Like a Needle in a Haystack: Rates and
Algorithms for Group Testing

Leonardo Baldassini

Joint work with Oliver Johnson, Matthew Aldridge and Karen Gunderson

19 December 2014

Bl University of
BRISTOL

Warm-up examples

e Molecular biology (DNA screening)

e Recommender systems

Leo Baldassini Rates and Algorithms for Group Testing

Warm-up examples

Molecular biology (DNA screening)

Recommender systems

Spectrum sensing

High-throughput screening techniques

Network tomography

Cryptography and cyber security

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 1/24

DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 2/24

DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

AN\

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 2/24

DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

RN~ [
OW>
RN

Leo Baldassini

Rates and Algorithms for Group Testing 19 December 2014 2/24

DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 2/24

DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

\OWM_ > 1 match
in sample

RN > [aPCR

VAN

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014

2/24

DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

NN\ > 1 match
in sample
RN > [aPCR
no match
\QWM_ in sample

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 2/24

Recommender systems

Problem
Suggest songs to a user based on his past preferences.

Leo Baldassini Rates and Algorithms for Group Testing

Recommender systems

Problem
Suggest songs to a user based on his past preferences.

User selects
song

Leo Baldassini Rates and Algorithms for Group Testing

Recommender systems

Problem
Suggest songs to a user based on his past preferences.

User selects RS proposes

—

song song

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 3/24

Recommender systems

Problem
Suggest songs to a user based on his past preferences.

User selects RS proposes

—

song song

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 3/24

Recommender systems

Problem
Suggest songs to a user based on his past preferences.

RS adjusts guess
on stylis-
tic features

User selects RS proposes

—

song song

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 3/24

Recommender systems

Problem
Suggest songs to a user based on his past preferences.

RS adjusts guess
on stylis-
tic features

User selects RS proposes

—

song song

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 3/24

What do they have in common?

COMMON FEATURES

Leo Baldassini Rates and Algorithms for Group Testing

What do they have in common?

COMMON FEATURES

e Search for sparse property

Leo Baldassini Rates and Algorithms for Group Testing

What do they have in common?

COMMON FEATURES
e Search for sparse property
e Property can be tested on
groups

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 4124

What do they have in common?

COMMON FEATURES GROUP TESTING
Search methods to recover a sparse

subset of items from a population
D - - .

e Property can be tested on that share a feature which can be
groups detected on groups

e Search for sparse property

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 4124

Boolean group testing

defectives KC

|o1oooo11oo1o|<—'°°'°jt\'[l

ation

Leo Baldassini Rates and Algorithms for Group Testing

Boolean

group testing

defectives KC

ation

01 00001100 1 ok Poru
N
000000110010
000010101100
010100000010
101000110000
001100001100
000100000000
100000000001
100100000100
000100000000
000100010000
000000001000

test design _j

Leo Baldassini Rates and Algorithms for Group Testing

X

19 December 2014

5/24

Boolean

group testing

defectives KC

o
—
o
o

1 100 1 0k population

o
o

P R, P, O, RFP, Ok OO

O OO Fr P, OO, OOO
[eNelNeoNeoNeoNoNoNoN ool
[eNeoNeoNeoNeoNoN N HoNoNe)

0

R

test oucomes
y

[eNeoNeolNeolNeoNeoNoNoN el
[elNeleoleolNeolNeoNeoNoNoNel

oo NeoNoNeoNoNoN SNe RN
O OO O0OO0OO0OFHrH OO
P OOO0OO0OOFr OO O
OO O, OO, OO O
el eNeoNoNeoNoNoNoN e s
OO OO, OOOOOOo

|OOOOOOO|—-|—-H|—'»|

00

test design _J

X

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 5/24

Boolean group testing

defectives KC

[o(1)0 0 0 o(1()1)0 0(1)0|(_|30pulatlon
N

oooooo%)oogjol
0000710 1 10 0| 1
0101000000T10[]|1
10100011000 0|1
88(1)18888(1)(1)88 gteStoucomes
1000000O0O0GO0O 1|0 y
10010000010 0[]O
0001000O00O0O0O0O||O
0001000100000
00000000100 0|0

test design _j

X

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 5/24

Boolean group testing

defectives KC

[0{1)0 0 0 0(10)1)0 0(1)0k— population
0000O0O0OT1IT1IO0TCO0T1DOo0]|]/[1]
000O0O1O0101100 1

