Stochastic orders in stochastic networks

Lasse Leskelä

University of Jyväskylä, Finland www.iki.fi/lsl/

Stochastic dynamics on complex systems

 $\mathsf{E}\,f(X(t)) = ?$

Analysis methods

- Stochastic simulation
- Scaling approximations and limit theorems
- Stochastic comparison and coupling

Outline

Stochastic orders and relations

Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Stochastic comparison approach

$\mathsf{E}f(X(t)) = ?$

Find a reference model Y(t) which

- Performs worse than X(t)
- Can be proven to do so analytically
- Is computationally tractable
- → Computable & conservative performance estimates
- \rightsquigarrow Sufficient conditions for stochastic stability

Stochastic ordering

How to define X less than Y for random variables?

Strong order: $X \leq_{st} Y$ if

 $\mathsf{E} f(X) \leq \mathsf{E} f(Y)$

for all increasing test functions f

► This definition extends to random variables with values in a complete separable metric (=Polish) space with a closed partial order (S, ≤)

Strassen's coupling theorem

Theorem (Strassen 1965)

Two random variables on a complete separable metric space equipped with a closed partial order satisfy $X \leq_{st} Y$ if and only if they admit a coupling (\hat{X}, \hat{Y}) such that $\hat{X} \leq \hat{Y}$ almost surely.

A coupling of random variables X and Y is a bivariate random variable (\hat{X}, \hat{Y}) such that:

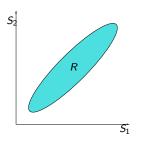
- \hat{X} has the same distribution as X
- \hat{Y} has the same distribution as Y

Stochastic relations

Any meaningful distributional relation should have a coupling counterpart (Thorisson 2000).

Stochastic relations

Any meaningful distributional relation should have a coupling counterpart (Thorisson 2000).



A relation is an arbitrary subset $R \subset S_1 imes S_2$

- Denote $x \sim y$ if $(x, y) \in R$
- ► Random variables X and Y are related by X ~_{st} Y if they admit a coupling (X̂, Ŷ̂) such that X̂ ~ Ŷ almost surely.

 \rightsquigarrow Coupling allows to define a randomized version an arbitrary relation

Examples of stochastic relations

St. equality Let $=_{st}$ be the stochastic relation generated by the equality =. Then $X =_{st} Y$ if and only if X and Y have the same distribution.

St. order Let \leq_{st} be the stochastic relation generated by a partial order \leq . Then $X \leq_{st} Y$ corresponds to the usual strong stochastic order.

St. ϵ -distance Define $x \approx y$ by $|x - y| \leq \epsilon$. Two real random variables satisfy $X \approx_{st} Y$ if and only if for all x the corresponding c.d.f.'s satisfy $F_Y(x - \epsilon) \leq F_X(x) \leq F_Y(x + \epsilon).$

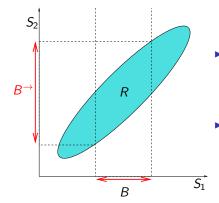
Functional characterization

Theorem

For any closed relation \sim between complete separable metric spaces, X \sim_{st} Y is equivalent to both:

(i) $P(X \in B) \le P(Y \in B^{\rightarrow})$ for all compact $B \subset S_1$

(ii) $E f(X) \le E f^{\rightarrow}(Y)$ for all upper semicontinuous compactly supported $f : S_1 \to \mathbb{R}_+$



- ▶ $B^{\rightarrow} = \bigcup_{x_1 \in B} \{x_2 \in S_2 : x_1 \sim x_2\}$ is the set of points in S_2 related to a point in B
- f→(x₂) = sup_{x1:x1∼x2} f(x₁) is the supremum of f over points related to x₂

Stochastic orders and relations

Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Stochastic ordering of network populations

Problem

Can we show that Markov processes \boldsymbol{X} and \boldsymbol{Y} satisfy

$$\mathsf{E}\,f(X(t))=?$$

$$\lim_{t\to\infty} f(X(t)) \leq_{\mathrm{st}} \lim_{t\to\infty} f(Y(t))$$

without calculating the limiting distributions?

Stochastic ordering of network populations

Problem

Can we show that Markov processes \boldsymbol{X} and \boldsymbol{Y} satisfy

 $\mathsf{E}\,f(X(t))=?$

$$\lim_{t\to\infty} f(X(t)) \leq_{\text{st}} \lim_{t\to\infty} f(Y(t))$$

without calculating the limiting distributions?

Assumptions and notation

- Countable state space S
- Continuous time
- Q(x, y) is the rate of transition for $x \mapsto y$, and

$$Q(x,B) = \sum_{y \in B} Q(x,y)$$

is the aggregate rate of transitions from x into $B \subset S$

A sufficient condition

Theorem (Whitt 1986, Massey 1987)

The property $\lim_{t\to\infty} X_1(t) \leq_{st} \lim_{t\to\infty} X_2(t)$ holds if the corresponding transition rate kernels satisfy for all $x \leq y$:

(i) $Q_1(x,B) \le Q_2(y,B)$ for all upper sets B such that $x, y \notin B$

(ii) $Q_1(x,B) \ge Q_2(y,B)$ for all lower sets B such that $x, y \notin B$

Notation

- A set is upper if its indicator function is increasing
- A set is lower if its indicator function is decreasing

A sufficient condition

Theorem (Whitt 1986, Massey 1987)

The property $\lim_{t\to\infty} X_1(t) \leq_{st} \lim_{t\to\infty} X_2(t)$ holds if the corresponding transition rate kernels satisfy for all $x \leq y$:

(i) $Q_1(x,B) \le Q_2(y,B)$ for all upper sets B such that $x, y \notin B$

(ii) $Q_1(x,B) \ge Q_2(y,B)$ for all lower sets B such that $x, y \notin B$

Notation

- A set is upper if its indicator function is increasing
- A set is lower if its indicator function is decreasing

The above Whitt–Massey condition is not sharp in general ~ Can we do any better?

Markov coupling

A transition rate kernel Q on $S_1 \times S_2$ is a coupling of transition rate kernels Q_1 on S_1 and Q_2 on S_2 if

$$Q(x, B_1 \times S_2) = Q_1(x_1, B_1)$$

 $Q(x, S_1 \times B_2) = Q_2(x_2, B_2)$

for all $x = (x_1, x_2)$, B_1 and B_2 such that $x_1 \notin B_1$ and $x_2 \notin B_2$

Andrei Markov (1856–1922) St Petersburg University

Andrei Markov (1978–) Montreal Canadiens

Markov coupling \implies path coupling

Theorem (Mu-Fa Chen 1986)

Let Q be a kernel that couples two nonexplosive kernels Q_1 and Q_2 . Then Q is nonexplosive, and for all $x = (x_1, x_2) \in S$, the Markov process $X(x, \cdot)$ generated by Q couples the Markov processes $X_1(x_1, \cdot)$ and $X_2(x_2, \cdot)$ generated by Q_1 and Q_2 .

• $X(x, \cdot)$ denotes the path of a Markov process started at x

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

$$x \sim y \implies X(x,t) \sim_{\mathrm{st}} Y(y,t)$$
 for all t ,

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

$$x \sim y \implies X(x,t) \sim_{\mathrm{st}} Y(y,t)$$
 for all t ,

Examples

X is stochastically monotone if

$$x \leq y \quad \Longrightarrow \quad X(x,t) \leq_{ ext{st}} X(y,t) ext{ for all } t.$$

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

$$x \sim y \implies X(x,t) \sim_{\mathrm{st}} Y(y,t)$$
 for all t ,

Examples

X is stochastically monotone if

$$x \leq y \implies X(x,t) \leq_{\mathrm{st}} X(y,t)$$
 for all t .

