
Like a Needle in a Haystack: Rates andAlgorithms for Group Testing
Leonardo BaldassiniJoint work with Oliver Johnson, Matthew Aldridge and Karen Gunderson

19 December 2014



Warm-up examples
• Molecular biology (DNA screening)
• Recommender systems

• Spectrum sensing
• High-throughput screening techniques
• Network tomography
• Cryptography and cyber security
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DNA screening
Problem
Find a specific, rare sequence of nucleotides among many DNA samples
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Recommender systems
Problem
Suggest songs to a user based on his past preferences.

User selectssong RS proposessong
+
−

RS adjusts guesson stylis-tic features
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What do they have in common?

COMMON FEATURES

• Search for sparse property
• Property can be tested ongroups

GROUP TESTINGSearch methods to recover a sparsesubset of items from a populationthat share a feature which can bedetected on groups
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Boolean group testing
0 1 0 0 0 0 1 1 0 0 1 0

defectives K population
N

0 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 1 0 1 0 1 1 0 0
0 1 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0test design

X

1
1
1
1
0
0
0
0
0
0
0

test oucomes
y

|N | = N , |K| = K
K = N1−β, β > 0

particularly good fornon-adaptive algorithms
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Anatomy of an algorithm
(N
K

) possibledefectivesubsets
sequence oftest groups

X ∈ {0, 1}T×N

Encoding
Tests {xiyi}Ti=1 7→ K̂

Decoding

adaptivity

Recoveredset K̂

log2
(N
K

) bits label
each test encodespart of the label
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Rate of group testing (algorithms)

RA = log2
(N
K

)
TA

bits per test

RA measures how much we learn with each test, on average.
R∗A (β) supremum of rates for algorithm A.

(Yes, it’s bounded).
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WHY DO WE LIKE RATES?
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Universal upper bound for noiseless GT

Theorem (Aldridge, B., Johnson, 2013)
The probability of success of any algorithm A can be upper-bounded as

P(success) ≤ 2TA(N
K

) .
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Two important consequences
P(success) ≤ 2TA(N

K

)

• Successful algorithms use T ≥ log2
(N
K

) testsoptimal algorithms use T = c log2
(N
K

) tests
• R = log2

(N
K

)
T

“ranks” optimal algorithms
• Successful algorithms have R∗A (β) ≤ 1
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Capacity of GT

C C + ε
C − ε

There exists analgorithm with
lim inf
N→∞

log
(N
K

)
T

≥ C − ε

such that P(success) → 1

Direct part

Any algorithm with
lim inf
N→∞

log
(N
K

)
T

≥ C + ε
has P(success) < 1− η, η > 0

Converse part

• C is inherent in the GTmodel

• C measures the “hardness”of a GT problem
• C quantifies anefficiency/effectivenesstrade-off
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Can we get to R = 1?

population

Positive, halve
Negative, discard

Positive, halve
Ok, this is easy
Can’t be this...
Must be this!

Put these back intothe population
• Hwang, 1972 (HGBS)

• Achieves RHGBS = C = 1
• Careful choice of sample sizeis key

THGBS ≤ K log2 N + (1 + log2 ln 2)K
− log K ! + W= O(K log N)
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Can we get there...non-adaptively?

• Maybe
• What we did:

• Introduced and studied DD (Definite Defectives) and SSS (SmallestSatisfying Set)
• ...hence Bernoulli sampling, xij ∼ Bern(p), p = 1

K+1
• Showed limitation of Bernoulli-based algorithms
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DD: Definite Defectives

0 1 0 0 0 0 1 1 0 0 1 0

0 0 1 0 0 0 1 1 0 0 1 0
0 0 0 0 1 0 1 0 1 1 0 0
1 1 0 1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0

1
1
1
1
0
0
0
0
0
0
0

1. X Bernoulli design.2. Look at negative tests. . .3. . . . classify items thereinas non-def. . . .4. . . . and remove them from
X.5. Look at positive tests with
1! unclassified item:6. That’s definite defective!

TDD ≤ max {β, 1− β} eK ln N

R∗DD(β) ≥ 1e ln 2
min

{
1, β

1− β

}
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What R∗DD(β) looks like
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Universal up-per bound
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Computing R∗DD(β): core of the proof - construction

• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control G

Good news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )

there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - construction
• PD =
{items not in negative tests}

• |PD | = K + G , G intruding
non-defectives

For every defective i ∈ K:
Li = # tests with i and no itemfrom PD

P(success) = P
(⋂

i∈K{Li 6= 0}
)

Bad news We can’t control GGood news We can control G | M0,
M0 = # negative tests.

P(success) = T∑
m0=0

(
T
m0

)(1− p)Km0
(
1− (1− p)K)T−m0

×
N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
there’s a sum in here, too!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 / 24



Computing R∗DD(β): core of the proof - concentration

N−K∑
g=0

(
N − K

g

)(1− p)gm0 (1− (1− p)m0 )N−K−g

× P(success | M0 = m0,G = g )
≥ max{0, 1− K exp(Θ(T ,m0))}

• M0 ∈ (EM0 − ε,EM0 + ε) w.h.p.
• Θ(T ,m0) ≤ −(max{β, 1− β}) ln Nfor M0 close to EM0

P(success) ≥ P
(
T
(
1− p)K − ε/e) ≤ M0 ≤ T

((1− p)K + ε/e)) (1−N−δ)
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SSS: Smallest Satisfying Set
Group testing as LP:

minimize 1>zsubject to xt · z = 0 for t with yt = 0

xt · z ≥ 1 for t with yt = 1(1>z ≥ K )
z ∈ {0, 1}N

• SSS brute-force searchesfor a satisfying K

• Best possible algorithm(sample-complexity-wise)
• Infeasible, but benchmark

R∗SSS(β) ≥ 1
ln 2

max
α∈[ln 2,1] min

{
2αe−α β

2− β ,− ln
(
1− 2e−α + 2e−2α)} .
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What R∗SSS(β) looks like
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Separability
SSS may fail if more than onesubset satisfies constraints

Question:Can we enforceuniqueness in X ?Definition
X is K-separable if, for any K-subsets L,M⊂ {1, . . . ,N}, it is∨

i∈M
x(i ) 6= ∨

j∈L
x(j)

Notice that y = ∨K x(i ).
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Almost separability
Building separable X requires

T = Ω(K 2 log N) tests

Idea:What if we re-lax separability?Definition
X is ε-almost K-separable if there are at most ε(NK) K-subsets that breakseparability.
• Almost-separable matrices exist
• Need T = O(K log N) tests to get one
• A Bernoulli test design is almost-separable w.h.p. (via concentration)
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Family-wise upper bound via SSS

Theorem (Aldridge, B., Johnson, 2014)
Consider SSS using TSSS tests. Then,

P(success)→ 1⇒ TSSS >
(1− β)e ln 2

β log2

(
N
K

)
,

and, if the necessary condition is violated,

TSSS ≤
(1− β)e ln 2

β log2

(
N
K

)
⇒ P(success) ≤ 2

3
.

• “Weak converse”

• Applies to all Bernoulli-based algorithms
• R∗SSS(β) ≤ min

{
1, β(1−β)e ln 2

}
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Adaptivity gap
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The moral

• Group testing
• Collective detection of sparse properties
• Information-poor tests

• Rates and capacities
• Granular information
• Capacities bound performance of algorithms

• SSS: bound the performance of any non-adaptive algorithm based onBernoulli sampling
• DD: order-optimal, rate-optimal (for dense problems)
• Future work: noise models, applications, non-identical GT,non-independent GT, collateral open questions...
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