Like a Needle in a Haystack: Rates and Algorithms for Group Testing

Leonardo Baldassini

Joint work with Oliver Johnson, Matthew Aldridge and Karen Gunderson

19 December 2014

Warm-up examples

- Molecular biology (DNA screening)
- Recommender systems

Warm-up examples

- Molecular biology (DNA screening)
- Recommender systems
- Spectrum sensing
- High-throughput screening techniques
- Network tomography
- Cryptography and cyber security

Problem

Find a specific, rare sequence of nucleotides among many DNA samples

Problem

Find a specific, rare sequence of nucleotides among many DNA samples

 \sim

 $\mathcal{N}\mathcal{N}\mathcal{N}$

Problem

Problem

Problem

Problem

Problem

Suggest songs to a user based on his past preferences.

Problem Suggest songs to a user based on his past preferences.

User selects song

Problem

Suggest songs to a user based on his past preferences.

Problem

Suggest songs to a user based on his past preferences.

Problem

Suggest songs to a user based on his past preferences.

Problem

Suggest songs to a user based on his past preferences.

COMMON FEATURES

COMMON FEATURES

• Search for *sparse* property

COMMON FEATURES

- Search for *sparse* property
- Property can be tested on groups

COMMON FEATURES

- Search for *sparse* property
- Property can be tested on groups

GROUP TESTING Search methods to recover a sparse subset of items from a population that share a feature which can be detected on groups

Anatomy of an algorithm

Anatomy of an algorithm

Anatomy of an algorithm

$$R_{\rm A} = rac{\log_2{N \choose K}}{T_{\rm A}}$$
 bits per test

$$R_{\rm A} = rac{\log_2{N \choose K}}{T_{\rm A}}$$
 bits per test

 $R_{\rm A}$ measures how much we learn with each test, on average.

$$R_{\rm A} = rac{\log_2{N \choose K}}{T_{\rm A}}$$
 bits per test

 $R_{\rm A}$ measures how much we learn with each test, on average. $R_{\rm A}^*(\beta)$ supremum of rates for algorithm A.

$$R_{\rm A} = rac{\log_2{N \choose K}}{T_{\rm A}}$$
 bits per test

 R_{A} measures how much we learn with each test, on average. $R_{A}^{*}(\beta)$ supremum of rates for algorithm A. (Yes, it's bounded).

Why do we like rates?

Universal upper bound for noiseless GT

Theorem (Aldridge, B., Johnson, 2013)

The probability of success of any algorithm A can be upper-bounded as

$$\mathbb{P}(success) \leq rac{2^{T_{A}}}{\binom{N}{K}}$$
 .

Two important consequences

Leo Baldassini

Rates and Algorithms for Group Testir
Two important consequences

$$\mathbb{P}(\text{success}) \leq \frac{2^{T_{A}}}{\binom{N}{K}}$$

• Successful algorithms use $T \ge \log_2 {\binom{N}{K}}$ tests optimal algorithms use $T = c \log_2 {\binom{N}{K}}$ tests

Two important consequences

$$\mathbb{P}(\text{success}) \leq \frac{2^{T_{A}}}{\binom{N}{K}}$$

• Successful algorithms use $T \ge \log_2 {\binom{N}{K}}$ tests optimal algorithms use $T = c \log_2 {\binom{N}{K}}$ tests

•
$$R = \frac{\log_2 \binom{N}{K}}{T}$$
 "ranks" optimal algorithms

Two important consequences

$$\mathbb{P}(\text{success}) \leq \frac{2^{T_{A}}}{\binom{N}{K}}$$

• Successful algorithms use $T \ge \log_2 {\binom{N}{K}}$ tests optimal algorithms use $T = c \log_2 {\binom{N}{K}}$ tests

•
$$R = \frac{\log_2 \binom{N}{K}}{T}$$
 "ranks" optimal algorithms

• Successful algorithms have $R^*_{\mathtt{A}}(\beta) \leq 1$

Can we get to R = 1?

Leo Baldassini

Rates and Algorithms for Group Testing

Can we get to R = 1?

Can we get to R = 1?

Can we get to R = 1? population

Positive, halve

Can we get to R = 1?

