Stochastic orders in stochastic networks

Lasse Leskelä
University of Jyväskylä, Finland
www.iki.fi/lsl/

Stochastic dynamics on complex systems

$E f(X(t))=?$

Analysis methods

- Stochastic simulation
- Scaling approximations and limit theorems
- Stochastic comparison and coupling

Outline

Stochastic orders and relations

Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Stochastic comparison approach

$$
\mathrm{E} f(X(t))=?
$$

Find a reference model $Y(t)$ which

- Performs worse than $X(t)$
- Can be proven to do so analytically
- Is computationally tractable
\rightsquigarrow Computable \& conservative performance estimates
\rightsquigarrow Sufficient conditions for stochastic stability

Stochastic ordering

How to define X less than Y for random variables?

Strong order: $X \leq_{\text {st }} Y$ if

$$
\mathrm{E} f(X) \leq \mathrm{E} f(Y)
$$

for all increasing test functions f

- This definition extends to random variables with values in a complete separable metric (=Polish) space with a closed partial $\operatorname{order}(S, \leq)$

Strassen's coupling theorem

Theorem (Strassen 1965)
Two random variables on a complete separable metric space equipped with a closed partial order satisfy $X \leq_{\text {st }} Y$ if and only if they admit a coupling (\hat{X}, \hat{Y}) such that $\hat{X} \leq \hat{Y}$ almost surely.

A coupling of random variables X and Y is a bivariate random variable (\hat{X}, \hat{Y}) such that:

- \hat{X} has the same distribution as X
- \hat{Y} has the same distribution as Y

Stochastic relations

Any meaningful distributional relation should have a coupling counterpart (Thorisson 2000).

Stochastic relations

Any meaningful distributional relation should have a coupling counterpart (Thorisson 2000).

A relation is an arbitrary subset $R \subset S_{1} \times S_{2}$

- Denote $x \sim y$ if $(x, y) \in R$
- Random variables X and Y are related by $X \sim_{\text {st }} Y$ if they admit a coupling (\hat{X}, \hat{Y}) such that $\hat{X} \sim \hat{Y}$ almost surely.
\rightsquigarrow Coupling allows to define a randomized version an arbitrary relation

Examples of stochastic relations

St. equality Let $=_{\text {st }}$ be the stochastic relation generated by the equality $=$. Then $X==_{\text {st }} Y$ if and only if X and Y have the same distribution.

St. order Let $\leq_{\text {st }}$ be the stochastic relation generated by a partial order \leq. Then $X \leq_{\text {st }} Y$ corresponds to the usual strong stochastic order.

St. ϵ-distance Define $x \approx y$ by $|x-y| \leq \epsilon$. Two real random variables satisfy $X \approx_{\text {st }} Y$ if and only if for all x the corresponding c.d.f.'s satisfy

$$
F_{Y}(x-\epsilon) \leq F_{X}(x) \leq F_{Y}(x+\epsilon)
$$

Functional characterization

Theorem

For any closed relation \sim between complete separable metric spaces, $X \sim_{\text {st }} Y$ is equivalent to both:
(i) $\mathrm{P}(X \in B) \leq \mathrm{P}\left(Y \in B^{\rightarrow}\right)$ for all compact $B \subset S_{1}$
(ii) $\mathrm{E} f(X) \leq \mathrm{E} f \rightarrow(Y)$ for all upper semicontinuous compactly supported $f: S_{1} \rightarrow \mathbb{R}_{+}$

Outline

Stochastic orders and relations

Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Stochastic ordering of network populations

Problem

Can we show that Markov processes X and Y satisfy
$\mathrm{E} f(X(t))=?$

$$
\lim _{t \rightarrow \infty} f(X(t)) \leq_{\text {st }} \lim _{t \rightarrow \infty} f(Y(t))
$$

without calculating the limiting distributions?

Stochastic ordering of network populations

Problem

Can we show that Markov processes X and Y satisfy
$\mathrm{E} f(X(t))=?$

$$
\lim _{t \rightarrow \infty} f(X(t)) \leq_{\text {st }} \lim _{t \rightarrow \infty} f(Y(t))
$$

without calculating the limiting distributions?
Assumptions and notation

- Countable state space S
- Continuous time
- $Q(x, y)$ is the rate of transition for $x \mapsto y$, and

$$
Q(x, B)=\sum_{y \in B} Q(x, y)
$$

is the aggregate rate of transitions from x into $B \subset S$

A sufficient condition

Theorem (Whitt 1986, Massey 1987)
The property $\lim _{t \rightarrow \infty} X_{1}(t) \leq_{s t} \lim _{t \rightarrow \infty} X_{2}(t)$ holds if the corresponding transition rate kernels satisfy for all $x \leq y$:
(i) $Q_{1}(x, B) \leq Q_{2}(y, B)$ for all upper sets B such that $x, y \notin B$
(ii) $Q_{1}(x, B) \geq Q_{2}(y, B)$ for all lower sets B such that $x, y \notin B$

