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Stochastic dynamics on complex systems

E f (X (t)) = ?

Analysis methods

◮ Stochastic simulation

◮ Scaling approximations and limit theorems

◮ Stochastic comparison and coupling
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Stochastic comparison approach

E f (X (t)) = ?

Find a reference model Y (t) which

◮ Performs worse than X (t)

◮ Can be proven to do so analytically

◮ Is computationally tractable

 Computable & conservative performance estimates

 Sufficient conditions for stochastic stability



Stochastic ordering

How to define X less than Y for random variables?

Strong order: X ≤st Y if

E f (X ) ≤ E f (Y )

for all increasing test functions f

◮ This definition extends to random variables with values in a
complete separable metric (=Polish) space with a closed partial
order (S ,≤)



Strassen’s coupling theorem

Theorem (Strassen 1965)

Two random variables on a complete separable metric
space equipped with a closed partial order satisfy
X ≤st Y if and only if they admit a coupling (X̂ , Ŷ )
such that X̂ ≤ Ŷ almost surely.

A coupling of random variables X and Y is a bivariate random
variable (X̂ , Ŷ ) such that:

◮ X̂ has the same distribution as X

◮ Ŷ has the same distribution as Y



Stochastic relations

Any meaningful distributional relation should have
a coupling counterpart (Thorisson 2000).



Stochastic relations

Any meaningful distributional relation should have
a coupling counterpart (Thorisson 2000).

S1

S2

R

A relation is an arbitrary subset R ⊂ S1 × S2

◮ Denote x ∼ y if (x , y) ∈ R

◮ Random variables X and Y are related by
X ∼st Y if they admit a coupling (X̂ , Ŷ )
such that X̂ ∼ Ŷ almost surely.

 Coupling allows to define a randomized version an arbitrary relation



Examples of stochastic relations

St. equality Let =st be the stochastic relation generated by the
equality =. Then X =st Y if and only if X and Y
have the same distribution.

St. order Let ≤st be the stochastic relation generated by a
partial order ≤. Then X ≤st Y corresponds to the
usual strong stochastic order.

St. ǫ-distance Define x ≈ y by |x − y | ≤ ǫ. Two real random
variables satisfy X ≈st Y if and only if for all x the
corresponding c.d.f.’s satisfy
FY (x − ǫ) ≤ FX (x) ≤ FY (x + ǫ).



Functional characterization

Theorem
For any closed relation ∼ between complete separable metric
spaces, X ∼st Y is equivalent to both:

(i) P(X ∈ B) ≤ P(Y ∈ B→) for all compact B ⊂ S1

(ii) E f (X ) ≤ E f→(Y ) for all upper semicontinuous compactly
supported f : S1 → R+

S1

S2

B

B→
R

◮ B→ = ∪x1∈B{x2 ∈ S2 : x1 ∼ x2} is
the set of points in S2 related to a
point in B

◮ f→(x2) = supx1:x1∼x2 f (x1) is the
supremum of f over points related
to x2
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Stochastic ordering of network populations

E f (X (t)) = ?

Problem
Can we show that Markov processes X and Y
satisfy

lim
t→∞

f (X (t)) ≤st lim
t→∞

f (Y (t))

without calculating the limiting distributions?



Stochastic ordering of network populations

E f (X (t)) = ?

Problem
Can we show that Markov processes X and Y
satisfy

lim
t→∞

f (X (t)) ≤st lim
t→∞

f (Y (t))

without calculating the limiting distributions?

Assumptions and notation

◮ Countable state space S

◮ Continuous time

◮ Q(x , y) is the rate of transition for x 7→ y , and

Q(x ,B) =
∑

y∈B

Q(x , y)

is the aggregate rate of transitions from x into B ⊂ S



A sufficient condition

Theorem (Whitt 1986, Massey 1987)

The property limt→∞ X1(t) ≤st limt→∞ X2(t) holds if the
corresponding transition rate kernels satisfy for all x ≤ y :

(i) Q1(x ,B) ≤ Q2(y ,B) for all upper sets B such that x , y /∈ B

(ii) Q1(x ,B) ≥ Q2(y ,B) for all lower sets B such that x , y /∈ B

Notation

◮ A set is upper if its indicator function is increasing

◮ A set is lower if its indicator function is decreasing



A sufficient condition

Theorem (Whitt 1986, Massey 1987)

The property limt→∞ X1(t) ≤st limt→∞ X2(t) holds if the
corresponding transition rate kernels satisfy for all x ≤ y :

(i) Q1(x ,B) ≤ Q2(y ,B) for all upper sets B such that x , y /∈ B

(ii) Q1(x ,B) ≥ Q2(y ,B) for all lower sets B such that x , y /∈ B

Notation

◮ A set is upper if its indicator function is increasing

◮ A set is lower if its indicator function is decreasing

The above Whitt–Massey condition is not sharp in general
 Can we do any better?