- Hwang, 1972 (HGBS)
- Achieves $R_{\text{HGBS}} = C = 1$
- Careful choice of sample size is key

• Maybe

- Maybe
- What we did:

- Maybe
- What we did:
 - Introduced and studied DD (Definite Defectives) and SSS (Smallest Satisfying Set)
 - ...hence Bernoulli sampling, $x_{ij} \sim \text{Bern}(p)$, $p = \frac{1}{K+1}$
 - Showed limitation of Bernoulli-based algorithms

1. X Bernoulli design.

1. X Bernoulli design.

2. Look at negative tests...

- 1. X Bernoulli design.
- 2. Look at negative tests...
- 3. ... classify items therein as non-def. ...

- 1. X Bernoulli design.
- 2. Look at negative tests...
- 3. ... classify items therein as non-def. ...
- 4. ... and remove them from X.

- 1. X Bernoulli design.
- 2. Look at negative tests...
- 3. ... classify items therein as non-def. ...
- 4. . . . and remove them from X.
- Look at positive tests with 1! unclassified item:

- 1. X Bernoulli design.
- 2. Look at negative tests...
- 3. ... classify items therein as non-def. ...
- 4. . . . and remove them from X.
- Look at positive tests with 1! unclassified item:
- 6. That's definite defective!

- 1. X Bernoulli design.
- 2. Look at negative tests...
- 3. ... classify items therein as non-def. ...
- 4. . . . and remove them from X.
- Look at positive tests with 1! unclassified item:

6. That's definite defective!

$$\left\{ \begin{array}{l} T_{\text{DD}} \leq \max\left\{\beta, 1 - \beta\right\} \text{e}K \ln N \\ R_{\text{DD}}^*(\beta) \geq \frac{1}{e \ln 2} \min\left\{1, \frac{\beta}{1 - \beta}\right\} \end{array} \right\}$$

What $R^*_{DD}(\beta)$ looks like

Computing $R^*_{DD}(\beta)$: core of the proof – construction

• $\mathcal{PD} =$

{items not in negative tests}

• $\mathcal{PD} =$

{items not in negative tests}

• $|\mathcal{PD}| = K + G$, G intruding non-defectives

• $\mathcal{PD} =$

{items not in negative tests}

• $|\mathcal{PD}| = K + G$, *G* intruding non-defectives

For every defective $i \in \mathcal{K}$: $L_i = \#$ tests with i and no item from \mathcal{PD}

$$\sum_{g=0}^{N-K} \binom{N-K}{g} (1-p)^{gm_0} (1-(1-p)^{m_0})^{N-K-g}$$
$$\times \mathbb{P}(\text{success} \mid M_0 = m_0, G = g)$$
$$\geq \max\{0, 1-K \exp(\Theta(T, m_0))\}$$

$$\sum_{g=0}^{N-K} {N-K \choose g} (1-p)^{gm_0} (1-(1-p)^{m_0})^{N-K-g}$$
$$\times \mathbb{P}(\text{success} \mid M_0 = m_0, G = g)$$
$$\geq \max\{0, 1-K \exp(\Theta(T, m_0))\}$$

•
$$M_0 \in (\mathbb{E}M_0 - \varepsilon, \mathbb{E}M_0 + \varepsilon)$$
 w.h.p.

$$\sum_{g=0}^{N-K} {\binom{N-K}{g}} (1-p)^{gm_0} (1-(1-p)^{m_0})^{N-K-g}$$
$$\times \mathbb{P}(\text{success} \mid M_0 = m_0, G = g)$$
$$\geq \max\{0, 1-K \exp(\Theta(T, m_0))\}$$

- $M_0 \in (\mathbb{E}M_0 \varepsilon, \mathbb{E}M_0 + \varepsilon)$ w.h.p.
- $\Theta(T, m_0) \leq -(\max\{\beta, 1-\beta\}) \ln N$ for M_0 close to $\mathbb{E}M_0$

Group testing as LP:

Group testing as LP:

minimize
$$\mathbf{1}^{\top} \mathbf{z}$$

subject to $\mathbf{x}_t \cdot \mathbf{z} = 0$ for t with $y_t = 0$
 $\mathbf{x}_t \cdot \mathbf{z} \ge 1$ for t with $y_t = 1$
 $(\mathbf{1}^{\top} \mathbf{z} \ge K)$
 $\mathbf{z} \in \{0, 1\}^N$

