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Tracy-Widom-beta distributions:
Motivations and definitions
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Objects with Tracy-Widom limit

I Longest increasing subsequences in permutations (Baik, Deift,
Johansson 1999)

I Arctic region of the Aztec diamond (Johansson, 2003)
I TASEP flux (e.g. Prähofer, Spohn (2001), Ferrari)
I Random matrix theory.

• First for β = 1, 2, 4: Gaussian ensembles GOE, GUE, GSE
(Tracy and Widom, 1994, 1996)

• For every β > 0: β-ensembles (Ramírez, Rider, Virág, 2006).
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Tracy-Widom and β-ensembles

The β-Tracy-Widom distribution is the limit distribution (when the
dimension tends to infinity) of the largest eigenvalue of
β-ensembles, introduced by Dumitriu, Edelman in 2002.

Hβ
N :=

1√
β



√
2 g1 χ(N−1)β

χ(N−1)β
√
2 g2 χ(N−2)β
. . . . . . . . .

χ2β
√
2 gN−1 χβ
χβ

√
2 gN


gk : independent N (0, 1), χkβ: independent χ distributed.
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Eigenvalues of β-ensembles

Their eigenvalues represent charged particles in a one-dimensional
Coulomb gas with electrostatic repulsion at temperature T = 1/β
for arbitrary β > 0.

Pβ(λ1, · · · , λN) =
1
ZβN

∏
i<j
|λi − λj |β exp(−1

4β
N∑

i=1
λ2

i ) .

For the special values β = 1, 2, 4, joint law of the eigenvalues of
the classical Gaussian orthogonal/unitary/symplectic ensembles.
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Dyson Brownian motion (dynamics of the Coulomb gas)
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Behavior of the eigenvalues of β-ensembles
When N →∞, the empirical measures of the eigenvalues of
β-ensembles renormalized by

√
N converge to the celebrated

Wigner semi-circle law.

Figure : Wigner semi-circle and the histogram of eigenvalues of a
simulation of a GOE of size N = 1000.

We will look at the edge of the spectrum.
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Random matrices and Stochastic Operators

Idea (Sutton (2005) and Edelman and Sutton (2006)):

Tridiagonal matrices are discrete differential operators. At the
limit: it should become a random differential operator.

Mathematically proved by Ramírez, Rider and Virág (2006).
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Stochastic Airy Operator (SAO)

Introduce the Stochastic Airy Operator (SAO):

Hβ := − d2

dx2 + x +
2√
β
B′

where B′ is a white noise on R+.

We expect that the renormalized operator

H̃β
N := N2/3

(
2IN −

Hβ
N√
N

)

converges to the SAO Hβ.
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Eigenvalues of the SAO

We will say that (φ, λ) ∈ H1 × R is an eigenfunction/ eigenvalue
pair for Hβ if

∫∞
0 (φ′)2 + (1 + t)φ2 <∞, if φ(0) = 0 and if

φ′′(t) = (t − λ)φ(t) +
2√
β
φ(t)B′t

holds for all t ≥ 0 in the integration by part sense.
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Convergence of the β-ensembles to the SAO

Theorem (Ramírez, Rider, Virág, 2006)
A.s., for each k ≥ 0, the set of eigenvalues of Hβ has a
well-defined (k + 1)-st lowest element Λβk .

Moreover, let λβ,1 ≥ λβ,2 ≥ · · · denote the eigenvalues of the
β-ensemble Hβ

N . Then

N1/6(2
√
N − λβ,l )l=1,··· ,k

converges in distribution as N →∞ to

(Λβ0 ,Λ
β
1 , · · · ,Λ

β
k−1).
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Convergence of the β-ensembles to the SAO

In particular, we have for the largest eigenvalue λβ,1: When
N →∞:

N1/6
(
λβ,1 − 2

√
N
)
⇒ TWβ := −Λβ0

For β = 1, 2, 4, it was already known: result of Tracy and Widom
(1994, 1996). The limit law is moreover characterized in terms of
the second Painlevé transcendent.

For general β, Ramírez, Rider, Virág give a characterization in
terms of a variational formula (thanks to the equivalence with the
lowest eigenvalue of the SAO).
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Riccati diffusion associated to the SAO

Ramírez, Rider, Virág state another very useful characterization of
the Tracy-Widom distribution with a Ricatti diffusion.

Change of variable: "Xa(t) := φ′−λ(t)/φ−λ(t)".