Markov coupling
A transition rate kernel Q on S1 × S2 is a coupling of transition
rate kernels Q1 on S1 and Q2 on S2 if

Q(x ,B1 × S2) = Q1(x1,B1)

Q(x ,S1 × B2) = Q2(x2,B2)

for all x = (x1, x2), B1 and B2 such that x1 /∈ B1 and x2 /∈ B2

Andrei Markov (1856–1922)
St Petersburg University

Andrei Markov (1978–)
Montreal Canadiens



Markov coupling =⇒ path coupling

Theorem (Mu-Fa Chen 1986)

Let Q be a kernel that couples two nonexplosive kernels Q1 and
Q2. Then Q is nonexplosive, and for all x = (x1, x2) ∈ S, the
Markov process X (x , ·) generated by Q couples the Markov
processes X1(x1, ·) and X2(x2, ·) generated by Q1 and Q2.

◮ X (x , ·) denotes the path of a Markov process started at x



Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

x ∼ y =⇒ X (x , t) ∼st Y (y , t) for all t,
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Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

x ∼ y =⇒ X (x , t) ∼st Y (y , t) for all t,

Examples

◮ X is stochastically monotone if

x ≤ y =⇒ X (x , t) ≤st X (y , t) for all t.

◮ X is a stochastically distance-preserving if

x ≈ y =⇒ X (x , t) ≈st X (y , t) for all t.



Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are
equivalent:

(i) X1 and X2 stochastically preserve the relation R.
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Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are
equivalent:

(i) X1 and X2 stochastically preserve the relation R.

(ii) There exists a Markov coupling of X1 and X2 for which R is
absorbing.

(iii) For all x1 ∼ x2, the rate kernels Q1 and Q2 satisfy

Q1(x1,B1) ≤ Q2(x2,B
→
1 )

for all measurable B1 such that x1 /∈ B1 and x2 /∈ B→1 , and

Q1(x1,B
←
2 ) ≥ Q2(x2,B2)

for all measurable B2 such that x1 /∈ B←2 and x2 /∈ B2.



Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are
equivalent:

(i) X1 and X2 stochastically preserve the relation R.

(ii) There exists a Markov coupling of X1 and X2 for which R is
absorbing.

(iii) For all x1 ∼ x2, the rate kernels Q1 and Q2 satisfy

Q1(x1,B1) ≤ Q2(x2,B
→
1 )

for all measurable B1 such that x1 /∈ B1 and x2 /∈ B→1 , and

Q1(x1,B
←
2 ) ≥ Q2(x2,B2)

for all measurable B2 such that x1 /∈ B←2 and x2 /∈ B2.

Open problem
Is it enough to look at compact B1 and B2?



Stochastic subrelations

Recall our starting point:

Problem
Can we show that Markov processes X1 and X2 satisfy

lim
t→∞

X1(t) ≤st lim
t→∞

X2(t)

without calculating the limiting distributions?



Stochastic subrelations

Recall our starting point:

Problem
Can we show that Markov processes X1 and X2 satisfy

lim
t→∞

X1(t) ≤st lim
t→∞

X2(t)

without calculating the limiting distributions?

◮ The Whitt–Massey condition requires that
X1 and X2 stochastically preserve the order relation
R≤ = {(x , y) : x ≤ y}.

◮ What about preserving a subrelation of R≤?



Less stringent sufficient condition

Theorem
If (irreducible, positive recurrent) Markov processes X1 and X2

stochastically preserve a nontrivial subrelation R of R≤, then
limt→∞ X1(t) ≤st limt→∞ X2(t).
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Less stringent sufficient condition

Theorem
If (irreducible, positive recurrent) Markov processes X1 and X2

stochastically preserve a nontrivial subrelation R of R≤, then
limt→∞ X1(t) ≤st limt→∞ X2(t).

Proof.

◮ Fix x = (x1, x2) ∈ R , and let X̂ (x , ·) be a Markov coupling of
X1(x1, ·) and X2(x2, ·) for which R is invariant.