Group testing as LP:

minimize subject to $\mathbf{1}^{\mathsf{T}} \mathbf{z}$ $\mathbf{x}_{t} \cdot \mathbf{z} = 0 \quad \text{for } t \text{ with } y_{t} = 0$ $\mathbf{x}_{t} \cdot \mathbf{z} \ge 1 \quad \text{for } t \text{ with } y_{t} = 1$ $(\mathbf{1}^{\mathsf{T}} \mathbf{z} \ge K)$ $\mathbf{z} \in \{0, 1\}^{N}$ • SSS brute-force searches for a satisfying ${\cal K}$

Group testing as LP:

minimize subject to $\mathbf{1}^{\mathsf{T}} \mathbf{z}$ $\mathbf{x}_{t} \cdot \mathbf{z} = 0 \quad \text{for } t \text{ with } y_{t} = 0$ $\mathbf{x}_{t} \cdot \mathbf{z} \ge 1 \quad \text{for } t \text{ with } y_{t} = 1$ $(\mathbf{1}^{\mathsf{T}} \mathbf{z} \ge K)$ $\mathbf{z} \in \{0, 1\}^{N}$

- SSS brute-force searches for a satisfying ${\cal K}$
- Best possible algorithm (sample-complexity-wise)

Group testing as LP:

minimize subject to $\mathbf{1}^{\top} \mathbf{z}$ $\mathbf{x}_{t} \cdot \mathbf{z} = 0 \quad \text{for } t \text{ with } y_{t} = 0$ $\mathbf{x}_{t} \cdot \mathbf{z} \ge 1 \quad \text{for } t \text{ with } y_{t} = 1$ $(1^{\top} \mathbf{z} \ge K)$ $\mathbf{z} \in \{0, 1\}^{N}$

- SSS brute-force searches for a satisfying ${\boldsymbol{\mathcal{K}}}$
- Best possible algorithm (sample-complexity-wise)
- Infeasible, but benchmark

Group testing as LP:

minimize subject to $\mathbf{1}^{\mathsf{T}} \mathbf{z}$ $\mathbf{x}_t \cdot \mathbf{z} = 0 \quad \text{for } t \text{ with } y_t = 0$ $\mathbf{x}_t \cdot \mathbf{z} \ge 1 \quad \text{for } t \text{ with } y_t = 1$ $(\mathbf{1}^{\mathsf{T}} \mathbf{z} \ge K)$ $\mathbf{z} \in \{0, 1\}^N$

- SSS brute-force searches for a satisfying ${\cal K}$
- Best possible algorithm (sample-complexity-wise)
- Infeasible, but benchmark

$$R_{\rm SSS}^*(\beta) \ge \frac{1}{\ln 2} \max_{\alpha \in [\ln 2, 1]} \min\left\{ 2\alpha e^{-\alpha} \frac{\beta}{2-\beta}, -\ln\left(1-2e^{-\alpha}+2e^{-2\alpha}\right) \right\} .$$

What $R^*_{\rm SSS}(\beta)$ looks like

SSS may fail if more than one subset satisfies constraints

SSS may fail if more than one subset satisfies constraints

Question: Can we enforce uniqueness in X ?

SSS may fail if more than one subset satisfies constraints

Question: Can we enforce uniqueness in X ?

Definition

X is K-separable if, for any K-subsets $\mathcal{L}, \mathcal{M} \subset \{1, \dots, N\}$, it is

$$\bigvee_{i\in\mathcal{M}}\mathbf{x}^{(i)}\neq\bigvee_{j\in\mathcal{L}}\mathbf{x}^{(j)}$$

SSS may fail if more than one subset satisfies constraints

Question: Can we enforce uniqueness in X ?

Definition

X is K-separable if, for any K-subsets $\mathcal{L}, \mathcal{M} \subset \{1, \dots, N\}$, it is

$$\bigvee_{i\in\mathcal{M}}\mathbf{x}^{(i)}\neq\bigvee_{j\in\mathcal{L}}\mathbf{x}^{(j)}$$

Notice that $\mathbf{y} = \bigvee_{\mathcal{K}} \mathbf{x}^{(i)}$.

Building separable X requires $T = \Omega(K^2 \log N)$ tests

Building separable X requires $T = \Omega(K^2 \log N)$ tests

ldea: What if we relax separability?

Building separable X requires $T = \Omega(K^2 \log N)$ tests

ldea: What if we relax separability?