Xa(0) = +∞

dXa(t) =
(
t + a − Xa(t)2

)
dt +

2√
β
dBt

where (Bt)t≥0 is a standard Brownian motion.

The diffusion Xa may blow-up to −∞ in a finite time. In this case:
immediately restarted from +∞. In this way, Xa is defined for all
time.
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Eigenvalues and the diffusion

Ramírez, Rider and Virág: Number of eigenvalues of the SAO Hβ
at most −a = total number of explosions of the diffusion (Xa(t))
on R+.

Immediate corollary: The marginal laws of the eigenvalues are
characterized in a simple way. In particular:

P [TWβ > a] := P
[
Λβ0 < −a

]
= P [Xa(t) blows up to −∞ in a finite time] .
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# of eigenvalues at most −a = # of explosions of Xa

0 2 4 6 8 10 12

-1
0

-5
0

5
10

Figure : Xa and Xa′ (driven by the same Brownian motion) with a = −8
and a′ = −6, for β = 4. On this event, we have Λβ

4 < 8 < Λβ
5 and

Λβ
2 < 6 < Λβ
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First explosion for different values of a

a increases

a = −1.5

a = −1.6

Figure : The first explosion of Xa for several values of a (driven by the
same Brownian motion) for β = 4. Here, 1.5 < −TW (4) < 1.6.
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Trapping a diffusion in a stationary well

We consider a simpler (without the t-term in the drift) diffusion
(Ya(t))t≥0 defined by{

dYa(t) = (a − Ya(t)2) dt + dB(t) for t ≥ 0 ,
Ya(0) = y .

We are interested in the distribution of the exit time (blowup time)
ζ := inf{t ≥ 0 : Ya(t) = −∞} and in particular in its limit in law
when a→ +∞.

The diffusion evolves in a potential V (y) := −ay + y3

3 . Potential
barrier: ∆V = 4

3 a
3/2.
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Trapping a diffusion in a stationary well
Let

m(a) :=
√
2π
∫ ∞

0

dv√
v exp

(
2av − 1

6v
3
)

∼a→∞
π

a1/2 exp
(8
3a

3/2
)
.

Proposition (First exit time of Ya starting in the well)
Let f : R→ R such that a1/4(f (a) + a1/2)→a→+∞ +∞.
For any y ≥ f (a), denote by ζ the first blowup time to −∞ of the
diffusion (Ya(t)) starting from position y. Then

ζ

m(a)
⇒a→∞ E(1)

where E(1) ∼ exponential of parameter 1.

Possible proof: Convergence of the Laplace transform of the first
exit time (it satisfies a boundary value problem).
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Trapping a diffusion in a stationary well

We introduce the empirical measure of the explosion times denoted
ζ1 < ζ2, · · · for the process Ya starting from +∞ and restarted to
+∞ immediately after each explosion:

µa =
∞∑

i=1
δζi/m(a).

Corollary
The measures µa converges to a Poisson point process with
intensity 1 in R+ when a →∞.
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The right tail of the Tracy-Widom
distribution

(joint work with Bálint Virág, 2010)
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The right tail of Tracy-Widom

Theorem (D., Virág, 2010)
When a →∞, we have

P(TWβ > a) = a−3β/4 exp
(
−2
3βa

3/2 + O(
√
ln(a))

)

Note that Borot and Nadal, using different heuristical methods,
obtained in 2011 and 2012 the whole asymptotic expansion of
Tracy-Widom for both the left and the right tail.
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Idea of the proof: exit time problem
Recall that

P [TWβ > a] = P [Xa(t) blows up to −∞ in a finite time] .

I When a→∞, typical path go down from infinity and follow
the upper part of parabola where the drift cancels (NO
EXPLOSION).

I Main cost: crossing the interior of the parabola (where the
drift upwards is huge).

I The term +t is crucial: competition between the time it
would take for the analogous stationary diffusion to cross a
large barrier, and the drift which increases throughout time.

I Conditionally on its existence, the blowing-up to −∞ will
happen very quickly (cost becomes much higher in a small
amount of time).
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Idea of the proof: exit time problem

Strategy of the proof:
1. Obtain a precise control of the time it takes to go down to the

upper part of the parabola. Comparison with ODE (without
the noise).

2. Analysis of the cost to cross the parabola: Girsanov formula.
New diffusion: diffusion conditioned to blow up in a finite
time. In view of the stationary case, choose diffusion Y with a
reversed drift plus a correction term denoted by ϕ.