◮ Then X̂1(x , t) ∼ X̂2(x , t) almost surely for all t, so that

lim
t→∞

X1(t) =st lim
t→∞

X̂1(x , t) ∼ lim
t→∞

X̂2(x , t) =st lim
t→∞

X2(t).

◮ =⇒ limt→∞ X1(t) ∼st limt→∞ X2(t)

◮ =⇒ limt→∞ X1(t) ≤st limt→∞ X2(t) because R ⊂ R≤



Subrelation algorithm

How to find a good subrelation (does it exist)?



Subrelation algorithm

How to find a good subrelation (does it exist)?

Given a relation R and transition rate kernels Q1 and Q2, define a
sequence of relations by R (0) = R ,

R (n+1) =
{

(x , y) ∈ R (n) : (Q1(x , ·),Q2(y , ·)) ∈ R
(n)
st

}

,

where (Q1(x , ·),Q2(y , ·)) ∈ R
(n)
st means that (Q1,Q2) preserves the

stochastic relation generated by R (n) locally at (x , y).



Subrelation algorithm

How to find a good subrelation (does it exist)?

Given a relation R and transition rate kernels Q1 and Q2, define a
sequence of relations by R (0) = R ,

R (n+1) =
{

(x , y) ∈ R (n) : (Q1(x , ·),Q2(y , ·)) ∈ R
(n)
st

}

,

where (Q1(x , ·),Q2(y , ·)) ∈ R
(n)
st means that (Q1,Q2) preserves the

stochastic relation generated by R (n) locally at (x , y).

Theorem
The relation R∗ =

⋂∞
n=0 R

(n) is the maximal subrelation of R that
is stochastically preserved by (Q1,Q2). Especially, the pair
(Q1,Q2) preserves a nontrivial subrelation of R if and only if
R∗ 6= ∅.



Application: Call center

◮ M1 English-speaking agents

◮ M2 French-speaking agents

◮ N bilingual agents

λ1

λ2

1

1

1

M1

M2

N

X1,1

X1,2

X2,1,X2,2

Service rate (in calls/min) in state X equals X1,1 + X1,2 + X2,1 + X2,2



Application: Call center

Does training improve performance?

Modified system Y = (Y1,1,Y1,2;Y2,1,Y2,2)

◮ Replace one English-speaking agent by a bilingual agent

◮ Can we show that
∑

i ,k Xi ,k ≤st

∑

i ,k Yi ,k in steady state?

Define the relation x ∼ y by
∑

i ,k xi ,k ≤
∑

i ,k yi ,k .

◮ ∼ is not an order (different state spaces)

◮ X and Y do not preserve ∼st

◮ But maybe (X ,Y ) preserves some subrelation of ∼st?



Application: Call center

Numerical example

◮ Available call agents: 3 English, 2 French, 2 bilingual

◮ Calls arrive at rates 1 (English) and 2 (French) per min

◮ Mean call duration is 1 min

How many iterations do we need to compute R∞?

◮ X has 72 possible states

◮ Y has 90 possible states

STOCHREL v1.0 – A Matlab stochastic relations package

http://www.iki.fi/lsl/software/stochrel/

http://www.iki.fi/lsl/software/stochrel/
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Application: Call center

What if we started with a stricter relation?

Redefine x ∼ y by

0 ≤
∑

i ,k

yi ,k −
∑

i ,k

xi ,k ≤ 1



Application: Call center
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Application: Call center

Theorem (Jonckheere Leskelä 2008)

The processes X and Y stochastically preserve the relation
R = {(x , y) : |x − y | ∈ ∆}, where

∆ = {0, e2, e2 − e1,1, 2e2 − e1,1}.

Especially, the stationary distributions of the processes satisfy

|Y | − 1 ≤st |X | ≤st |Y |,

and

X1,1 ≥st Y1,1,

X1,k =st Y1,k for all k 6= 1,
∑

k

X2,k ≤st

∑

k

Y2,k .