► X is a stochastically distance-preserving if

$$xpprox y \implies X(x,t)pprox_{
m st} X(y,t)$$
 for all $t.$

Theorem

For nonexplosive Markov jump processes, the following are equivalent:

(i) X_1 and X_2 stochastically preserve the relation R.

Theorem

For nonexplosive Markov jump processes, the following are equivalent:

- (i) X_1 and X_2 stochastically preserve the relation R.
- (ii) There exists a Markov coupling of X_1 and X_2 for which R is absorbing.

Theorem

For nonexplosive Markov jump processes, the following are equivalent:

- (i) X_1 and X_2 stochastically preserve the relation R.
- (ii) There exists a Markov coupling of X_1 and X_2 for which R is absorbing.
- (iii) For all $x_1 \sim x_2$, the rate kernels Q_1 and Q_2 satisfy

$$Q_1(x_1,B_1) \leq Q_2(x_2,B_1^{\rightarrow})$$

for all measurable B_1 such that $x_1 \notin B_1$ and $x_2 \notin B_1^{\rightarrow}$, and

$$Q_1(x_1, B_2^{\leftarrow}) \ge Q_2(x_2, B_2)$$

for all measurable B_2 such that $x_1 \notin B_2^{\leftarrow}$ and $x_2 \notin B_2$.

Theorem

For nonexplosive Markov jump processes, the following are equivalent:

- (i) X_1 and X_2 stochastically preserve the relation R.
- (ii) There exists a Markov coupling of X_1 and X_2 for which R is absorbing.
- (iii) For all $x_1 \sim x_2$, the rate kernels Q_1 and Q_2 satisfy

$$Q_1(x_1,B_1) \leq Q_2(x_2,B_1^{\rightarrow})$$

for all measurable B_1 such that $x_1 \notin B_1$ and $x_2 \notin B_1^{\rightarrow}$, and

$$Q_1(x_1, B_2^{\leftarrow}) \ge Q_2(x_2, B_2)$$

for all measurable B_2 such that $x_1 \notin B_2^{\leftarrow}$ and $x_2 \notin B_2$.

Open problem

Is it enough to look at compact B_1 and B_2 ?

Stochastic subrelations

Recall our starting point:

Problem

Can we show that Markov processes X_1 and X_2 satisfy

$$\lim_{t o\infty}X_1(t)\leq_{ ext{st}}\lim_{t o\infty}X_2(t)$$

without calculating the limiting distributions?

Stochastic subrelations

Recall our starting point:

Problem

Can we show that Markov processes X_1 and X_2 satisfy

$$\lim_{t\to\infty}X_1(t)\leq_{\mathrm{st}}\lim_{t\to\infty}X_2(t)$$

without calculating the limiting distributions?

- ► The Whitt-Massey condition requires that X₁ and X₂ stochastically preserve the order relation R_≤ = {(x, y) : x ≤ y}.
- What about preserving a subrelation of R_{\leq} ?

Theorem

If (irreducible, positive recurrent) Markov processes X_1 and X_2 stochastically preserve a nontrivial subrelation R of R_{\leq} , then $\lim_{t\to\infty} X_1(t) \leq_{st} \lim_{t\to\infty} X_2(t)$.

Theorem

If (irreducible, positive recurrent) Markov processes X_1 and X_2 stochastically preserve a nontrivial subrelation R of R_{\leq} , then $\lim_{t\to\infty} X_1(t) \leq_{st} \lim_{t\to\infty} X_2(t)$.

Proof.

Fix $x = (x_1, x_2) \in \mathbb{R}$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_1(x_1, \cdot)$ and $X_2(x_2, \cdot)$ for which \mathbb{R} is invariant.

Theorem

If (irreducible, positive recurrent) Markov processes X_1 and X_2 stochastically preserve a nontrivial subrelation R of R_{\leq} , then $\lim_{t\to\infty} X_1(t) \leq_{st} \lim_{t\to\infty} X_2(t)$.

Proof.

- Fix $x = (x_1, x_2) \in \mathbb{R}$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_1(x_1, \cdot)$ and $X_2(x_2, \cdot)$ for which \mathbb{R} is invariant.
- ▶ Then $\hat{X}_1(x,t) \sim \hat{X}_2(x,t)$ almost surely for all t, so that

$$\lim_{t\to\infty}X_1(t)=_{\mathrm{st}}\lim_{t\to\infty}\hat{X}_1(x,t)\sim \lim_{t\to\infty}\hat{X}_2(x,t)=_{\mathrm{st}}\lim_{t\to\infty}X_2(t).$$

Theorem

If (irreducible, positive recurrent) Markov processes X_1 and X_2 stochastically preserve a nontrivial subrelation R of R_{\leq} , then $\lim_{t\to\infty} X_1(t) \leq_{st} \lim_{t\to\infty} X_2(t)$.

Proof.

- Fix $x = (x_1, x_2) \in \mathbb{R}$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_1(x_1, \cdot)$ and $X_2(x_2, \cdot)$ for which \mathbb{R} is invariant.
- ▶ Then $\hat{X}_1(x,t) \sim \hat{X}_2(x,t)$ almost surely for all t, so that

$$\lim_{t\to\infty}X_1(t) =_{\mathrm{st}} \lim_{t\to\infty}\hat{X}_1(x,t) \sim \lim_{t\to\infty}\hat{X}_2(x,t) =_{\mathrm{st}} \lim_{t\to\infty}X_2(t).$$

$$\blacktriangleright \implies \lim_{t\to\infty} X_1(t) \sim_{\mathrm{st}} \lim_{t\to\infty} X_2(t)$$

Theorem

If (irreducible, positive recurrent) Markov processes X_1 and X_2 stochastically preserve a nontrivial subrelation R of R_{\leq} , then $\lim_{t\to\infty} X_1(t) \leq_{st} \lim_{t\to\infty} X_2(t)$.

Proof.

- ▶ Fix $x = (x_1, x_2) \in \mathbb{R}$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_1(x_1, \cdot)$ and $X_2(x_2, \cdot)$ for which \mathbb{R} is invariant.
- ▶ Then $\hat{X}_1(x,t) \sim \hat{X}_2(x,t)$ almost surely for all t, so that

$$\lim_{t\to\infty}X_1(t) =_{\mathrm{st}} \lim_{t\to\infty}\hat{X}_1(x,t) \sim \lim_{t\to\infty}\hat{X}_2(x,t) =_{\mathrm{st}} \lim_{t\to\infty}X_2(t).$$

- $\blacktriangleright \implies \lim_{t\to\infty} X_1(t) \sim_{\mathrm{st}} \lim_{t\to\infty} X_2(t)$
- $\blacktriangleright \implies \lim_{t \to \infty} X_1(t) \leq_{\mathrm{st}} \lim_{t \to \infty} X_2(t) \text{ because } R \subset R_{\leq}$

Subrelation algorithm

How to find a good subrelation (does it exist)?

Subrelation algorithm

How to find a good subrelation (does it exist)?

Given a relation R and transition rate kernels Q_1 and Q_2 , define a sequence of relations by $R^{(0)} = R$,

$$R^{(n+1)} = \left\{ (x,y) \in R^{(n)} : (Q_1(x,\cdot), Q_2(y,\cdot)) \in R^{(n)}_{\mathrm{st}} \right\},$$

where $(Q_1(x, \cdot), Q_2(y, \cdot)) \in R_{st}^{(n)}$ means that (Q_1, Q_2) preserves the stochastic relation generated by $R^{(n)}$ locally at (x, y).