0101 0O0O0O0O0O0T1O0 1
101000 00 0 0f |1
g@(l) 1 8 .f‘f’ (1)@8 \YOT test oucomes
1 00 0 O0O0OOOOO1 0 y
1001 0O0O0O0O0O1O00O0 0
00010O0O0OOOO0OOQ OO 0

0 0010O0O0O1O0O0O0O0 0

0 000 0O0O0O0O1O0O0 0] |O0]

test design _j

X

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 5/24

Boolean

group testing

defectives KC

o
—
o
o

ation

o
o

popul
11 0 0 1 OF—
Y

P R, P, O, RFP, Ok OO

O OO Fr P, OO, OOO
[eNelNeoNeoNeoNoNoNoN ool
[eNeoNeoNeoNeoNoN N HoNoNe)

0

IN| =N, |K| = K
K=N"8 B8>0

R

test oucomes
y

[eNeoNeolNeolNeoNeoNoNoN el

[elNeleoleolNeolNeoNeoNoNoNel
oo NeoNoNeoNoNoN SNe RN
O OO O0OO0OO0OFHrH OO
P OOO0OO0OOFr OO O
OO O, OO, OO O
el eNeoNoNeoNoNoNoN e s
OO OO, OOOOOOo

|OOOOOOO|—-|—-H|—'»|

00

test design _J

X

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 5/24

Boolean

group testing

defectives KC

o
—
o
o

1 100 1 0k population

o
o

P R, P, O, RFP, Ok OO

O OO Fr P, OO, OOO
[eNelNeoNeoNeoNoNoNoN ool
[eNeoNeoNeoNeoNoN N HoNoNe)

0

IN| =N, |K| = K
K=N"8 B8>0

R

test oucomes
y

particularly good for
non-adaptive algorithms

[eNeoNeolNeolNeoNeoNoNoN el
[elNeleoleolNeolNeoNeoNoNoNel

oo NeoNoNeoNoNoN SNe RN
O OO O0OO0OO0OFHrH OO
P OOO0OO0OOFr OO O
OO O, OO, OO O
el eNeoNoNeoNoNoNoN e s
OO OO, OOOOOOo

|OOOOOOO|—-|—-H|—'»|

00

test design _J

X

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 5/24

Anatomy of an algorithm

Encoding Decoding
(¥) possible sequence of - "
defective test groups Tests {Xiyi}‘_-r=1 = B eco;/%e
subsets X € {0,1}T*N se
adaptivity

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 6 /24

Anatomy of an algorithm

Encoding Decoding
(¥) possible sequence of - "
defective test groups Tests {Xiyi}‘_-r=1 = B eco:%e
subsets X € {0,1} TN se

adaptivity

> log, () bits label

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 6 /24

Anatomy of an algorithm

Decoding

(¥) possible

defective
subsets

5 test groups
X € {0,1}T*N

sequence of

- Recovered
3T P
Tests H {xiyi}ly = K }‘ set IC

~—

adaptivity

> log, () bits label

Leo Baldassini Rates and Algorithms for Group Testing

each test encodes
part of the label

19 December 2014 6 /24

Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Leo Baldassini Rates and Algorithms for Group Testing

Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Ry measures how much we learn with each test, on average.

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014

7124

Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Ry measures how much we learn with each test, on average.
R:(B) supremum of rates for algorithm A.