Application: Load balancing

λ1

λ2

λ1 + λ2

X1(t)

X2(t)

XLB
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XLB

2 (t)

Common sense: E(XLB
1 (t) + XLB

2 (t)) ≤ E(X1(t) + X2(t))
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Problem: (QLB,Q) does not stochastically preserve:

◮ Rnat = {(x , y) : x1 ≤ y1, x2 ≤ y2}

◮ R sum = {(x , y) : |x | ≤ |y |}, where |x | = x1 + x2



Application: Load balancing

λ1

λ2

λ1 + λ2

X1(t)

X2(t)

XLB

1 (t)

XLB

2 (t)

Common sense: E(XLB
1 (t) + XLB

2 (t)) ≤ E(X1(t) + X2(t))

Problem: (QLB,Q) does not stochastically preserve:

◮ Rnat = {(x , y) : x1 ≤ y1, x2 ≤ y2}

◮ R sum = {(x , y) : |x | ≤ |y |}, where |x | = x1 + x2

How about a subrelation of Rnat or R sum?



Application: Load balancing

Subrelation algorithm applied to R0 = Rnat
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Application: Load balancing

Starting with R sum instead of Rnat
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Application: Load balancing

Theorem
The subrelation algorithm started from R sum yields

R (n) =
{

(x , y) : |x | ≤ |y | and x1 ∨ x2 ≤ y1 ∨ y2 + (y1 ∧ y2 − n)+
}

↓

R∗ = {(x , y) : |x | ≤ |y | and x1 ∨ x2 ≤ y1 ∨ y2} .

Especially, (QLB,Q) stochastically preserves the relation R∗.



Application: Load balancing

Theorem
The subrelation algorithm started from R sum yields

R (n) =
{

(x , y) : |x | ≤ |y | and x1 ∨ x2 ≤ y1 ∨ y2 + (y1 ∧ y2 − n)+
}

↓

R∗ = {(x , y) : |x | ≤ |y | and x1 ∨ x2 ≤ y1 ∨ y2} .

Especially, (QLB,Q) stochastically preserves the relation R∗.

Remark

◮ R∗ is the weak majorization order on Z
2
+

◮ X ∼∗st Y if and only if E f (X ) ≤ E f (Y ) for all coordinatewise
increasing Schur-convex functions f (Marshall Olkin 1979).
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Two-node linear queueing network

Two queues with buffer capacities n1 and n2

1 2
λ1(x1<n1) µ1(x1)1(x2<n2) µ2(x2)

Blocking

◮ Arrivals blocked when
X1(t) = n1

◮ 1st server halts when
X2(t) = n2



Two-node linear queueing network

Two queues with buffer capacities n1 and n2

1 2
λ1(x1<n1) µ1(x1)1(x2<n2) µ2(x2)

Blocking

◮ Arrivals blocked when
X1(t) = n1

◮ 1st server halts when
X2(t) = n2

Service station models

◮ Single-server:
µi (xi ) = ci1(xi > 0)

◮ Multi-server: µi(xi ) = cixi

◮ Peer-to-peer: µi = µi (x1, x2)



Balanced system modification

1 2
λ1(x1<n1)1(x2<n2) µ1(x1)1(x2<n2) µ2(x2)1(x1<n1)

Balanced operation

◮ Arrivals blocked when X1(t) = n1 or X2(t) = n2
◮ 1st server halts when X2(t) = n2

◮ 2nd server halts when X1(t) = n1



Balanced system modification

1 2
λ1(x1<n1)1(x2<n2) µ1(x1)1(x2<n2) µ2(x2)1(x1<n1)

Balanced operation

◮ Arrivals blocked when X1(t) = n1 or X2(t) = n2
◮ 1st server halts when X2(t) = n2

◮ 2nd server halts when X1(t) = n1

Balanced system has a product-form equilibrium distribution (van
der Wal & van Dijk 1989)



Balanced vs. original system

Balanced system

b b

b

Bbal = {x : x1 = n1 or x2 = n2}

Original system

b b

b

Borig = {x : x1 = n1}

Performance comparison

◮ Balanced system has more blocking states: Bbal ⊃ Borig

◮  Balanced system should have a higher loss rate

◮  Conservative & computable performance bound



How to prove the comparison statement?

◮ Sample path comparison



Sample path comparison

Heuristic reasoning:

◮ Balanced system has more blocking states
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Sample path comparison

Heuristic reasoning:

◮ Balanced system has more blocking states

◮  Blocks more jobs

◮  Has less jobs in the system

◮  Spends less time in blocking states



Sample path comparison

Heuristic reasoning:

◮ Balanced system has more blocking states

◮  Blocks more jobs

◮  Has less jobs in the system

◮  Spends less time in blocking states

◮  Blocks less jobs?



How to prove the comparison statement?

