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Invariance principle in domains above graphs of continuous
functions

D – bounded domain
∂D is locally the graph of a continuous function

Fact: D is an extension domain.

COROLLARY (B, Chen; 2008)

Assume that D lies locally above the graph of a continuous function.
Then reflected random walks X k , with sped-up clocks, converge weakly to
reflected Brownian motion in D, as k →∞.
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Invariance principle – a counterexample

X k – reflected random walk on D ∩ (2−kZ2)
X k can jump along an edge if the edge is in D

THEOREM (B, Chen; 2008)

There exists a bounded domain D ⊂ R2 such that reflected random walks
X k , with sped-up clocks, do not converge weakly to reflected Brownian
motion in D, when k →∞.

Example: Remove suitable dust from a square.
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Invariance principle (improved)

D – open connected bounded set
X k – reflected random walk on D ∩ (2−kZ2)
X k can jump along an edge if the edge is in D

THEOREM (B, Chen; 2008)

Assume that D is an extension domain. Then reflected random walks X k ,
with sped-up clocks, converge weakly to reflected Brownian motion in D.

D – open connected bounded set
Dk – subset of D ∩ (2−kZ2); contains all vertices of the union of adjacent
cubes in D
X k – reflected random walk on Dk

X k can jump along an edge if the edge is in Dk

THEOREM (B, Chen; 2012)

Reflected random walks X k on Dk , with sped-up clocks, converge weakly
to reflected Brownian motion in D, as k →∞.
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Two approximations
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Approximating discrete Dirichlet forms

THEOREM (B, Chen; 2012)

Suppose that D ⊂ Rd is a domain with finite volume. There exists a
countable sequence of bounded functions {ϕj}j≥1 ⊂W 1,2(D) ∩ C∞(D)
such that

1 {ϕj}j≥1 is dense in W 1,2(D),

2 {ϕj}j≥1 separates points in D,

3 for each j ≥ 1,

lim sup
k→∞

2k(2−d)
∑

xy∈Dk

(ϕj(x)− ϕj(y))2 ≤ 2

∫
D
|∇ϕj(x)|2 dx .
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Robin problem

∆u(x) = 0, x ∈ D \ B,
∂u

∂n
(x) = cu(x), x ∈ ∂D,

u(x) = 1, x ∈ ∂B.

BD
x

n
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Robin problem in fractal domains

Example: von Koch snowflake.

The normal vector does not exist at almost all boundary points.
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Naive approach

Approximate the snowflake domain D with an increasing sequence of
smooth domains Dk , such that

⋃
k Dk = D.

Let uk be the solution to the Robin boundary problem in Dk , with the
same c (adsorption rate) for all k , and let

u(x) = lim
k→∞

uk(x).

Then u satisfies the Dirichlet boundary conditions u(x) = 0 on ∂D.
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Reformulation of Robin problem

Assuming that D is smooth, the Green-Gauss formula implies that for
u, v ∈ C 2(D),∫

D
∇u(x) · ∇v(x)dx = −

∫
D
v(x)∆u(x)dx −

∫
∂D

v(x)
∂u

∂n
(x)σ(dx),

where σ is the surface measure on ∂D.

A weak solution u to the Robin problem is characterized by∫
D
∇u(x) · ∇v(x)dx = −

∫
∂D

cu(x)v(x)σ(dx),

for every v ∈ C 2(D) that vanishes on B.
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Solution to Robin problem in von Koch snowflake

d = log 4/ log 3
Let µ be d-dimensional Hausdorff measure.

DEFINITION

We will say that a function u is a weak solution to the Robin problem in
the snowflake domain if for all smooth v ,∫

D
∇u(x) · ∇v(x)dx = −

∫
∂D

cu(x)v(x)µ(dx).
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Alternative representation

D – von Koch snowflake domain
X – reflected Brownian motion in D
σB – hitting time of B

L – “local time” on ∂D, i.e., a continuous additive functional of X with
Revuz measure µ

THEOREM (forthcoming; B, Chen)

The continuous additive functional L with Revuz measure µ exists.

The function

u(x) = Ex

[
exp

(
−c

2

∫ σB

0
dLs

)]
, x ∈ D \ B,

is the unique weak solution to the Robin problem.
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