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 7124

Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Ry measures how much we learn with each test, on average.
R:(B) supremum of rates for algorithm A. (Yes, it's bounded).

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 7124

WHY DO WE LIKE RATES?

Rates and Algorithms for Group Testing

Universal upper bound for noiseless GT

Theorem (Aldridge, B., Johnson, 2013)

The probability of success of any algorithm 4 can be upper-bounded as

2T

P(success) <

(x)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 9/24

Two important consequences

2
P(success) < —~

()

Leo Baldassini Rates and Algorithms for Group Testing

Two important consequences

2T
‘ P(success) < -
(k)

e Successful algorithms use T > log, (Q) tests

optimal algorithms use T = clog, () tests

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 10/ 24

Two important consequences

2T
| P(success) < -
(k)

e Successful algorithms use T > log, (Q) tests
optimal algorithms use T = clog, () tests

log, (¥
e R= g%(K) “ranks” optimal algorithms

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 10/ 24

Two important consequences

2T
P(success) <

—

e Successful algorithms use T > log, (Q) tests
optimal algorithms use T = clog, () tests

log, (¥
e R= g%(K) “ranks” optimal algorithms

e Successful algorithms have Rf(B) <1

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 10/ 24

Capacity of GT

nd Algorithms for Group Testing

Capacity of GT

I X
X
a
X+
™

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 1M/24

Capacity of GT

Direct part

There exists an
algorithm with

N
limnf 128 (k) >C—e¢
N—oo T

such that P(success) — 1

C C+e
- A4 A4 A4 -
N N N

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 1M/24

Capacity of GT

Direct part

There exists an
algorithm with

||m|nfI _I(_)>C

N—-oco

such that P(success) — 1

C+e

7N
C—-c¢ /

Any algorithm with

K
X0
X

I|m|n1’I g(K) >C+He

N—oo

has P(success) <1—n,n>0

Converse part

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 1M/24

Capacity of GT

Direct part

There exists an
algorithm with

||m|nfI T()>C

N—-oco

such that P(success) — 1

A V4

C+e

7N
C ¢

e C is inherent in the GT
model

X0
X

—

Any algorithm with

I|m|n1’I g(K) >C+He

N—oo

has P(success) <1—n,n>0

Converse part

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 1M/24

Capacity of GT

Direct part

There exists an
algorithm with

||m|nfI T()>C

N—-oco

such that P(success) — 1

A V4

C+e

7N
C ¢

e C is inherent in the GT
model

of a GT problem

e C measures the “hardness”

X0
X

—

Any algorithm with

I|m|n1’I g(K) >C+He

N—oo

has P(success) <1—n,n>0

Converse part

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 1M/24

Capacity of GT

Direct part

There exists an
algorithm with

liminf
N—oo

N
%2(5—5

such that P(success) — 1

A V4

C+e

A V4

7N
C_ ¢

e C is inherent in the GT
model

e C measures the “hardness”
of a GT problem

e C quantifies an
efficiency/effectiveness
trade-off

4

X0

7

Any algorithm with

N
IiminfM >C+e
N—oo T

has P(success) <1—n,n>0

Converse part

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 1M/24

Can we get to R =17

nd Algorithms for Group Testing

Can we get to R =17

population
M“M“W

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

Positive, halve

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

000000000000
....... Negative, discard

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

000000000000
0000000
.... Positive, halve

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

o0 Ok, this is easy

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

@ Can't be this...

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

o Must be this!

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

000000000
eo0000 "
oeRd
o0

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

e Hwang, 1972 (HGBS) Y)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

e Hwang, 1972 (HGBS) o0 Tuss < K loga N + (1 + log, In 2)K
e Achieves Ryggs = C =1 —log K!+ W
. = O(K log N)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get to R =17

population

e Hwang, 1972 (HGBS) Y)
e Achieves Rygpss = C =1
e Careful choice of sample size O

is key

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24

Can we get there...non-adaptively?