◮ Sample path comparison
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◮ Sample path comparison

◮ Order-preserving Markov coupling

◮ Relation-preserving Markov coupling



Relation-preserving Markov couplings

Find a relation R ⊂ S × S ′ such that

◮ (x , x ′) ∈ R =⇒ 1B(x) ≤ 1B′(x)

◮ There exists an R-preserving Markov coupling of the systems.



Relation-preserving Markov couplings

Find a relation R ⊂ S × S ′ such that

◮ (x , x ′) ∈ R =⇒ 1B(x) ≤ 1B′(x)

◮ There exists an R-preserving Markov coupling of the systems.

Does it exist? The existence of such a relation can be checked
using the subrelation algorithm

◮ The answer is NO



How to prove the comparison statement?

◮ Sample path comparison

◮ Order-preserving Markov coupling

◮ Relation-preserving Markov coupling

◮ Flow coupling



General Markov network

Network state: Markov process X on a subset of Zn
+ with

transitions

x 7→ x − ei + ej at rate αi ,j(x), (i , j) ∈ E (G )

where ei is the i -th unit vector in Z
n and e0 = 0

◮ Network G = (V ,E ) has n internal nodes {1, . . . , n} and one
external node 0

◮ α0,j(x) is the arrival rate to node j

◮ αi ,0(x) is the departure rate from node i



State–flow Markov process

Markov process (X ,F ) in Z
n
+ × Z

E(G)
+ with transitions

(x , f ) 7→ (x − ei + ej , f + ei ,j) at rate αi ,j(x), (i , j) ∈ L

◮ Xi(t) is the number of jobs in node i at time t

◮ Fi ,j(t)− Fi ,j(0) is the number of transitions over link (i , j)
during (0, t]



Netflow ordering

1 2 3

α0,1(x)

α1,0(x)

α1,2(x)

α2,1(x)

α2,3(x)

α3,2(x)

α3,0(x)

α0,3(x)

State–flow relation

◮ (x , f ) has smaller netflow than (x ′, f ′) if

fi ,i+1 − fi+1,i ≤ f ′i ,i+1 − f ′i+1,i for all i = 0, 1, . . . , n,

xi − fin,i + fi ,out = x ′i − f ′in,i + f ′i ,out for all i = 1, . . . , n,



Flow coupling for linear networks

Theorem
Assume that

x1 ≥ x ′1 =⇒ α0,1(x) ≤ α′

0,1(x
′) and α1,0(x) ≥ α′

1,0(x
′),

xi ≤ x ′i and xi+1 ≥ x ′i+1 =⇒ αi ,i+1(x) ≤ α′

i ,i+1(x
′) and αi+1,i(x) ≥ α′

i+1,i(x
′),

xn ≤ x ′n =⇒ αn,0(x) ≤ α′

n,0(x
′) and α0,n(x) ≥ α′

0,n(x
′).

Then there exists a Markov coupling of (X ,F ) and (X ′,F ′) which
preserves the netflow relation. Especially, the netflow counting
processes are ordered by

(Fi ,i+1(t)− Fi+1,i(t))t≥0 ≤st (F ′i ,i+1(t)− F ′i+1,i(t))t≥0

for all i = 0, . . . , n, whenever X (0) =st X
′(0).



Flow coupling for linear networks

Proof: Marching soldiers coupling.
Let (X̃ , F̃ , X̃ ′, F̃ ′) be a Markov process on

(Zn
+ × Z

E(G)
+ )× (Zn

+ × Z
E(G)
+ ) with transitions

((x , f ), (x ′, f ′)) 7→











(Ti ,j(x , f ),Ti ,j(x
′, f ′)) at rate αi ,j(x) ∧ α

′

i ,j(x
′),

((x , f ),Ti ,j(x
′, f ′)) at rate (α′

i ,j(x
′)− αi ,j(x))+,

(Ti ,j(x , f ), (x , f )) at rate (αi ,j(x)− α′

i ,j(x
′))+,

where Ti ,j(x , f ) = (x − ei + ej , f + ei ,j)

◮ This is the marching soldiers coupling of (X ,F ) and (X ′,F ′)
(Mu-Fa Chen 2005).