Subrelation algorithm

How to find a good subrelation (does it exist)?

Given a relation R and transition rate kernels Q_1 and Q_2 , define a sequence of relations by $R^{(0)} = R$,

$$R^{(n+1)} = \left\{ (x,y) \in R^{(n)} : (Q_1(x,\cdot), Q_2(y,\cdot)) \in R^{(n)}_{\mathrm{st}}
ight\},$$

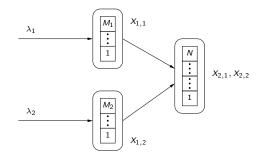
where $(Q_1(x, \cdot), Q_2(y, \cdot)) \in R_{st}^{(n)}$ means that (Q_1, Q_2) preserves the stochastic relation generated by $R^{(n)}$ locally at (x, y).

Theorem

The relation $\mathbb{R}^* = \bigcap_{n=0}^{\infty} \mathbb{R}^{(n)}$ is the maximal subrelation of \mathbb{R} that is stochastically preserved by (Q_1, Q_2) . Especially, the pair (Q_1, Q_2) preserves a nontrivial subrelation of \mathbb{R} if and only if $\mathbb{R}^* \neq \emptyset$.

Application: Call center

- *M*₁ English-speaking agents
- ► *M*₂ French-speaking agents
- ► *N* bilingual agents



Service rate (in calls/min) in state X equals $X_{1,1} + X_{1,2} + X_{2,1} + X_{2,2}$

Application: Call center

Does training improve performance?

Modified system $Y = (Y_{1,1}, Y_{1,2}; Y_{2,1}, Y_{2,2})$

- Replace one English-speaking agent by a bilingual agent
- ► Can we show that $\sum_{i,k} X_{i,k} \leq_{st} \sum_{i,k} Y_{i,k}$ in steady state?

Define the relation $x \sim y$ by $\sum_{i,k} x_{i,k} \leq \sum_{i,k} y_{i,k}$.

- ▶ ~ is not an order (different state spaces)
- X and Y do not preserve \sim_{st}
- But maybe (X, Y) preserves some subrelation of \sim_{st} ?

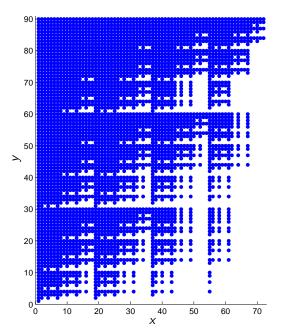
Numerical example

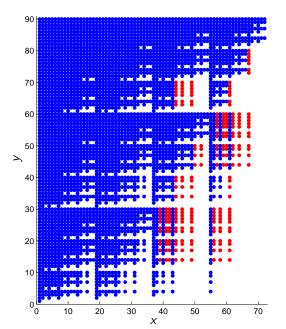
- Available call agents: 3 English, 2 French, 2 bilingual
- Calls arrive at rates 1 (English) and 2 (French) per min
- Mean call duration is 1 min

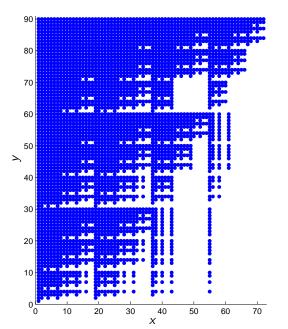
How many iterations do we need to compute R_{∞} ?

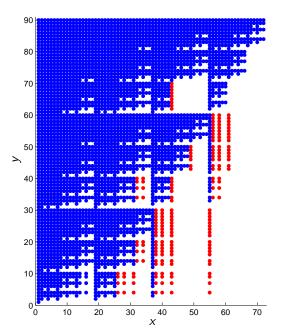
- X has 72 possible states
- Y has 90 possible states

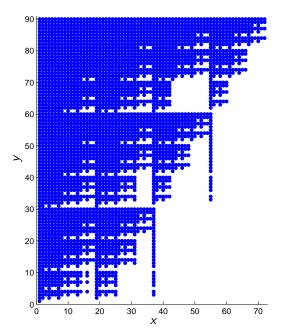
STOCHREL v1.0 - A Matlab stochastic relations package
http://www.iki.fi/lsl/software/stochrel/

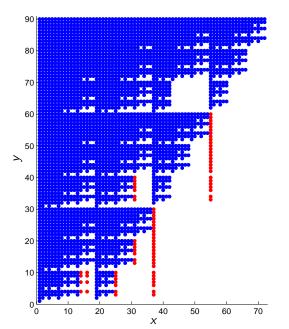


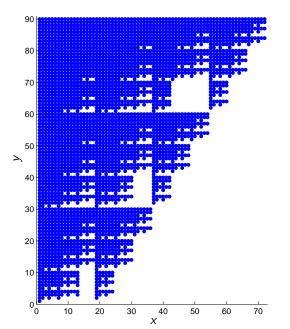


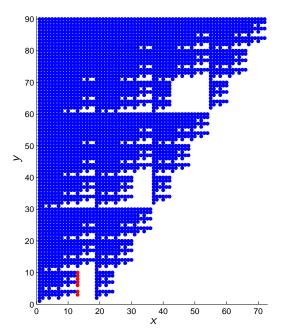


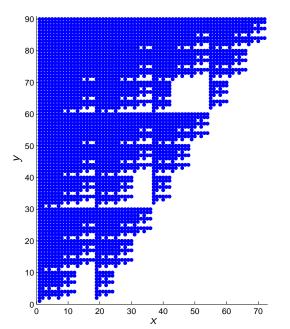








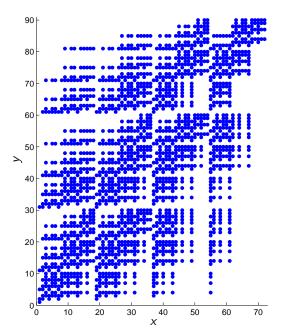


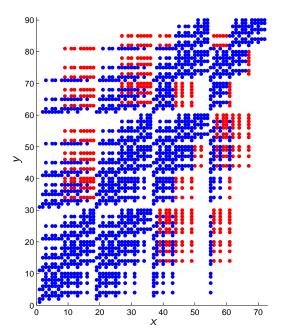


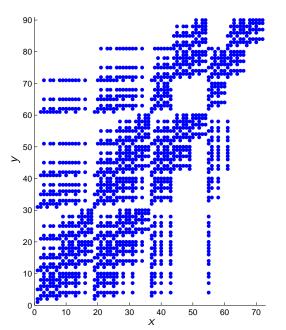
What if we started with a stricter relation?