Leo Baldassini Rates and Algorithms for Group Testing

Can we get there...non-adaptively?

e Maybe

Leo Baldassini Rates and Algorithms for Group Testing

Can we get there..non-adaptively?

e Maybe
e What we did:

Leo Baldassini Rates and Algorithms for Group Testing

Can we get there...non-adaptively?

e Maybe
e What we did:

e Introduced and studied DD (Definite Defectives) and SSS (Smallest
Satisfying Set)

o ..hence Bernoulli sampling, x; ~ Bern(p), p = &5

e Showed limitation of Bernoulli-based algorithms

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 13/24

DD: Definite Defectives

Leo Baldassini Rates and Algorithms for Group Testing

DD: Definite Defectives

c
=
D
<
o
=
IS]
c
9]
[an)]
X
—
OO OO O0OO0OOo
o O O O OO0+ OO OO
~ O+ O OO0 OOOoOOo
o O+ OO+ OO+ OOOo
o O+ OO+ OO0OOOOoOH
~ - O OO OO0 OOoO—HOo
~ - O+ O OO0 O0OOoOOo
o QO -1 OOOOOOOoOH
o O ++H O OOOOOOOoOOo
o OO 1O A 1O HA+H O
o —H OO H+HOOOOOOo
~ QO +HOOOOOOOOo
o QO —HHOOH+HOOO

14 /24

19 December 2014

Rates and Algorithms for Group Testing

Leo Baldassini

DD: Definite Defectives

1. X Bernoulli design.
|O 1000011001 Ol 2. Look at negative tests. ..
00100011001 0]][1]
000010101100 1
110101000010 1
1 0100010O0O0O00O 1
001100O0O011O00 0
00 010O0O0OOO0OO0OO0O 0
1000O0O0O0OO0COO0O1 0
1001 00O0O0O0OT1O0O0 0
00 010O0OO0OO0OO0OO 0
00 010O0O0O1O0O0O0O 0
000001001000 [O0]

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 14 /24

DD: Definite Defectives

— — —r— — 1. X Bernoulli design.
0/1]0f0j0 0 1 1]0f0]1]0 2. Look at negative tests. ..
sToTilolo o T tTollol 110 1 3. as nc(l)e:zlg. lju.el.ns therein
0/01(0//]0/1 0 1 0}1}l1/10]0 1
11104110 1 0 O |0}||OfJ1]O 1
110|100 O 1 0 |0||OJ0O|O 1
0|0 |1||1/0 O O O |1/t 0|0 0
0/01]0/|/2/0 O O 0O}0}|l0|l0]O0 0
1/0(0|/0/0 O O O |0}||O|O |1 0
110|010 O O O |0O||1/0]|O0O 0
0|0 |0||2/0 O O O|Of0O|0|O 0
0/01(0/|/2/0 O O 1]0}j/l0l0]O0 0
0/0]0Jl0JO0 1 O O|1]j0JO|O| [O]

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 14 /24

DD: Definite Defectives

1. X Bernoulli design.

2. Look at negative tests. ..

ify i herei
o 90011010 s e
000O0O1O0T10O0 0 0 4
. ... and remove them from
10 0 000010 X
0 00010O0O0TO0ODO

|OOOOOOOHHHI—‘|

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 14 /24

DD: Definite Defectives

1. X Bernoulli design.

2. Look at negative tests. ..

3. ... classify it therei
000O0O1O0T10O0 0 0 4
. ... and remove them from
10 0 000010 X
I 0 0 00100000 I 5. Look at positive tests with

1! unclassified item:

|OOOOOOOHHHI—‘|

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 14 /24

DD: Definite Defectives

1. X Bernoulli design.
|O 1000011001 Ol 2. Look at negative tests. ..
— 3. ... classify it therei
00001010 00 1 4. ... and remove them from
1 0 0 0 00O 1O 1 X.
I 0 0 00100000 1 I 5. Look at positive tests with
0 1! unclassified item:
0 6. That's definite defective!
0
0
0
0
| 0]