◮ This coupling preserves the state–flow order relation



Balanced vs. original two-node network

1 2
α0,1(x) α1,2(x) α2,0(x)

Balanced system

◮ αbal
0,1(x) = λ1(x1<n1)1(x2<

n2)

◮ αbal
1,2(x) = µ1(x1)1(x2<n2)

◮ αbal
2,0(x) = µ2(x2)1(x1<n1)

Original system

◮ αorig
0,1 (x) = λ1(x1<n1)

◮ αorig
1,2 (x) = µ1(x1)1(x2<n2)

◮ αorig
2,0 (x) = µ2(x2)



Balanced vs. original two-node network

1 2
α0,1(x) α1,2(x) α2,0(x)

Balanced system

◮ αbal
0,1(x) = λ1(x1<n1)1(x2<

n2)

◮ αbal
1,2(x) = µ1(x1)1(x2<n2)

◮ αbal
2,0(x) = µ2(x2)1(x1<n1)

Original system

◮ αorig
0,1 (x) = λ1(x1<n1)

◮ αorig
1,2 (x) = µ1(x1)1(x2<n2)

◮ αorig
2,0 (x) = µ2(x2)

(X bal,F bal) has a stochastically smaller flow than (X orig,F orig) if

x1 ≥ x ′1 =⇒ αbal
0,1(x) ≤ αorig

0,1 (x ′)

x1 ≤ x ′1 and x2 ≥ x ′2 =⇒ αbal
1,2(x) ≤ αorig

1,2 (x ′)

x2 ≤ x ′2 =⇒ αbal
2,0(x) ≤ αorig

2,0 (x ′).



Balanced vs. original two-node network

1 2
α0,1(x) α1,2(x) α2,0(x)

Balanced system

◮ αbal
0,1(x) = λ1(x1<n1)1(x2<

n2)

◮ αbal
1,2(x) = µ1(x1)1(x2<n2)

◮ αbal
2,0(x) = µ2(x2)1(x1<n1)

Original system

◮ αorig
0,1 (x) = λ1(x1<n1)

◮ αorig
1,2 (x) = µ1(x1)1(x2<n2)

◮ αorig
2,0 (x) = µ2(x2)

(X bal,F bal) has a stochastically smaller flow than (X orig,F orig) if

x1 ≥ x ′1 =⇒ λ1(x1<n1)1(x2<n2) ≤ λ1(x ′1<n1)

x1 ≤ x ′1 and x2 ≥ x ′2 =⇒ µ1(x1)1(x2<n2) ≤ µ1(x
′
1)1(x

′
2<n2)

x2 ≤ x ′2 =⇒ µ2(x2)1(x1<n1) ≤ µ2(x
′
2)

The above conditions are valid when µ1 and µ2 are increasing.



How to prove the comparison statement?

◮ Sample path comparison

◮ Order-preserving Markov coupling

◮ Relation-preserving Markov coupling

◮ Flow coupling (OK for throughput distributions)



Generalizations

Other network structures?

◮ Closed cyclic networks

◮ Aggregate flows across linear partitions



Flow ordering in cyclic networks

1

2

34

5

α1,2

α2,1

α2,3

α3,2

α3,4

α4,3

α4,5

α5,4

α5,1

α1,5

Theorem
Assume that for all i and for all x and x ′,

xi ≤ x ′i and xi+1 ≥ x ′i+1

=⇒

αi ,i+1(x) ≤ α′

i ,i+1(x
′) and αi+1,i(x) ≥ α′

i+1,i(x
′).

Then (X ,F ) has stochastically smaller
clockwise netflow than (X ′,F ′).



Aggregate flows through linear partitions

N1 N2 N3

State-flow (x , f ) has a smaller netflow through N1 → N2 → N3

than (x ′, f ′) if

fNr ,Nr+1
− fNr+1,Nr

≤ f ′Nr ,Nr+1
− f ′Nr+1,Nr

for all clusters Nr ,

xi − fin,i + fi ,out = x ′i − f ′in,i + f ′i ,out for all nodes i ,

where
fNr ,Ns

=
∑

i∈Nr , j∈Ns

fi ,j



Aggregate flows through linear partitions

Theorem
There exists a Markov coupling of state–flow processes (X ,F ) and
(X ′,F ′) which preserves the netflow ordering if and only if for all
x , x ′ ∈ Z

n
+:

|xN1
| ≥ |x ′N1

| =⇒

{

α{0},N1
(x) ≤ α′{0},N1

(x ′)

αN1,{0}(x) ≥ α′N1,{0}
(x ′)

|xNk
| ≤ |x ′Nk

|

|xNk+1
| ≥ |x ′Nk+1

|

}

=⇒

{

αNk ,Nk+1
(x) ≤ α′Nk ,Nk+1

(x ′)

αNk+1,Nk
(x) ≥ α′Nk+1,Nk

(x ′)

|xNm
| ≤ |x ′Nm

| =⇒

{

αNm,{0}(x) ≤ α′Nm,{0}
(x ′)

α{0},Nm
(x) ≥ α′{0},Nm

(x ′),

where |xI | :=
∑

i∈I xi and αNr ,Ns
:=

∑

i∈Nr ,j∈Ns
αi ,j .
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Stochastic boundedness

When is a family of positive random variables (Xα) bounded

◮ in the strong order?