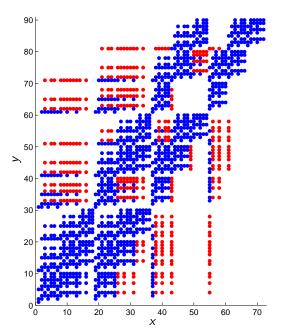
Redefine $x \sim y$ by

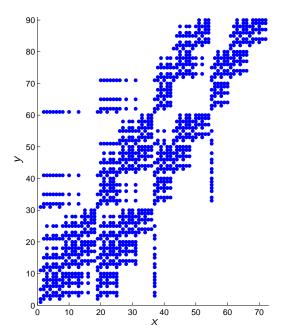
$$0 \leq \sum_{i,k} y_{i,k} - \sum_{i,k} x_{i,k} \leq 1$$

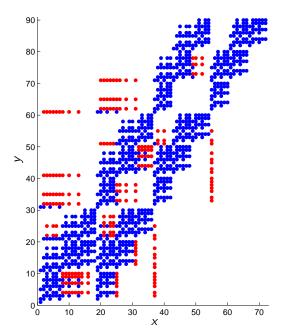


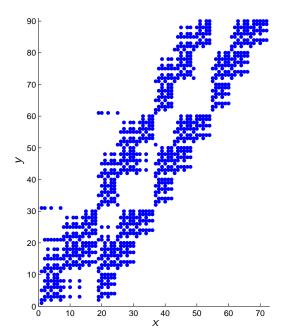


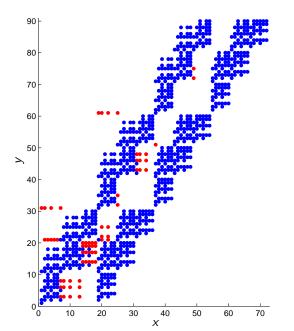


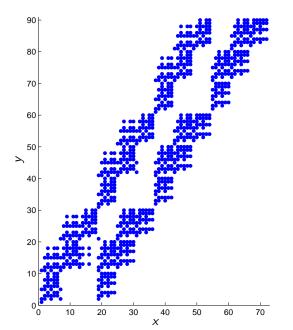


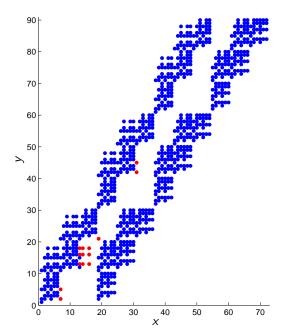


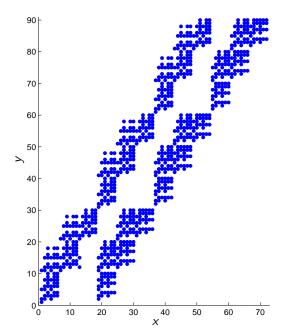


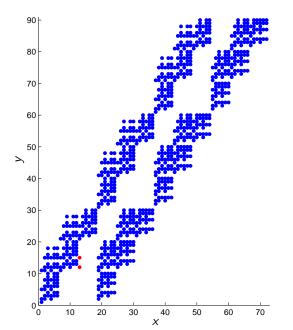


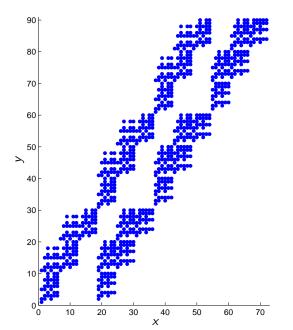












Theorem (Jonckheere Leskelä 2008)

The processes X and Y stochastically preserve the relation $R = \{(x, y) : |x - y| \in \Delta\}$, where

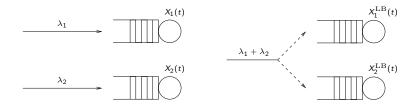
$$\Delta = \{0, e_2, e_2 - e_{1,1}, 2e_2 - e_{1,1}\}.$$

Especially, the stationary distributions of the processes satisfy

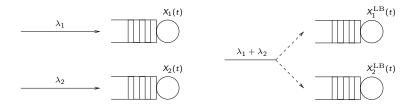
$$|Y| - 1 \leq_{\mathrm{st}} |X| \leq_{\mathrm{st}} |Y|,$$

and

$$egin{aligned} X_{1,1} &\geq_{ ext{st}} Y_{1,1}, \ X_{1,k} &=_{ ext{st}} Y_{1,k} & ext{ for all } k
eq 1, \ \sum_k X_{2,k} &\leq_{ ext{st}} \sum_k Y_{2,k}. \end{aligned}$$



Common sense: $\mathsf{E}(X_1^{\mathrm{LB}}(t) + X_2^{\mathrm{LB}}(t)) \le \mathsf{E}(X_1(t) + X_2(t))$

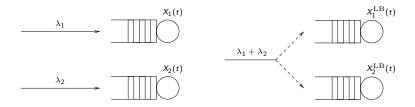


Common sense: $\mathsf{E}(X_1^{\mathrm{LB}}(t) + X_2^{\mathrm{LB}}(t)) \le \mathsf{E}(X_1(t) + X_2(t))$

Problem: (Q^{LB}, Q) does not stochastically preserve:

•
$$R^{\text{nat}} = \{(x, y) : x_1 \le y_1, x_2 \le y_2\}$$

•
$$R^{\text{sum}} = \{(x, y) : |x| \le |y|\}, \text{ where } |x| = x_1 + x_2$$

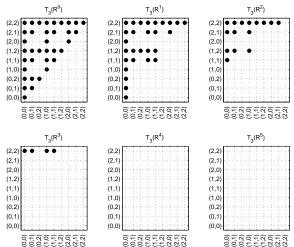


Common sense: $\mathsf{E}(X_1^{\mathrm{LB}}(t) + X_2^{\mathrm{LB}}(t)) \le \mathsf{E}(X_1(t) + X_2(t))$

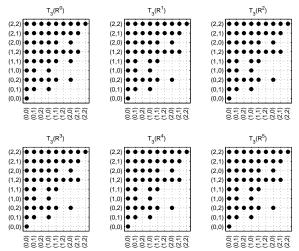
Problem: (Q^{LB}, Q) does not stochastically preserve: $R^{\text{nat}} = \{(x, y) : x_1 \le y_1, x_2 \le y_2\}$ $R^{\text{sum}} = \{(x, y) : |x| \le |y|\}, \text{ where } |x| = x_1 + x_2$

How about a subrelation of R^{nat} or R^{sum} ?

Subrelation algorithm applied to $R^0 = R^{nat}$



Starting with R^{sum} instead of R^{nat}



Theorem

The subrelation algorithm started from R^{sum} yields

$$R^{(n)} = \{(x, y) : |x| \le |y| \text{ and } x_1 \lor x_2 \le y_1 \lor y_2 + (y_1 \land y_2 - n)^+ \}$$

$$\downarrow$$

$$R^* = \{(x, y) : |x| \le |y| \text{ and } x_1 \lor x_2 \le y_1 \lor y_2 \}.$$

Especially, (Q^{LB}, Q) stochastically preserves the relation R^* .

Theorem

The subrelation algorithm started from R^{sum} yields

$$R^{(n)} = \{(x, y) : |x| \le |y| \text{ and } x_1 \lor x_2 \le y_1 \lor y_2 + (y_1 \land y_2 - n)^+ \}$$

$$\downarrow$$

$$R^* = \{(x, y) : |x| \le |y| \text{ and } x_1 \lor x_2 \le y_1 \lor y_2 \}.$$

Especially, (Q^{LB}, Q) stochastically preserves the relation R^* .

Remark

- R^* is the weak majorization order on \mathbb{Z}^2_+
- ► $X \sim_{st}^{*} Y$ if and only if $E f(X) \le E f(Y)$ for all coordinatewise increasing Schur-convex functions f (Marshall Olkin 1979).