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 14 /24

DD: Definite Defectives

1. X Bernoulli design.
|O 1000011001 Ol 2. Look at negative tests. ..
— 3. ... classify it therei
00001010 00 1 4. ... and remove them from
1 0 0 0 00O 1O 1 X.
I 0 0 00100000 1 I 5. Look at positive tests with
0 1! unclassified item:
0 6. That's definite defective!
0
0
8 Top < max {B,1— B} eKInN
1 .
| O] Rsp(B) = sina min {1, %}

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 14 /24

What R5,(S8) looks like

10fF == = ——— ==
08k Universal up-
per bound

0.6 [~
2
©
[an

0.4

02l (Lower bound on Rip()]

0.0 -

L Il Il Il Il J
0.0 0.2 0.4 0.6 0.8 1.0
B

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 15/24

Computing R3(B): core of the proof - construction

Leo Baldassini Rates and Algorithms for Group Testing

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}

Leo Baldassini Rates and Algorithms for Group Testing

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

Leo Baldassini Rates and Algorithms for Group Testing

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

For every defective i € K:
L; = # tests with i and no item
from PD

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 /24

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0}))

For every defective i € K:
L; = # tests with i and no item
from PD

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 /24

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0}))

For every defective i € K:

L; = # tests with i and no item
fr'om PD ¢ Bad news We can’t control G

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 /24

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0}))

For every defective i € K:

L; = # tests with i and no item
fr'om PD ¢ Bad news We can’t control G

Good news We can control G | My,
My = # negative tests.

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 /24

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0})]

For every defective i € K:

L; = # tests with i and no item
fr'om PD ¢ Bad news We can’t control G

Good news We can control G | My,
My = # negative tests.

-
P(success) = Z (n77;)) (1 — p)kme (1 —1- p)K)Tfmo
me=0

N-K

D i [R L A

g=0
x P(success | Mo = mo, G = g)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 /24

Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0})]

For every defective i € K:

L; = # tests with i and no item
fr'om PD ¢ Bad news We can’t control G

Good news We can control G | My,
My = # negative tests.

-
P(success) = Z (nl) (1 — p)kme (1 —1- p)K)Tfmo
me=0

N-K

D i [R L A

® i
x P(success | Mo = mo, G = g)

(there's a sum in here, too!)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 16 /24

Computing R(S): core of the proof - concentration

Leo Baldassini Rates and Algorithms for Group Testing

Computing R(S): core of the proof - concentration

N-K
N—-K K-
2 ()(1—P)gm°(1—(1 —p)me)V e
g=0 €
x P(success | Mo = mg, G = g)
> max{0,1 — Kexp(©(T, mo))}

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 17124

Computing R(S): core of the proof - concentration

N-K Nk
> ()(1 — p)ETe (1 — (1 — p)e)V e o My € (EMy — &, EMy + €) w.h.p.
g=0

x P(success | Mg = mg, G = g)
> max{0,1 — Kexp(©(T, mg))}

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 17124

Computing R(S): core of the proof - concentration

N-K

N—K K
> ()(1 —p)E™ (1— (1= p)mo)V K o My € (EMy — £, EMg + €) w.h.p.
g=0 e O(T,mg) < —(max{B,1— B} InN
x P(success | My = mo, G = g) for My close to EMy

> max{0,1 — K exp(©(T, mo))}

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014

17124

Computing R(S): core of the proof - concentration

N-K

N-—K K
> ()(1 —p)E™ (1— (1= p)mo)V K o My € (EMy — £, EMg + €) w.h.p.
g=0 e O(T,mg) < —(max{B,1— B} InN
x P(success | Mo = mo, G = g) for My close to EMy