Definition

X is ε -almost K-separable if there are at most $\varepsilon \binom{N}{K}$ K-subsets that break separability.

Building separable X requires $T = \Omega(K^2 \log N)$ tests

ldea: What if we relax separability?

Definition

X is ε -almost K-separable if there are at most $\varepsilon \binom{N}{K}$ K-subsets that break separability.

- Almost-separable matrices exist
- Need $T = O(K \log N)$ tests to get one
- A Bernoulli test design is almost-separable w.h.p. (via concentration)

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using T_{SSS} tests. Then,

$$\mathbb{P}(\text{success}) \to 1 \Rightarrow T_{\text{SSS}} > \frac{(1-\beta) \text{e} \ln 2}{\beta} \log_2 \binom{N}{K} ,$$

and, if the necessary condition is violated,

$$T_{\rm SSS} \le \frac{(1-\beta) e \ln 2}{\beta} \log_2 \binom{N}{K} \Rightarrow \mathbb{P}(\text{success}) \le \frac{2}{3}$$

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using T_{SSS} tests. Then,

$$\mathbb{P}(\text{success}) \to 1 \Rightarrow T_{\text{SSS}} > \frac{(1-\beta) \text{e} \ln 2}{\beta} \log_2 \binom{N}{K} ,$$

and, if the necessary condition is violated,

$$T_{\rm SSS} \le \frac{(1-\beta) e \ln 2}{\beta} \log_2 \binom{N}{K} \Rightarrow \mathbb{P}(\text{success}) \le \frac{2}{3}$$

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using T_{SSS} tests. Then,

$$\mathbb{P}(\text{success}) \to 1 \Rightarrow T_{\text{SSS}} > \frac{(1-\beta) \text{e} \ln 2}{\beta} \log_2 \binom{N}{K} ,$$

and, if the necessary condition is violated,

$$T_{\text{SSS}} \leq \frac{(1-\beta) \text{e} \ln 2}{\beta} \log_2 \binom{N}{K} \Rightarrow \mathbb{P}(\text{success}) \leq \frac{2}{3}$$

"Weak converse"

Applies to all Bernoulli-based algorithms

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using T_{SSS} tests. Then,

$$\mathbb{P}(\text{success}) \to 1 \Rightarrow T_{\text{SSS}} > \frac{(1-\beta) \text{e} \ln 2}{\beta} \log_2 \binom{N}{K} ,$$

and, if the necessary condition is violated,

$$T_{\rm SSS} \le \frac{(1-\beta) e \ln 2}{\beta} \log_2 \binom{N}{K} \Rightarrow \mathbb{P}({\rm success}) \le \frac{2}{3}$$

"Weak converse"

Applies to all Bernoulli-based algorithms

•
$$R^*_{\text{SSS}}(\beta) \leq \min\left\{1, \frac{\beta}{(1-\beta) \ln 2}\right\}$$

Adaptivity gap

Adaptivity gap

Adaptivity gap

Leo Baldassini

• Group testing

Leo Baldassini

- Group testing
 - Collective detection of sparse properties
 - Information-poor tests

- Group testing
 - Collective detection of sparse properties
 - Information-poor tests
- Rates and capacities

- Group testing
 - Collective detection of sparse properties
 - Information-poor tests
- Rates and capacities
 - Granular information
 - Capacities bound performance of algorithms

- Group testing
 - Collective detection of sparse properties
 - Information-poor tests
- Rates and capacities
 - Granular information
 - Capacities bound performance of algorithms
- SSS: bound the performance of *any* non-adaptive algorithm based on Bernoulli sampling

- Group testing
 - Collective detection of sparse properties
 - Information-poor tests
- Rates and capacities
 - Granular information
 - Capacities bound performance of algorithms
- SSS: bound the performance of *any* non-adaptive algorithm based on Bernoulli sampling
- DD: order-optimal, rate-optimal (for dense problems)

- Group testing
 - Collective detection of sparse properties
 - Information-poor tests
- Rates and capacities
 - Granular information
 - Capacities bound performance of algorithms
- SSS: bound the performance of *any* non-adaptive algorithm based on Bernoulli sampling
- DD: order-optimal, rate-optimal (for dense problems)
- Future work: noise models, applications, non-identical GT, non-independent GT, collateral open questions...