Outline

Stochastic orders and relations

Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Two-node linear queueing network

Two queues with buffer capacities n_1 and n_2

$$\xrightarrow{\lambda 1(x_1 < n_1)} \underbrace{1}^{\mu_1(x_1)1(x_2 < n_2)} \underbrace{2}^{\mu_2(x_2)} \xrightarrow{\mu_2(x_2)}$$

Blocking

- Arrivals blocked when
 X₁(t) = n₁
- 1st server halts when $X_2(t) = n_2$

Two-node linear queueing network

Two queues with buffer capacities n_1 and n_2

$$\xrightarrow{\lambda 1(x_1 < n_1)} \underbrace{1}^{\mu_1(x_1)1(x_2 < n_2)} \underbrace{2}^{\mu_2(x_2)} \xrightarrow{\mu_2(x_2)}$$

Blocking

- Arrivals blocked when
 X₁(t) = n₁
- 1st server halts when
 X₂(t) = n₂

Service station models

- Single-server: µ_i(x_i) = c_i1(x_i > 0)
- Multi-server: $\mu_i(x_i) = c_i x_i$
- Peer-to-peer: $\mu_i = \mu_i(x_1, x_2)$

Balanced system modification

$$\xrightarrow{\lambda 1(x_1 < n_1)\mathbf{1}(x_2 < n_2)} \underbrace{\mu_1(x_1)\mathbf{1}(x_2 < n_2)}_{(2)} \underbrace{\mu_2(x_2)\mathbf{1}(x_1 < n_1)}_{(2)}$$

Balanced operation

- Arrivals blocked when $X_1(t) = n_1$ or $X_2(t) = n_2$
- 1st server halts when $X_2(t) = n_2$
- 2nd server halts when $X_1(t) = n_1$

Balanced system modification

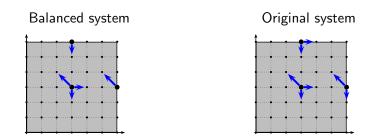
$$\xrightarrow{\lambda 1(x_1 < n_1)\mathbf{1}(x_2 < n_2)} \underbrace{\mu_1(x_1)\mathbf{1}(x_2 < n_2)}_{(2)} \underbrace{\mu_2(x_2)\mathbf{1}(x_1 < n_1)}_{(2)}$$

Balanced operation

- Arrivals blocked when $X_1(t) = n_1$ or $X_2(t) = n_2$
- 1st server halts when $X_2(t) = n_2$
- 2nd server halts when $X_1(t) = n_1$

Balanced system has a product-form equilibrium distribution (van der Wal & van Dijk 1989)

Balanced vs. original system



$$B^{\text{bal}} = \{x : x_1 = n_1 \text{ or } x_2 = n_2\}$$
 $B^{\text{orig}} = \{x : x_1 = n_1\}$

Performance comparison

- ▶ Balanced system has more blocking states: B^{bal} ⊃ B^{orig}
- Salanced system should have a higher loss rate
- ~> Conservative & computable performance bound

Sample path comparison

Heuristic reasoning:

Balanced system has more blocking states

- Balanced system has more blocking states
- ► ~→ Blocks more jobs

- Balanced system has more blocking states
- ► ~→ Blocks more jobs
- $\blacktriangleright \rightsquigarrow$ Has less jobs in the system

- Balanced system has more blocking states
- ► ~→ Blocks more jobs
- \blacktriangleright \rightsquigarrow Has less jobs in the system
- $\blacktriangleright \rightsquigarrow$ Spends less time in blocking states

- Balanced system has more blocking states
- ► ~→ Blocks more jobs
- \blacktriangleright \rightsquigarrow Has less jobs in the system
- \blacktriangleright \rightsquigarrow Spends less time in blocking states
- ► ~→ Blocks less jobs?

► Sample path comparison

- Sample path comparison
- Order-preserving Markov coupling

- ► Sample path comparison
- Order-preserving Markov coupling

- Sample path comparison
- Order-preserving Markov coupling
- Relation-preserving Markov coupling

Relation-preserving Markov couplings

Find a relation $R \subset S \times S'$ such that

- $(x, x') \in R \implies 1_B(x) \le 1_{B'}(x)$
- ► There exists an *R*-preserving Markov coupling of the systems.

Relation-preserving Markov couplings

Find a relation $R \subset S \times S'$ such that

- $\blacktriangleright (x,x') \in R \implies 1_B(x) \le 1_{B'}(x)$
- ► There exists an *R*-preserving Markov coupling of the systems.

Does it exist? The existence of such a relation can be checked using the subrelation algorithm

The answer is NO

- Sample path comparison
- Order-preserving Markov coupling
- Relation-preserving Markov coupling
- Flow coupling

General Markov network

Network state: Markov process X on a subset of \mathbb{Z}^n_+ with transitions

$$x \mapsto x - e_i + e_j$$
 at rate $\alpha_{i,j}(x)$, $(i,j) \in E(G)$

where e_i is the *i*-th unit vector in \mathbb{Z}^n and $e_0 = 0$

- ▶ Network G = (V, E) has n internal nodes {1,..., n} and one external node 0
- $\alpha_{0,j}(x)$ is the arrival rate to node j
- $\alpha_{i,0}(x)$ is the departure rate from node *i*

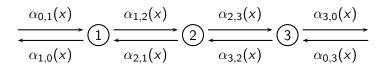
State-flow Markov process

Markov process (X, F) in $\mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{\mathcal{E}(G)}$ with transitions

$$(x, f) \mapsto (x - e_i + e_j, f + e_{i,j})$$
 at rate $\alpha_{i,j}(x)$, $(i, j) \in L$

- X_i(t) is the number of jobs in node i at time t
- F_{i,j}(t) − F_{i,j}(0) is the number of transitions over link (i, j) during (0, t]

Netflow ordering



State-flow relation

• (x, f) has smaller netflow than (x', f') if

$$\begin{split} f_{i,i+1} - f_{i+1,i} &\leq f_{i,i+1}' - f_{i+1,i}' \quad \text{for all } i = 0, 1, \dots, n, \\ x_i - f_{\text{in},i} + f_{i,\text{out}} &= x_i' - f_{\text{in},i}' + f_{i,\text{out}}' \quad \text{for all } i = 1, \dots, n, \end{split}$$

Flow coupling for linear networks

Theorem *Assume that*

$$\begin{aligned} x_1 \geq x'_1 \implies \alpha_{0,1}(x) \leq \alpha'_{0,1}(x') \text{ and } \alpha_{1,0}(x) \geq \alpha'_{1,0}(x'), \\ x_i \leq x'_i \text{ and } x_{i+1} \geq x'_{i+1} \implies \alpha_{i,i+1}(x) \leq \alpha'_{i,i+1}(x') \text{ and } \alpha_{i+1,i}(x) \geq \alpha'_{i+1,i}(x'), \\ x_n \leq x'_n \implies \alpha_{n,0}(x) \leq \alpha'_{n,0}(x') \text{ and } \alpha_{0,n}(x) \geq \alpha'_{0,n}(x'). \end{aligned}$$

Then there exists a Markov coupling of (X, F) and (X', F') which preserves the netflow relation. Especially, the netflow counting processes are ordered by

$$(F_{i,i+1}(t) - F_{i+1,i}(t))_{t \ge 0} \le_{\mathrm{st}} (F'_{i,i+1}(t) - F'_{i+1,i}(t))_{t \ge 0}$$

for all $i = 0, \ldots, n$, whenever $X(0) =_{st} X'(0)$.