> max{0,1 — K exp(©(T, mo))}

P(success) > P (T (1—p) —e/e) < Mo < T ((1— p)* +ele)) (1-N"°)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 17124

SSS: Smallest Satisfying Set

Group testing as LP:

Leo Baldassini Rates and Algorithms for Group Testing

SSS: Smallest Satisfying Set

Group testing as LP:

minimize 17z
subject to x;-z=0 fortwithy,=0
x¢-z>1 fortwithy,=1
17z > K)
ze {0, 1}V

Leo Baldassini Rates and Algorithms for Group Testing

SSS: Smallest Satisfying Set

Group testing as LP:
e SSS brute-force searches
for a satisfying K

minimize 17z
subject to x;-z=0 fortwithy, =0
x¢-z>1 fortwithy, =1
17z > K)
ze {0, 1}V

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 18 /24

SSS: Smallest Satisfying Set

Group testing as LP:
e SSS brute-force searches
for a satisfying K

minimize 17z e Best possible algorithm
. . (sample-complexity-wise)
subject to x;-z=0 fortwithy, =0
x;-z>1 fortwithy, =1
17z > K)
ze {0, 1}V

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014

18 /24

SSS: Smallest Satisfying Set

Group testing as LP:

SSS brute-force searches
for a satisfying K

Best possible algorithm
(sample-complexity-wise)

minimize 17z

subject to x¢-z=0 fortwithy,=0
) t Ye o Infeasible, but benchmark

x¢-z>1 fortwithy, =1
17z > K)
ze {0, 1}V

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014

18 /24

SSS: Smallest Satisfying Set

Group testing as LP:

SSS brute-force searches
for a satisfying K

minimize 172 e Best possible algorithm
. . (sample-complexity-wise)
subject to x;-z=0 fortwithy, =0 .
o Infeasible, but benchmark
x¢-z>1 fortwithy, =1
17z > K)
ze {0, 1}V
Rsss(B) > =N max min 20(e_“L —In(1—2e"% +2e72%)
SS8 ~ In2 agin2,1] 2—-PB’

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 18 /24

What Riss(B) looks like

Rate

1.0

0.8

0.6

0.4

0.2

0.0

(Lower bound on Rg‘ss([j’))—>

0.0 0.2 0.4 0.6 0.8 1.0

Leo Baldassini

Rates and Algorithms for Group Testing 19 December 2014 19/24

Separability

SSS may fail if more than one
subset satisfies constraints

Rates and Algorithms for Group Testing

Separability

Question:
Can we enforce
uniqueness in X ?

SSS may fail if more than one
subset satisfies constraints

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 20/ 24

Separability

Question:
Can we enforce
uniqueness in X ?

SSS may fail if more than one
subset satisfies constraints

Definition
X is K-separable if, for any K-subsets £, M C {1,..., N}, itis

\/ X \/ x0

ieM JeL

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 20/ 24

Separability

Question:
Can we enforce
uniqueness in X ?

SSS may fail if more than one
subset satisfies constraints

Definition
X is K-separable if, for any K-subsets £, M C {1,..., N}, itis

\/ X \/ x0

ieM JeL

Notice that y = \/. x.

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 20/ 24

Almost separability

Building separable X requires
T = Q(K?log N) tests

Leo Baldassini Rates and Algorithms for Group Testing

Almost separability

Idea:
What if we re-
lax separability?

Building separable X requires
T = Q(K?log N) tests

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 21/24

Almost separability

Idea:
What if we re-
lax separability?

Building separable X requires
T = Q(K?log N) tests

Definition
X is e-almost K-separable if there are at most e(ﬁ) K-subsets that break
separability.

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 21/24

Almost separability

Idea:
What if we re-
lax separability?