Notation

- A set is upper if its indicator function is increasing
- A set is lower if its indicator function is decreasing

A sufficient condition

Theorem (Whitt 1986, Massey 1987)
The property $\lim _{t \rightarrow \infty} X_{1}(t) \leq_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)$ holds if the corresponding transition rate kernels satisfy for all $x \leq y$:
(i) $Q_{1}(x, B) \leq Q_{2}(y, B)$ for all upper sets B such that $x, y \notin B$
(ii) $Q_{1}(x, B) \geq Q_{2}(y, B)$ for all lower sets B such that $x, y \notin B$

Notation

- A set is upper if its indicator function is increasing
- A set is lower if its indicator function is decreasing

The above Whitt-Massey condition is not sharp in general \rightsquigarrow Can we do any better?

Markov coupling

A transition rate kernel Q on $S_{1} \times S_{2}$ is a coupling of transition rate kernels Q_{1} on S_{1} and Q_{2} on S_{2} if

$$
\begin{aligned}
& Q\left(x, B_{1} \times S_{2}\right)=Q_{1}\left(x_{1}, B_{1}\right) \\
& Q\left(x, S_{1} \times B_{2}\right)=Q_{2}\left(x_{2}, B_{2}\right)
\end{aligned}
$$

for all $x=\left(x_{1}, x_{2}\right), B_{1}$ and B_{2} such that $x_{1} \notin B_{1}$ and $x_{2} \notin B_{2}$

Andrei Markov (1856-1922) St Petersburg University

Andrei Markov (1978-)
Montreal Canadiens

Markov coupling \Longrightarrow path coupling

Theorem (Mu-Fa Chen 1986)
Let Q be a kernel that couples two nonexplosive kernels Q_{1} and Q_{2}. Then Q is nonexplosive, and for all $x=\left(x_{1}, x_{2}\right) \in S$, the Markov process $X(x, \cdot)$ generated by Q couples the Markov processes $X_{1}\left(x_{1}, \cdot\right)$ and $X_{2}\left(x_{2}, \cdot\right)$ generated by Q_{1} and Q_{2}.

- $X(x, \cdot)$ denotes the path of a Markov process started at x

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

$$
x \sim y \quad \Longrightarrow \quad X(x, t) \sim_{\text {st }} Y(y, t) \text { for all } t
$$

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

$$
x \sim y \quad \Longrightarrow \quad X(x, t) \sim_{\text {st }} Y(y, t) \text { for all } t
$$

Examples

- X is stochastically monotone if

$$
x \leq y \quad \Longrightarrow \quad X(x, t) \leq_{\text {st }} X(y, t) \text { for all } t
$$

Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

$$
x \sim y \quad \Longrightarrow \quad X(x, t) \sim_{\text {st }} Y(y, t) \text { for all } t
$$

Examples

- X is stochastically monotone if

$$
x \leq y \quad \Longrightarrow \quad X(x, t) \leq_{\text {st }} X(y, t) \text { for all } t
$$

- X is a stochastically distance-preserving if

$$
x \approx y \quad \Longrightarrow \quad X(x, t) \approx_{\mathrm{st}} X(y, t) \text { for all } t
$$

Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are equivalent:
(i) X_{1} and X_{2} stochastically preserve the relation R.

Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are equivalent:
(i) X_{1} and X_{2} stochastically preserve the relation R.
(ii) There exists a Markov coupling of X_{1} and X_{2} for which R is absorbing.

Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are equivalent:
(i) X_{1} and X_{2} stochastically preserve the relation R.
(ii) There exists a Markov coupling of X_{1} and X_{2} for which R is absorbing.
(iii) For all $x_{1} \sim x_{2}$, the rate kernels Q_{1} and Q_{2} satisfy

$$
Q_{1}\left(x_{1}, B_{1}\right) \leq Q_{2}\left(x_{2}, B_{1}^{\rightarrow}\right)
$$

for all measurable B_{1} such that $x_{1} \notin B_{1}$ and $x_{2} \notin B_{1}$, and

$$
Q_{1}\left(x_{1}, B_{2}^{\leftarrow}\right) \geq Q_{2}\left(x_{2}, B_{2}\right)
$$

for all measurable B_{2} such that $x_{1} \notin B_{2}^{\leftarrow}$ and $x_{2} \notin B_{2}$.