Xα≤stZ if Eφ(Xα) ≤ Eφ(Z ) for φ increasing



Stochastic boundedness

When is a family of positive random variables (Xα) bounded

◮ in the strong order?

Xα≤stZ if Eφ(Xα) ≤ Eφ(Z ) for φ increasing

◮ in the increasing convex order?

Xα≤icxZ if Eφ(Xα) ≤ Eφ(Z ) for φ increasing and convex



For any p > 1:

{|Xα|} is st-bounded by
a p-integrable r.v.

{|Xα|p} is icx-bounded
by an integrable r.v.

{Xα} is bounded
in Lp

{|Xα|} is st-bounded by
an integrable r.v.

{|Xα|} is icx-bounded
by an integrable r.v.

{Xα} is bounded
in L1

{|Xα|} is st-bounded
by a finite r.v.

{|Xα|p} is st-bounded
by an integrable r.v.

{|Xα|} is icx-bounded
by a p-integrable r.v.

⇔ ⇔

{Xα} is uniformly
p-integrable

⇔
{µα} is rel. compact in
the p-Wasserstein metric

⇔

{µα} is bounded in
the p-Wasserstein metric

⇔

{Xα} is uniformly
integrable

⇔
{µα} is rel. compact in
the 1-Wasserstein metric

⇔

{µα} is bounded in
the 1-Wasserstein metric

⇔

{µα} is rel. compact in
the Prohorov metric

⇔{Xα} is tight ⇔

⇓

⇓

⇓

⇓

⇓

⇓

L Leskelä & M Vihola, Stat Probab Lett 2013, arXiv:1106.0607



Conclusions

You can compare things without
ordering them.

Comparing populations

◮ Subrelation algorithm may
help to reveal hidden
monotone structure

Comparing flows

◮ Redundant state–flow model
 non-Markov couplings

L Leskelä, J Theor Probab 2010, arXiv:0806.3562

M Jonckheere & L Leskelä, Stoch Mod 2008, arXiv:0708.1927

L Leskelä & M Vihola, Stat Probab Lett 2013, arXiv:1106.0607



Lebesgue’s dominated convergence theorem

Theorem
Assume that Xn → X almost surely. E |Xn − X | → 0 if for some
integrable Y ,

|Xn| ≤st Y for all n.



Sharp dominated convergence theorem

Theorem
Assume that Xn → X almost surely. E |Xn − X | → 0 if and only if
for some integrable Y ,

|Xn| ≤icx Y for all n.



Stochastic boundedness — Examples
Let U be a uniform r.v. in (0, 1) and

φn =

{

n w.pr. n−1,

0 else,
ψn =

{

n w.pr. (n log n)−1,

0 else.

Then for any p > 1:

◮ {e1/U} is st-bounded by a finite r.v. (itself) but not bounded
in Lǫ for any ǫ > 0.

◮ {φn} is bounded in L1 but not uniformly integrable.

◮ {ψn} is uniformly integrable but not st-bounded by an

integrable r.v.

◮ {U−1/p} is st-bounded by an integrable r.v. but not bounded

in Lp .

◮ {φ
1/p
n } is bounded in Lp but not uniformly p-integrable.

◮ {ψ
1/p
n } is uniformly p-integrable but not st-bounded by a r.v.

in Lp .



Prohorov metric

The Prohorov metric on the space M of probability measures on
R
d is defined by

dP(µ, ν) = inf {ǫ > 0 : µ(B) ≤ ν(Bǫ) + ǫ and ν(B) ≤ µ(Bǫ) + ǫ for all B

where Bǫ = {x ∈ R
d : |x − b| < ǫ for some b ∈ B} denotes the

ǫ-neighborhood of a Borel set B

◮ (M, dP) is a complete separable metric space.