Building separable X requires
T = Q(K?log N) tests

Definition
X is e-almost K-separable if there are at most s(ﬁ) K-subsets that break
separability.

e Almost-separable matrices exist
e Need T = O(K log N) tests to get one
o A Bernoulli test design is almost-separable w.h.p. (via concentration)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 21/24

Family-wise upper bound via SSS

Leo Baldassini Rates and Algorithms for Group Testing

Family-wise upper bound via SSS

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using Tsss tests. Then,

P(success) — 1 = Tggs >

(1—B)e|n2I N
5o)

and, if the necessary condition is violated,

1—pBeln2
Tuss < L P)eIn2

N
< B log, (K) = P(success) <

Wl N

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 22/24

Family-wise upper bound via SSS

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using Tsss tests. Then,

P(success) — 1 = Tggs >

(1—B)e|n2I N
5o)

and, if the necessary condition is violated,

1—pBeln2
Tuss < L P)eIn2

N
< B log, (K) = P(success) <

Wl N

e “Weak converse”

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 22/24

Family-wise upper bound via SSS

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using Tsss tests. Then,

P(success) — 1 = Tggs >

(1—B)e|n2I N
5o)

and, if the necessary condition is violated,

1—pBeln2
Tuss < L P)eIn2

N
< B log, (K) = P(success) <

Wl N

e “Weak converse”

e Applies to all Bernoulli-based algorithms

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 22/24

Family-wise upper bound via SSS

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using Tsss tests. Then,

(1—B)e|n2I N
5o)

P(success) = 1 = Tggg >
and, if the necessary condition is violated,

Tess < (1 —ﬁ/;)eln2

Wl N

N
log, (K) = P(success) <

e “Weak converse”
e Applies to all Bernoulli-based algorithms

* Rsss(B) < min {1, (1—_3%}

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 22/24

Adaptivity gap

1.0

0.8

0.6

Rate

0.4

0.2

0.0

(SSS -based upper Imund)

0.0 0.2 0.4 0.6 0.8 1.0
8

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 23/24

Adaptivity gap

1.0

0.8

0.6

Rate

0.4

0.2

0.0

Adaptivity gap

(SSS -based upper Imund)

0.0 0.2 0.4 0.6 0.8 1.0
8

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 23/24

Adaptivity gap

Rate

1.0

0.8

0.6

0.4

0.2

0.0

Adaptivity gap

Non-adaptive Bernoulli-
based algorithms
can't achieve R = 1

(SSS -based upper ImuncD

.6 0.8 1.0

Leo Baldassini

Rates and Algorithms for Group Testing 19 December 2014 23/24

The moral

nd Algorithms for Group Testing

The moral

e Group testing

Rates and Algorithms for Group Testing

The moral

e Group testing

e Collective detection of sparse properties
o Information-poor tests

Baldassini Rates and Algorithms for Group Testing

The moral

e Group testing

e Collective detection of sparse properties
o Information-poor tests

e Rates and capacities

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 24/24

The moral

e Group testing

e Collective detection of sparse properties
o Information-poor tests

e Rates and capacities

e Granular information
o Capacities bound performance of algorithms

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 24/24

The moral

e Group testing

e Collective detection of sparse properties
o Information-poor tests

e Rates and capacities
e Granular information
o Capacities bound performance of algorithms

e SSS: bound the performance of any non-adaptive algorithm based on
Bernoulli sampling

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 24/24

The moral

Group testing

e Collective detection of sparse properties
o Information-poor tests

e Rates and capacities

e Granular information

o Capacities bound performance of algorithms
[]

SSS: bound the performance of any non-adaptive algorithm based on
Bernoulli sampling

DD: order-optimal, rate-optimal (for dense problems)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 24/24

The moral

Group testing

e Collective detection of sparse properties
o Information-poor tests

e Rates and capacities
e Granular information
e Capacities bound performance of algorithms
e SSS: bound the performance of any non-adaptive algorithm based on

Bernoulli sampling

DD: order-optimal, rate-optimal (for dense problems)

Future work: noise models, applications, non-identical GT,
non-independent GT, collateral open questions...

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 24724

