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Warm-up examples

e Molecular biology (DNA screening)

e Recommender systems
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Warm-up examples

Molecular biology (DNA screening)

Recommender systems

Spectrum sensing

High-throughput screening techniques

Network tomography

Cryptography and cyber security
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DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples
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DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

\OWM_ > 1 match
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DNA screening

Problem
Find a specific, rare sequence of nucleotides among many DNA samples

NN\ > 1 match
in sample
RN > [aPCR
no match
\QWM_ in sample
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Recommender systems

Problem
Suggest songs to a user based on his past preferences.

Leo Baldassini Rates and Algorithms for Group Testing



Recommender systems

Problem
Suggest songs to a user based on his past preferences.

User selects
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tic features
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COMMON FEATURES
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What do they have in common?

COMMON FEATURES
e Search for sparse property
e Property can be tested on
groups
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What do they have in common?

COMMON FEATURES GROUP TESTING
Search methods to recover a sparse

subset of items from a population
D - - .

e Property can be tested on that share a feature which can be
groups detected on groups

e Search for sparse property
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Boolean group testing

defectives KC
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Anatomy of an algorithm

Encoding Decoding
(¥) possible sequence of - "
defective test groups Tests {Xiyi}‘_-r=1 = B eco;/%e
subsets X € {0,1}T*N se
adaptivity
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Anatomy of an algorithm

Decoding

(¥) possible

defective
subsets

5 test groups
X € {0,1}T*N

sequence of

- Recovered
3T P
Tests H {xiyi}ly = K }‘ set IC

~—

adaptivity

> log, () bits label
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each test encodes
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19 December 2014 6 /24



Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Leo Baldassini Rates and Algorithms for Group Testing



Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Ry measures how much we learn with each test, on average.
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Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Ry measures how much we learn with each test, on average.
R:(B) supremum of rates for algorithm A.
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Rate of group testing (algorithms)

log, (i)

Ry, =
A TA

bits per test

Ry measures how much we learn with each test, on average.
R:(B) supremum of rates for algorithm A. (Yes, it's bounded).
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Universal upper bound for noiseless GT

Theorem (Aldridge, B., Johnson, 2013)

The probability of success of any algorithm 4 can be upper-bounded as

2T

P(success) <

(x)
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Two important consequences
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Two important consequences

2T
‘ P(success) < -
(k)

e Successful algorithms use T > log, (Q) tests

optimal algorithms use T = clog, () tests
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Two important consequences

2T
P(success) <

—

e Successful algorithms use T > log, (Q) tests
optimal algorithms use T = clog, () tests

log, (¥
e R= g%(K) “ranks” optimal algorithms

e Successful algorithms have Rf(B) <1
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Capacity of GT
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Capacity of GT

Direct part

There exists an
algorithm with

N
limnf 128 (k) >C—e¢
N—oo T

such that P(success) — 1

C C+e
- A4 A4 A4 -
N N N
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Capacity of GT

Direct part

There exists an
algorithm with
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7N
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X0
X
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Capacity of GT

Direct part

There exists an
algorithm with

liminf
N—oo

N
%2(5—5

such that P(success) — 1

A V4

C+e

A V4

7N
C_ ¢

e C is inherent in the GT
model

e C measures the “hardness”
of a GT problem

e C quantifies an
efficiency/effectiveness
trade-off

4

X0

7

Any algorithm with

N
IiminfM >C+e
N—oo T

has P(success) <1—n,n>0

Converse part
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Can we get to R =17

population
M“M“W
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Can we get to R =17

population

Positive, halve
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Can we get to R =17

population

000000000000
....... Negative, discard
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Can we get to R =17

population

000000000000
0000000
.... Positive, halve
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Can we get to R =17

population

o0 Ok, this is easy
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Can we get to R =17

population

@ Can't be this...
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Can we get to R =17

population

o Must be this!
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Can we get to R =17

population
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Can we get to R =17

population

e Hwang, 1972 (HGBS) Y )
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Can we get to R =17

population

e Hwang, 1972 (HGBS) o0 Tuss < K loga N + (1 + log, In 2)K
e Achieves Ryggs = C =1 —log K!+ W
. = O(K log N)