Flow coupling for linear networks

Proof: Marching soldiers coupling. Let $(\tilde{X}, \tilde{F}, \tilde{X}', \tilde{F}')$ be a Markov process on $(\mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{E(G)}) \times (\mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{E(G)})$ with transitions $((x, f), (x', f')) \mapsto \begin{cases} (T_{i,j}(x, f), T_{i,j}(x', f')) & \text{at rate } \alpha_{i,j}(x) \land \alpha'_{i,j}(x'), \\ ((x, f), T_{i,j}(x', f')) & \text{at rate } (\alpha'_{i,j}(x') - \alpha_{i,j}(x))_{+}, \\ (T_{i,j}(x, f), (x, f)) & \text{at rate } (\alpha_{i,j}(x) - \alpha'_{i,j}(x'))_{+}, \end{cases}$

where $T_{i,j}(x, f) = (x - e_i + e_j, f + e_{i,j})$

- ► This is the marching soldiers coupling of (X, F) and (X', F') (Mu-Fa Chen 2005).
- This coupling preserves the state-flow order relation

Balanced vs. original two-node network

$$\xrightarrow{\alpha_{0,1}(x)} (1) \xrightarrow{\alpha_{1,2}(x)} (2) \xrightarrow{\alpha_{2,0}(x)}$$

Balanced system

- $\alpha_{0,1}^{\text{bal}}(x) = \lambda 1(x_1 < n_1) 1(x_2 < n_2)$
- $\alpha_{1,2}^{\text{bal}}(x) = \mu_1(x_1) \mathbb{1}(x_2 < n_2)$
- $\alpha_{2,0}^{\text{bal}}(x) = \mu_2(x_2) \mathbb{1}(x_1 < n_1)$

Original system

- $\bullet \ \alpha_{0,1}^{\text{orig}}(x) = \lambda \mathbb{1}(x_1 < n_1)$
- $\alpha_{1,2}^{\text{orig}}(x) = \mu_1(x_1)\mathbf{1}(x_2 < n_2)$
- $\bullet \ \alpha_{2,0}^{\operatorname{orig}}(x) = \mu_2(x_2)$

Balanced vs. original two-node network

$$\xrightarrow{\alpha_{0,1}(x)} (1) \xrightarrow{\alpha_{1,2}(x)} (2) \xrightarrow{\alpha_{2,0}(x)}$$

Balanced system

- $\alpha_{0,1}^{\text{bal}}(x) = \lambda 1(x_1 < n_1) 1(x_2 < n_2)$
- $\alpha_{1,2}^{\text{bal}}(x) = \mu_1(x_1) \mathbb{1}(x_2 < n_2)$
- $\alpha_{2,0}^{\text{bal}}(x) = \mu_2(x_2) \mathbb{1}(x_1 < n_1)$

Original system

- $\bullet \ \alpha_{0,1}^{\text{orig}}(x) = \lambda \mathbb{1}(x_1 < n_1)$
- $\alpha_{1,2}^{\text{orig}}(x) = \mu_1(x_1)\mathbf{1}(x_2 < n_2)$

$$\bullet \ \alpha_{2,0}^{\operatorname{orig}}(x) = \mu_2(x_2)$$

 $(X^{\mathrm{bal}}, \mathcal{F}^{\mathrm{bal}})$ has a stochastically smaller flow than $(X^{\mathrm{orig}}, \mathcal{F}^{\mathrm{orig}})$ if

$$\begin{aligned} x_1 \geq x'_1 \implies \alpha_{0,1}^{\text{bal}}(x) \leq \alpha_{0,1}^{\text{orig}}(x') \\ x_1 \leq x'_1 \text{ and } x_2 \geq x'_2 \implies \alpha_{1,2}^{\text{bal}}(x) \leq \alpha_{1,2}^{\text{orig}}(x') \\ x_2 \leq x'_2 \implies \alpha_{2,0}^{\text{bal}}(x) \leq \alpha_{2,0}^{\text{orig}}(x'). \end{aligned}$$

Balanced vs. original two-node network

$$\xrightarrow{\alpha_{0,1}(x)} (1) \xrightarrow{\alpha_{1,2}(x)} (2) \xrightarrow{\alpha_{2,0}(x)}$$

Balanced system

•
$$\alpha_{0,1}^{\text{bal}}(x) = \lambda 1(x_1 < n_1) 1(x_2 < n_2)$$

•
$$\alpha_{1,2}^{\text{bal}}(x) = \mu_1(x_1) \mathbb{1}(x_2 < n_2)$$

•
$$\alpha_{2,0}^{\text{bal}}(x) = \mu_2(x_2) \mathbb{1}(x_1 < n_1)$$

Original system

- $\bullet \ \alpha_{0,1}^{\text{orig}}(x) = \lambda \mathbb{1}(x_1 < n_1)$
- $\alpha_{1,2}^{\text{orig}}(x) = \mu_1(x_1) \mathbf{1}(x_2 < n_2)$

$$\bullet \ \alpha_{2,0}^{\operatorname{orig}}(x) = \mu_2(x_2)$$

 $(X^{\rm bal}, {\it F}^{\rm bal})$ has a stochastically smaller flow than $(X^{\rm orig}, {\it F}^{\rm orig})$ if

$$\begin{array}{l} x_1 \ge x_1' \implies \lambda 1(x_1 < n_1) 1(x_2 < n_2) \le \lambda 1(x_1' < n_1) \\ x_1 \le x_1' \text{ and } x_2 \ge x_2' \implies \mu_1(x_1) 1(x_2 < n_2) \le \mu_1(x_1') 1(x_2' < n_2) \\ x_2 \le x_2' \implies \mu_2(x_2) 1(x_1 < n_1) \le \mu_2(x_2') \end{array}$$

The above conditions are valid when μ_1 and μ_2 are increasing.

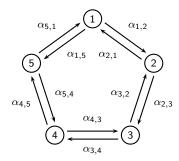
- Sample path comparison
- Order-preserving Markov coupling
- Relation-preserving Markov coupling
- Flow coupling (OK for throughput distributions)

Generalizations

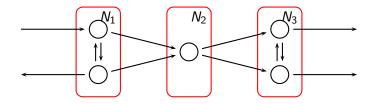
Other network structures?

- Closed cyclic networks
- Aggregate flows across linear partitions

Flow ordering in cyclic networks



Theorem Assume that for all i and for all x and x', $x_i \leq x'_i \text{ and } x_{i+1} \geq x'_{i+1}$ \implies $\alpha_{i,i+1}(x) \leq \alpha'_{i,i+1}(x') \text{ and } \alpha_{i+1,i}(x) \geq \alpha'_{i+1,i}(x').$ Then (X, F) has stochastically smaller clockwise netflow than (X', F'). Aggregate flows through linear partitions



State-flow (x, f) has a smaller netflow through $N_1 \rightarrow N_2 \rightarrow N_3$ than (x', f') if

$$\begin{array}{rcl} f_{N_r,N_{r+1}} - f_{N_{r+1},N_r} &\leq f_{N_r,N_{r+1}}' - f_{N_{r+1},N_r}' & \mbox{for all clusters } N_r, \\ x_i - f_{\mathrm{in},i} + f_{i,\mathrm{out}} &= x_i' - f_{\mathrm{in},i}' + f_{i,\mathrm{out}}' & \mbox{for all nodes } i, \end{array}$$

where

$$f_{N_r,N_s} = \sum_{i \in N_r, \ j \in N_s} f_{i,j}$$

Aggregate flows through linear partitions

Theorem

There exists a Markov coupling of state–flow processes (X, F) and (X', F') which preserves the netflow ordering if and only if for all $x, x' \in \mathbb{Z}_+^n$:

$$\begin{aligned} |x_{N_{1}}| \geq |x'_{N_{1}}| \implies \begin{cases} \alpha_{\{0\},N_{1}}(x) \leq \alpha'_{\{0\},N_{1}}(x')\\ \alpha_{N_{1},\{0\}}(x) \geq \alpha'_{N_{1},\{0\}}(x') \end{cases} \\ |x_{N_{k}}| \leq |x'_{N_{k}}|\\ |x_{N_{k+1}}| \geq |x'_{N_{k+1}}| \end{cases} \implies \begin{cases} \alpha_{N_{k},N_{k+1}}(x) \leq \alpha'_{N_{k},N_{k+1}}(x')\\ \alpha_{N_{k+1},N_{k}}(x) \geq \alpha'_{N_{k+1},N_{k}}(x') \end{cases} \\ |x_{N_{m}}| \leq |x'_{N_{m}}| \implies \begin{cases} \alpha_{N_{m},\{0\}}(x) \leq \alpha'_{N_{m},\{0\}}(x')\\ \alpha_{\{0\},N_{m}}(x) \geq \alpha'_{\{0\},N_{m}}(x'), \end{cases} \end{aligned}$$

where $|x_I| := \sum_{i \in I} x_i$ and $\alpha_{N_r,N_s} := \sum_{i \in N_r, j \in N_s} \alpha_{i,j}$.