Y (0) = +∞

dY (t) =
(
−t − a + Y (t)2 + ϕ(Yt)

)
dt

3. Under the parabola: similar point 1.
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From Tracy-Widom to Gumbel
(joint work with Romain Allez, 2013)
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From Tracy-Widom to Gumbel

Recall the β-ensemble introduced before:

1√
β



√
2 g1 χ(N−1)β

χ(N−1)β
√
2 g2 χ(N−2)β
. . . . . . . . .

χ2β
√
2 gN−1 χβ
χβ

√
2 gN
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From Tracy-Widom to Gumbel

When β = 0,

√
2 g1 √

2 g2
. . . √

2 gN−1 √
2 gN



Behaviour of the largest eigenvalue gN,max when N →∞:√
ln(N)

(
gN,max − 2

√
ln(N)− 1

8
ln(π ln(N))√

ln(N)

)
⇒ Gumbel = e−xe−e−xdx
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From Tracy-Widom to Gumbel

When β > 0,

1√
β



√
2 g1 χ(N−1)β

χ(N−1)β
√
2 g2 χ(N−2)β
. . . . . . . . .

χ2β
√
2 gN−1 χβ
χβ

√
2 gN


Recall we have: When N →∞:

N1/6
(
λβ,1 − 2

√
N
)
⇒ TWβ
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From Tracy-Widom to Gumbel

Morally, we have "Gumbel = TW0" (mind the different scalings!).

Is there an interpolation between Tracy-Widom-beta distribution
and Gumbel distribution? How does the transition occur?
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From Tracy-Widom to Gumbel

Theorem (Allez, D., 2013)
When properly rescaled and centered, the Tracy-Widom-β law
converges weakly to the Gumbel law. More precisely, when β → 0,
the random variable

2 · 31/3 ·
(
ln 1
β

)1/3[ (β
4

)2/3
TW(β)−

(3
8

)2/3 (
ln 1
βπ

)2/3 ]
converges in law towards the Gumbel distribution.
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Sketch of the proof

First let us make a convenient change of variable: we will study
instead of Xa

Za(0) = +∞

Za(t) =

(
a +

β

4 t − Z 2
a (t)

)
dt + dB(t)

We have now the equality:

P
((

β

4

)2/3
TWβ > a

)
= P(there exists at least one explosion for Za)

If β → 0 while a is fixed: Za blows-up to −∞ infinitely often a.s.

We need to find the correct speed a := aβ such that the limit is
non trivial.We should have: aβ →∞ when β → 0.
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Sketch of the proof

Fix x ∈ R and let us choose

a := aβ(x) :=
3
8 ln

( 1
πβ

)
− 1

2
1

31/3

(
ln
( 1
β

))−1/3
x

Notice that

m(aβ(x)) ∼β→0 β
−1
(3
8 ln

( 1
β

))−1/3
e−x

Suppose that the time-term in the drift is negligible. After a time
of the order s := β−1(3/8 ln(1/β))−1/3 t, the diffusion has a
positive probability to explode and the drift becomes:

aβ(x) +
1
β

(3
8 ln(

1
β

)
)−1/3

t × β

4 − Z 2
a (s) ∼ aβ(x − t)− Z 2

a (s)
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Consider the point process defined by the explosion times of Zaβ ,

renormalized by β−1
(

3
8 ln

(
1
β

))−1/3
i.e.

νβ :=
∞∑

i=1
δ
β
(

3
8 ln
(

1
β

))1/3
ζi

Proposition (Allez, D.)
The measure νβ converges weakly (for the vague convergence of
Radon measures) to a inhomegeneous Poisson Point Process with
intensity ex−tdt

It is then straightforward to deduce the convergence result for the
TWβ distribution (and we can extend this proof to deduce the
convergence result for the k-th largest eigenvalues).
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Some related open questions

I Limiting joint law of the 1st/2nd/3rd/· · · largest eigenvalues?
We proved that the marginal density converges to the
marginals of the inhomonegeous PPP. But open question for
the joint law (it should be Poissonian).

I What happens for the initial random matrix model? We
conjecture that in the double limit N →∞ and βN → 0 such
that NβN � ln(N), the largest eigenvalue properly rescaled
converges to the Gumbel distribution (difficulty here: the limit
object is no longer a stochastic operator).
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THANK YOU !

35 / 35


	Tracy-Widom-beta distributions
	Objects with Tracy-Widom limit
	Tracy-Widom and -ensembles
	Trapping a diffusion in a stationary well

	The right tail of the Tracy-Widom distribution
	From Tracy-Widom to Gumbel

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