Relation preservation

Theorem

For nonexplosive Markov jump processes, the following are equivalent:
(i) X_{1} and X_{2} stochastically preserve the relation R.
(ii) There exists a Markov coupling of X_{1} and X_{2} for which R is absorbing.
(iii) For all $x_{1} \sim x_{2}$, the rate kernels Q_{1} and Q_{2} satisfy

$$
Q_{1}\left(x_{1}, B_{1}\right) \leq Q_{2}\left(x_{2}, B_{1}^{\rightarrow}\right)
$$

for all measurable B_{1} such that $x_{1} \notin B_{1}$ and $x_{2} \notin B_{1}$, and

$$
Q_{1}\left(x_{1}, B_{2}^{\overleftarrow{ }}\right) \geq Q_{2}\left(x_{2}, B_{2}\right)
$$

for all measurable B_{2} such that $x_{1} \notin B_{2}^{\leftarrow}$ and $x_{2} \notin B_{2}$.
Open problem
Is it enough to look at compact B_{1} and B_{2} ?

Stochastic subrelations

Recall our starting point:
Problem
Can we show that Markov processes X_{1} and X_{2} satisfy

$$
\lim _{t \rightarrow \infty} X_{1}(t) \leq_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)
$$

without calculating the limiting distributions?

Stochastic subrelations

Recall our starting point:
Problem
Can we show that Markov processes X_{1} and X_{2} satisfy

$$
\lim _{t \rightarrow \infty} X_{1}(t) \leq \text { st } \lim _{t \rightarrow \infty} X_{2}(t)
$$

without calculating the limiting distributions?

- The Whitt-Massey condition requires that X_{1} and X_{2} stochastically preserve the order relation $R_{\leq}=\{(x, y): x \leq y\}$.
- What about preserving a subrelation of R_{\leq}?

Less stringent sufficient condition

Theorem
If (irreducible, positive recurrent) Markov processes X_{1} and X_{2} stochastically preserve a nontrivial subrelation R of R_{\leq}, then $\lim _{t \rightarrow \infty} X_{1}(t) \leq_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)$.

Less stringent sufficient condition

Theorem
If (irreducible, positive recurrent) Markov processes X_{1} and X_{2} stochastically preserve a nontrivial subrelation R of R_{\leq}, then $\lim _{t \rightarrow \infty} X_{1}(t) \leq_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)$.
Proof.

- Fix $x=\left(x_{1}, x_{2}\right) \in R$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_{1}\left(x_{1}, \cdot\right)$ and $X_{2}\left(x_{2}, \cdot\right)$ for which R is invariant.

Less stringent sufficient condition

Theorem
If (irreducible, positive recurrent) Markov processes X_{1} and X_{2} stochastically preserve a nontrivial subrelation R of R_{\leq}, then $\lim _{t \rightarrow \infty} X_{1}(t) \leq_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)$.
Proof.

- Fix $x=\left(x_{1}, x_{2}\right) \in R$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_{1}\left(x_{1}, \cdot\right)$ and $X_{2}\left(x_{2}, \cdot\right)$ for which R is invariant.
- Then $\hat{X}_{1}(x, t) \sim \hat{X}_{2}(x, t)$ almost surely for all t, so that

$$
\lim _{t \rightarrow \infty} X_{1}(t)==_{\text {st }} \lim _{t \rightarrow \infty} \hat{X}_{1}(x, t) \sim \lim _{t \rightarrow \infty} \hat{X}_{2}(x, t)={ }_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)
$$

Less stringent sufficient condition

Theorem

If (irreducible, positive recurrent) Markov processes X_{1} and X_{2} stochastically preserve a nontrivial subrelation R of R_{\leq}, then $\lim _{t \rightarrow \infty} X_{1}(t) \leq_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)$.
Proof.

- Fix $x=\left(x_{1}, x_{2}\right) \in R$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_{1}\left(x_{1}, \cdot\right)$ and $X_{2}\left(x_{2}, \cdot\right)$ for which R is invariant.
- Then $\hat{X}_{1}(x, t) \sim \hat{X}_{2}(x, t)$ almost surely for all t, so that

$$
\lim _{t \rightarrow \infty} X_{1}(t)={ }_{\text {st }} \lim _{t \rightarrow \infty} \hat{X}_{1}(x, t) \sim \lim _{t \rightarrow \infty} \hat{X}_{2}(x, t)={ }_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)
$$

$\Rightarrow \Longrightarrow \lim _{t \rightarrow \infty} X_{1}(t) \sim_{s t} \lim _{t \rightarrow \infty} X_{2}(t)$

Less stringent sufficient condition

Theorem

If (irreducible, positive recurrent) Markov processes X_{1} and X_{2} stochastically preserve a nontrivial subrelation R of R_{\leq}, then $\lim _{t \rightarrow \infty} X_{1}(t) \leq_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)$.
Proof.