◮ Convergence in dP is convergence in distribution



Wasserstein metric

For p ≥ 1, denote by Mp the space of probability measures on R
d

with a finite p-th moment. The p-Wasserstein metric on Mp is
defined by

dW ,p(µ, ν) =

(

inf
γ∈K(µ,ν)

∫

Rd×Rd

|x − y |p γ(dx , dy)

)1/p

,

where K (µ, ν) is the set of couplings of µ and ν.

◮ (Mp, dW ,p) is a complete separable metric space.

◮ A sequence converges in dW ,p if and only if it is uniformly
p-integrable and converges in distribution.



Open problems & discussion

Open problems

◮ Stochastic relations of diffusions

◮ Weak stochastic relations

◮ Structured Markov chains

Related work on non-Markov couplings

◮ Generalized semi-Markov processes (Glasserman & Yao 1994)

◮ Linear bandwidth-sharing networks (Verloop & Ayesta & Borst 2010)

◮ Chip-firing games (Eriksson 1996)

◮ Sleepy random walkers (Dickman & Rolla & Sidoravicius 2010)



Open problem: Coupling of diffusions

Assume that Ai are differential operators on R of the form

Ai f (xi ) =
1

2
a(i)(xi)f

′′(xi) + b(i)(xi )f
′(xi ),

and let A be a differential operator on R
2 such that

Af (x) =
1

2

2
∑

i ,j=1

ai ,j(x)
∂2

∂xi∂xj
f (x) +

2
∑

i=1

bi(x)
∂

∂xi
f (x).

Then A couples A1 and A2 if

1

2
ai ,i(x)f

′′(xi ) + bi(x)f
′(xi ) =

1

2
a(i)(xi )f

′′(xi ) + b(i)(xi )f
′(xi ).



Discussion: Coupling vs. mass transportation

Wφ(µ, ν) = inf
λ∈K(µ,ν)

∫

S1×S2

φ(x1, x2)λ(dx)

◮ K (µ, ν) is the set of couplings of µ and ν

µ ν

φ

◮ Wφ is a Wasserstein metric, if φ is a metric.
◮ µ ∼st ν if and only if Wφ(µ, ν) = 0 for φ(x1, x2) = 1(x1 6∼ x2).

(Monge 1781, Kantorovich 1942, Wasserstein 1969, Chen 2005)



Discussion: Subrelations vs. minimal bounding chains

Subrelation approach

◮ Given transition kernels P1 and P2, and a relation R , find a
maximal subrelation of R stochastically preserved by (X1,X2)

◮ Intuitive bounding: P2 needs to be a priori given

Minimal bounding chains
(Truffet 2000, Fourneau Lecoz Quessette 2004, Ben Mamoun Bušić Pekergin 2007)

◮ Given a transition matrix P1 and an order relation R , find a
minimal transition matrix P2 (in a suitable class) such that X1

and X2 stochastically preserve R

◮ Computational bounding: P2 found numerically

Questions and comments

◮ How to interpret minimal (when R is not a total order)?

◮ Can we combine the two approaches?



Truncated subrelation algorithm

◮ Assume Q1 and Q2 have locally bounded jumps

◮ Truncation operators TN : S1 × S2 → S1,N × S2,N
◮ Truncated subrelation algorithm can be computed in finite

time and memory

Algorithm for computing R (K) truncated into S1,N × S2,N :

R′ ← TN+K (R)
for k = 1, . . . ,K do

n← N + K + 1− k

Q1,n ← truncation of Q1 into S1,n
Q2,n ← truncation of Q2 into S2,n
R′ ← Tn(R′)
R′ ← subrelation algorithm applied to (Q1,n ,Q2,n,R

′)
end for

R′ ← TN (R
′)



Operator coupling

Denote by πi the projection map from S1 × S2 to Si . A linear
operator A the space of bounded function on S1 × S2 is a coupling
of linear operators A1 and A2, if f ◦ πi ∈ D(A) and

A(f ◦ πi) = (Ai f ) ◦ πi for all f ∈ D(Ai ).

If A1 and A2 are the generators of Markov processes on Si , then
we say that A is a Markov coupling for A1 and A2 if A couples the
linear operators A1 and A2, and the martingale problem for A is
well-posed.



Operator coupling

Conjecture

Assume that A1f (x) ≤ A2g(y) for all x ∼ y and f ∼ g. Then
there exists a coupling of A1 and A2 that preserves the relation R.

◮ We denote f ∼ g if f ∈ D(A1) and g ∈ D(A2), and

x ∼ y =⇒ f (x) ≤ g(y).
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