Outline

Stochastic orders and relations

Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Stochastic boundedness

When is a family of positive random variables (*X*_α) bounded ► in the strong order?

 $X_{\alpha \leq \text{st}} Z$ if $\mathsf{E} \phi(X_{\alpha}) \leq \mathsf{E} \phi(Z)$ for ϕ increasing

Stochastic boundedness

When is a family of positive random variables (X_α) bounded
in the strong order?

$X_{\alpha} \leq_{\mathrm{st}} Z$ if $\mathsf{E} \phi(X_{\alpha}) \leq \mathsf{E} \phi(Z)$ for ϕ increasing

in the increasing convex order?

 $X_{\alpha} \leq_{\text{icx}} Z$ if $\mathsf{E} \phi(X_{\alpha}) \leq \mathsf{E} \phi(Z)$ for ϕ increasing and convex

For any p > 1:

 $\Leftrightarrow \{|X_{\alpha}|\} \text{ is icx-bounded}$ $\{|X_{\alpha}|\}$ is st-bounded by a *p*-integrable r.v. $\{|X_{\alpha}|^{p}\}$ is st-bounded by a *p*-integrable r.v. by an integrable r.v. $\Leftrightarrow \quad \{|X_{\alpha}|^{p}\} \text{ is icx-bounded}$ $\Leftrightarrow {\{\mu_{\alpha}\}}$ is rel. compact in $\{X_{\alpha}\}$ is uniformly by an integrable r.v. the *p*-Wasserstein metric *p*-integrable $\{X_{\alpha}\}$ is bounded $\Leftrightarrow \quad \{\mu_{\alpha}\} \text{ is bounded in} \\ \text{the } p\text{-Wasserstein metric}$ in L^p $\{|X_{\alpha}|\}$ is st-bounded by an integrable r.v. $\{|X_{\alpha}|\}$ is icx-bounded $\{X_{\alpha}\}$ is uniformly $\Leftrightarrow \quad \{\mu_{\alpha}\} \text{ is rel. compact in} \\ \text{the 1-Wasserstein metric}$ \Leftrightarrow by an integrable r.v. integrable 1 $\{X_{\alpha}\}$ is bounded $\{\mu_{\alpha}\}$ is bounded in the 1-Wasserstein metric in I^1 11 $\Leftrightarrow \{\mu_{\alpha}\}$ is rel. compact in $\{|X_{\alpha}|\}$ is st-bounded $\{X_{\alpha}\}$ is tight ⇔ the Prohorov metric by a finite r.v.

L Leskelä & M Vihola, Stat Probab Lett 2013, arXiv:1106.0607

Conclusions

You can compare things without ordering them.

Comparing populations

 Subrelation algorithm may help to reveal hidden monotone structure

L Leskelä, J Theor Probab 2010, arXiv:0806.3562

M Jonckheere & L Leskelä, Stoch Mod 2008, arXiv:0708.1927

L Leskelä & M Vihola, Stat Probab Lett 2013, arXiv:1106.0607

Comparing flows

Redundant state–flow model
 ~> non-Markov couplings

Lebesgue's dominated convergence theorem

Theorem

Assume that $X_n \to X$ almost surely. $\mathsf{E}\,|X_n - X| \to 0$ if for some integrable Y,

$$|X_n| \leq_{\mathrm{st}} Y$$
 for all n .

Sharp dominated convergence theorem

Theorem

Assume that $X_n \to X$ almost surely. $E|X_n - X| \to 0$ if and only if for some integrable Y,

$$|X_n| \leq_{icx} Y$$
 for all n .

Stochastic boundedness — Examples

Let U be a uniform r.v. in (0,1) and

$$\phi_n = \begin{cases} n \text{ w.pr. } n^{-1}, \\ 0 \text{ else,} \end{cases} \qquad \psi_n = \begin{cases} n \text{ w.pr. } (n \log n)^{-1}, \\ 0 \text{ else.} \end{cases}$$

Then for any p > 1:

- {e^{1/U}} is st-bounded by a finite r.v. (itself) but not bounded in L^ϵ for any ϵ > 0.
- $\{\phi_n\}$ is bounded in L^1 but not uniformly integrable.
- ► {\u03c6\u03c6 \u03c6 v_n} is uniformly integrable but not st-bounded by an integrable r.v.
- ► {U^{-1/p}} is st-bounded by an integrable r.v. but not bounded in L^p.
- $\{\phi_n^{1/p}\}$ is bounded in L^p but not uniformly *p*-integrable.
- ► {\u03c6\u03c6_n} is uniformly p-integrable but not st-bounded by a r.v. in L^p.

Prohorov metric

The Prohorov metric on the space M of probability measures on \mathbb{R}^d is defined by

$$d_{\mathcal{P}}(\mu, \nu) = \inf \left\{ \epsilon > 0 : \mu(B) \leq \nu(B^{\epsilon}) + \epsilon \text{ and } \nu(B) \leq \mu(B^{\epsilon}) + \epsilon \text{ for all } B^{\epsilon}
ight\}$$

where $B^{\epsilon} = \{x \in \mathbb{R}^d : |x - b| < \epsilon \text{ for some } b \in B\}$ denotes the ϵ -neighborhood of a Borel set B

- (M, d_P) is a complete separable metric space.
- ► Convergence in *d_P* is convergence in distribution

Wasserstein metric

For $p \ge 1$, denote by M_p the space of probability measures on \mathbb{R}^d with a finite *p*-th moment. The *p*-Wasserstein metric on M_p is defined by

$$d_{W,p}(\mu,\nu) = \left(\inf_{\gamma \in \mathcal{K}(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^p \gamma(dx,dy)\right)^{1/p},$$

where $K(\mu, \nu)$ is the set of couplings of μ and ν .

- $(M_p, d_{W,p})$ is a complete separable metric space.
- A sequence converges in d_{W,p} if and only if it is uniformly p-integrable and converges in distribution.