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 12/24



Can we get to R =17

population

e Hwang, 1972 (HGBS) Y )
e Achieves Rygpss = C =1
e Careful choice of sample size O

is key
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Can we get there..non-adaptively?

e Maybe
e What we did:
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Can we get there...non-adaptively?

e Maybe
e What we did:

e Introduced and studied DD (Definite Defectives) and SSS (Smallest
Satisfying Set)

o ..hence Bernoulli sampling, x; ~ Bern(p), p = &5

e Showed limitation of Bernoulli-based algorithms

Leo Baldassini Rates and Algorithms for Group Testing 19 December 2014 13/24



DD: Definite Defectives

Leo Baldassini Rates and Algorithms for Group Testing



DD: Definite Defectives
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DD: Definite Defectives

1. X Bernoulli design.
|O 1000011001 Ol 2. Look at negative tests. ..
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DD: Definite Defectives

— — —r— — 1. X Bernoulli design.
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DD: Definite Defectives

1. X Bernoulli design.

2. Look at negative tests. ..

ify i herei
o 90011010 s e
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DD: Definite Defectives

1. X Bernoulli design.

2. Look at negative tests. ..

3. ... classify it therei
000O0O1O0T10O0 0 0 4
. ... and remove them from
10 0 000010 X
I 0 0 00100000 I 5. Look at positive tests with

1! unclassified item:

|OOOOOOOHHHI—‘|
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DD: Definite Defectives

1. X Bernoulli design.
|O 1000011001 Ol 2. Look at negative tests. ..
— 3. ... classify it therei
00001010 00 1 4. ... and remove them from
1 0 0 0 00O 1O 1 X.
I 0 0 00100000 1 I 5. Look at positive tests with
0 1! unclassified item:
0 6. That's definite defective!
0
0
0
0
| 0]
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DD: Definite Defectives

1. X Bernoulli design.
|O 1000011001 Ol 2. Look at negative tests. ..
— 3. ... classify it therei
00001010 00 1 4. ... and remove them from
1 0 0 0 00O 1O 1 X.
I 0 0 00100000 1 I 5. Look at positive tests with
0 1! unclassified item:
0 6. That's definite defective!
0
0
8 Top < max {B,1— B} eKInN
1 .
| O] Rsp(B) = sina min {1, %}
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What R5,(S8) looks like
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For every defective i € K:
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Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0}) )

For every defective i € K:
L; = # tests with i and no item
from PD
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For every defective i € K:
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Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0}) ]

For every defective i € K:

L; = # tests with i and no item
fr'om PD ¢ Bad news We can’t control G

Good news We can control G | My,
My = # negative tests.

-
P(success) = Z (n77;)) (1 — p)kme (1 —1- p)K)Tfmo
me=0

N-K

D i [ R L A

g=0
x P(success | Mo = mo, G = g)
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Computing R3(B): core of the proof - construction

e PD =
{items not in negative tests}
e |PD| = K+ G, G intruding
non-defectives

P(success) = P (e {Li # 0}) ]

For every defective i € K:

L; = # tests with i and no item
fr'om PD ¢ Bad news We can’t control G

Good news We can control G | My,
My = # negative tests.