Open problems & discussion

Open problems

- Stochastic relations of diffusions
- Weak stochastic relations
- Structured Markov chains

Related work on non-Markov couplings

- Generalized semi-Markov processes (Glasserman & Yao 1994)
- Linear bandwidth-sharing networks (Verloop & Ayesta & Borst 2010)
- Chip-firing games (Eriksson 1996)
- Sleepy random walkers (Dickman & Rolla & Sidoravicius 2010)

Open problem: Coupling of diffusions

Assume that A_i are differential operators on \mathbb{R} of the form

$$A_i f(x_i) = \frac{1}{2} a^{(i)}(x_i) f''(x_i) + b^{(i)}(x_i) f'(x_i),$$

and let A be a differential operator on \mathbb{R}^2 such that

$$Af(x) = \frac{1}{2} \sum_{i,j=1}^{2} a_{i,j}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x) + \sum_{i=1}^{2} b_i(x) \frac{\partial}{\partial x_i} f(x).$$

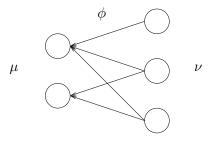
Then A couples A_1 and A_2 if

$$\frac{1}{2}a_{i,i}(x)f''(x_i) + b_i(x)f'(x_i) = \frac{1}{2}a^{(i)}(x_i)f''(x_i) + b^{(i)}(x_i)f'(x_i).$$

Discussion: Coupling vs. mass transportation

$$W_{\phi}(\mu,\nu) = \inf_{\lambda \in \mathcal{K}(\mu,\nu)} \int_{\mathcal{S}_1 \times \mathcal{S}_2} \phi(x_1,x_2) \,\lambda(dx)$$

• $K(\mu, \nu)$ is the set of couplings of μ and ν



- W_{ϕ} is a Wasserstein metric, if ϕ is a metric.
- $\mu \sim_{\text{st}} \nu$ if and only if $W_{\phi}(\mu, \nu) = 0$ for $\phi(x_1, x_2) = 1(x_1 \not\sim x_2)$.

(Monge 1781, Kantorovich 1942, Wasserstein 1969, Chen 2005)

Discussion: Subrelations vs. minimal bounding chains

Subrelation approach

- ▶ Given transition kernels P₁ and P₂, and a relation R, find a maximal subrelation of R stochastically preserved by (X₁, X₂)
- ▶ Intuitive bounding: P₂ needs to be a priori given

Minimal bounding chains

(Truffet 2000, Fourneau Lecoz Quessette 2004, Ben Mamoun Bušić Pekergin 2007)

- ▶ Given a transition matrix P₁ and an order relation R, find a minimal transition matrix P₂ (in a suitable class) such that X₁ and X₂ stochastically preserve R
- Computational bounding: P₂ found numerically

Questions and comments

- ▶ How to interpret minimal (when *R* is not a total order)?
- Can we combine the two approaches?

Truncated subrelation algorithm

- ▶ Assume Q₁ and Q₂ have locally bounded jumps
- ▶ Truncation operators $T_N : S_1 \times S_2 \rightarrow S_{1,N} \times S_{2,N}$
- Truncated subrelation algorithm can be computed in finite time and memory

Algorithm for computing $R^{(K)}$ truncated into $S_{1,N} \times S_{2,N}$:

$$\begin{array}{l} R' \leftarrow T_{N+K}(R) \\ \text{for } k = 1, \ldots, K \text{ do} \\ n \leftarrow N + K + 1 - k \\ Q_{1,n} \leftarrow \text{truncation of } Q_1 \text{ into } S_{1,n} \\ Q_{2,n} \leftarrow \text{truncation of } Q_2 \text{ into } S_{2,n} \\ R' \leftarrow T_n(R') \\ R' \leftarrow \text{subrelation algorithm applied to } (Q_{1,n}, Q_{2,n}, R') \\ \text{end for} \\ R' \leftarrow T_N(R') \end{array}$$

Operator coupling

Denote by π_i the projection map from $S_1 \times S_2$ to S_i . A linear operator A the space of bounded function on $S_1 \times S_2$ is a coupling of linear operators A_1 and A_2 , if $f \circ \pi_i \in \mathcal{D}(A)$ and

$$A(f \circ \pi_i) = (A_i f) \circ \pi_i$$
 for all $f \in \mathcal{D}(A_i)$.

If A_1 and A_2 are the generators of Markov processes on S_i , then we say that A is a Markov coupling for A_1 and A_2 if A couples the linear operators A_1 and A_2 , and the martingale problem for A is well-posed.

Conjecture

Assume that $A_1f(x) \le A_2g(y)$ for all $x \sim y$ and $f \sim g$. Then there exists a coupling of A_1 and A_2 that preserves the relation R.

▶ We denote $f \sim g$ if $f \in \mathcal{D}(A_1)$ and $g \in \mathcal{D}(A_2)$, and

$$x \sim y \implies f(x) \leq g(y).$$

M. Ben Mamoun, A. Bušić, and N. Pekergin. Generalized class C Markov chains and computation of closed-form bounding distributions. *Probab. Engrg. Inform. Sci.*, 21(2):235–260, 2007.

M.-F. Chen.

Coupling for jump processes. Acta Math. Sin., 2(2):123–136, 1986.

M.-F. Chen.

Eigenvalues, Inequalities, and Ergodic Theory. Springer, 2005.

R. Delgado, F. J. López, and G. Sanz.
 Local conditions for the stochastic comparison of particle systems.

Adv. Appl. Probab., 36:1252-1277, 2004.

P. Diaconis and W. Fulton.

A growth model, a game, an algebra, Lagrange inversion, and characteristic classes.

Rend. Sem. Mat. Univ. Politec. Torino, 49(1):95–119 (1993), 1991.

- R. Dickman, L. T. Rolla, and V. Sidoravicius.
 Activated random walkers: facts, conjectures and challenges.
 J. Stat. Phys., 138(1-3):126–142, 2010.
- N. M. van Dijk and J. van der Wal.
 Simple bounds and monotonicity results for finite multi-server exponential tandem queues.
 Queueing Syst., 4(1):1–15, 1989.
- K. Eriksson.

Chip-firing games on mutating graphs. SIAM J. Discrete Math., 9(1):118–128, 1996.

J. M. Fourneau, M. Lecoz, and F. Quessette. Algorithms for an irreducible and lumpable strong stochastic bound.

Linear Algebra Appl., 386:167–185, 2004.

P. Glasserman and D. D. Yao.

Monotone Structure in Discrete-Event Systems. Wiley, 1994.

- M. Jonckheere and L. Leskelä.
 Stochastic bounds for two-layer loss systems. Stoch. Models, 24(4):583–603, 2008.
- T. Kamae, U. Krengel, and G. L. O'Brien. Stochastic inequalities on partially ordered spaces. *Ann. Probab.*, 5(6):899–912, 1977.
- L. Leskelä.

Computational methods for stochastic relations and Markovian couplings.

In Proc. 4th International Workshop on Tools for Solving Structured Markov Chains (SMCTools), 2009.

L. Leskelä.

Stochastic relations of random variables and processes. *J. Theor. Probab.*, 23(2):523–546, 2010.

🔋 F. J. López and G. Sanz.

Markovian couplings staying in arbitrary subsets of the state space.

J. Appl. Probab., 39:197-212, 2002.

W. A. Massey.

Stochastic orderings for Markov processes on partially ordered spaces.

Math. Oper. Res., 12(2):350-367, 1987.

M. Shaked and J. G. Shanthikumar. Stochastic Orders. Springer, 2007.

V. Strassen.

The existence of probability measures with given marginals. Ann. Math. Statist., 36(2):423-439, 1965.

H. Thorisson.

Coupling, Stationarity, and Regeneration. Springer, 2000.

L. Truffet.

Reduction techniques for discrete-time Markov chains on totally ordered state space using stochastic comparisons. *J. Appl. Probab.*, 37(3):795–806, 2000.

I. Verloop, U. Ayesta, and S. Borst.
 Monotonicity properties for multi-class queueing systems.
 Discrete Event Dyn. Syst., 20:473–509, 2010.

W. Whitt.

Stochastic comparisons for non-Markov processes. *Math. Oper. Res.*, 11(4):608–618, 1986.