-
P(success) = Z (nl) (1 — p)kme (1 —1- p)K)Tfmo
me=0

N-K

D i [ R L A

® i
x P(success | Mo = mo, G = g)

(there's a sum in here, too! )
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Computing R(S): core of the proof - concentration
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Computing R(S): core of the proof - concentration

N-K
N—-K K-
2 ( )(1—P)gm°(1—(1 —p)me)V e
g=0 €
x P(success | Mo = mg, G = g)
> max{0,1 — Kexp(©(T, mo))}
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Computing R(S): core of the proof - concentration

N-K Nk
> ( )(1 — p)ETe (1 — (1 — p)e)V e o My € (EMy — &, EMy + €) w.h.p.
g=0

x P(success | Mg = mg, G = g)
> max{0,1 — Kexp(©(T, mg))}
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Computing R(S): core of the proof - concentration

N-K

N—K K
> ( )(1 —p)E™ (1— (1= p)mo)V K o My € (EMy — £, EMg + €) w.h.p.
g=0 e O(T,mg) < —(max{B,1— B} InN
x P(success | My = mo, G = g) for My close to EMy

> max{0,1 — K exp(©(T, mo))}
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Computing R(S): core of the proof - concentration

N-K

N-—K K
> ( )(1 —p)E™ (1— (1= p)mo)V K o My € (EMy — £, EMg + €) w.h.p.
g=0 e O(T,mg) < —(max{B,1— B} InN
x P(success | Mo = mo, G = g) for My close to EMy

> max{0,1 — K exp(©(T, mo))}

P(success) > P (T (1—p) —e/e) < Mo < T ((1— p)* +ele)) (1-N"°)
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SSS: Smallest Satisfying Set

Group testing as LP:
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SSS: Smallest Satisfying Set

Group testing as LP:

minimize 17z
subject to x;-z=0 fortwithy,=0
x¢-z>1 fortwithy,=1
17z > K)
ze {0, 1}V

Leo Baldassini Rates and Algorithms for Group Testing



SSS: Smallest Satisfying Set

Group testing as LP:
e SSS brute-force searches
for a satisfying K

minimize 17z
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SSS: Smallest Satisfying Set

Group testing as LP:

SSS brute-force searches
for a satisfying K

minimize 172 e Best possible algorithm
. . (sample-complexity-wise)
subject to x;-z=0 fortwithy, =0 .
o Infeasible, but benchmark
x¢-z>1 fortwithy, =1
17z > K)
ze {0, 1}V
Rsss(B) > =N max min 20(e_“L —In(1—2e"% +2e72%)
SS8 ~ In2 agin2,1] 2—-PB’
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Separability

Question:
Can we enforce
uniqueness in X ?

SSS may fail if more than one
subset satisfies constraints

Definition
X is K-separable if, for any K-subsets £, M C {1,..., N}, itis

\/ X \/ x0

ieM JeL

Notice that y = \/. x.
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Almost separability

Idea:
What if we re-
lax separability?

Building separable X requires
T = Q(K?log N) tests

Definition
X is e-almost K-separable if there are at most s(ﬁ) K-subsets that break
separability.

e Almost-separable matrices exist
e Need T = O(K log N) tests to get one
o A Bernoulli test design is almost-separable w.h.p. (via concentration)
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Family-wise upper bound via SSS

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using Tsss tests. Then,

P(success) — 1 = Tggs >

(1—B)e|n2I N
5o )

and, if the necessary condition is violated,

1—pBeln2
Tuss < L P)eIn2

N
< B log, (K) = P(success) <

Wl N
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Family-wise upper bound via SSS

Theorem (Aldridge, B., Johnson, 2014)

Consider SSS using Tsss tests. Then,

(1—B)e|n2I N
5o )

P(success) = 1 = Tggg >
and, if the necessary condition is violated,

Tess < (1 —ﬁ/;)eln2

Wl N

N
log, (K) = P(success) <

e “Weak converse”
e Applies to all Bernoulli-based algorithms

* Rsss(B) < min {1, (1—_3%}
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Adaptivity gap
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The moral

Group testing

e Collective detection of sparse properties
o Information-poor tests

e Rates and capacities
e Granular information
e Capacities bound performance of algorithms
e SSS: bound the performance of any non-adaptive algorithm based on

Bernoulli sampling

DD: order-optimal, rate-optimal (for dense problems)

Future work: noise models, applications, non-identical GT,
non-independent GT, collateral open questions...
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