- Fix $x=\left(x_{1}, x_{2}\right) \in R$, and let $\hat{X}(x, \cdot)$ be a Markov coupling of $X_{1}\left(x_{1}, \cdot\right)$ and $X_{2}\left(x_{2}, \cdot\right)$ for which R is invariant.
- Then $\hat{X}_{1}(x, t) \sim \hat{X}_{2}(x, t)$ almost surely for all t, so that

$$
\lim _{t \rightarrow \infty} X_{1}(t)={ }_{\text {st }} \lim _{t \rightarrow \infty} \hat{X}_{1}(x, t) \sim \lim _{t \rightarrow \infty} \hat{X}_{2}(x, t)={ }_{\text {st }} \lim _{t \rightarrow \infty} X_{2}(t)
$$

- $\Longrightarrow \lim _{t \rightarrow \infty} X_{1}(t) \sim_{s t} \lim _{t \rightarrow \infty} X_{2}(t)$
- $\Longrightarrow \lim _{t \rightarrow \infty} X_{1}(t) \leq_{s t} \lim _{t \rightarrow \infty} X_{2}(t)$ because $R \subset R_{\leq}$

Subrelation algorithm

How to find a good subrelation (does it exist)?

Subrelation algorithm

How to find a good subrelation (does it exist)?
Given a relation R and transition rate kernels Q_{1} and Q_{2}, define a sequence of relations by $R^{(0)}=R$,

$$
R^{(n+1)}=\left\{(x, y) \in R^{(n)}:\left(Q_{1}(x, \cdot), Q_{2}(y, \cdot)\right) \in R_{\mathrm{st}}^{(n)}\right\},
$$

where $\left(Q_{1}(x, \cdot), Q_{2}(y, \cdot)\right) \in R_{\mathrm{st}}^{(n)}$ means that $\left(Q_{1}, Q_{2}\right)$ preserves the stochastic relation generated by $R^{(n)}$ locally at (x, y).

Subrelation algorithm

How to find a good subrelation (does it exist)?
Given a relation R and transition rate kernels Q_{1} and Q_{2}, define a sequence of relations by $R^{(0)}=R$,

$$
R^{(n+1)}=\left\{(x, y) \in R^{(n)}:\left(Q_{1}(x, \cdot), Q_{2}(y, \cdot)\right) \in R_{\mathrm{st}}^{(n)}\right\}
$$

where $\left(Q_{1}(x, \cdot), Q_{2}(y, \cdot)\right) \in R_{\mathrm{st}}^{(n)}$ means that $\left(Q_{1}, Q_{2}\right)$ preserves the stochastic relation generated by $R^{(n)}$ locally at (x, y).
Theorem
The relation $R^{*}=\bigcap_{n=0}^{\infty} R^{(n)}$ is the maximal subrelation of R that is stochastically preserved by $\left(Q_{1}, Q_{2}\right)$. Especially, the pair $\left(Q_{1}, Q_{2}\right)$ preserves a nontrivial subrelation of R if and only if $R^{*} \neq \emptyset$.

Application: Call center

- M_{1} English-speaking agents
- M_{2} French-speaking agents
- N bilingual agents

Service rate (in calls $/ \mathrm{min}$) in state X equals $X_{1,1}+X_{1,2}+X_{2,1}+X_{2,2}$

Application: Call center

Does training improve performance?

Modified system $Y=\left(Y_{1,1}, Y_{1,2} ; Y_{2,1}, Y_{2,2}\right)$

- Replace one English-speaking agent by a bilingual agent
- Can we show that $\sum_{i, k} X_{i, k} \leq_{\text {st }} \sum_{i, k} Y_{i, k}$ in steady state?

Define the relation $x \sim y$ by $\sum_{i, k} x_{i, k} \leq \sum_{i, k} y_{i, k}$.

- \sim is not an order (different state spaces)
- X and Y do not preserve $\sim_{\text {st }}$
- But maybe (X, Y) preserves some subrelation of $\sim_{\text {st }}$?

Application: Call center

Numerical example

- Available call agents: 3 English, 2 French, 2 bilingual
- Calls arrive at rates 1 (English) and 2 (French) per min
- Mean call duration is 1 min

How many iterations do we need to compute R_{∞} ?

- X has 72 possible states
- Y has 90 possible states

STOCHREL v1.0 - A Matlab stochastic relations package
http://www.iki.fi/lsl/software/stochrel/

Application: Call center

Application: Call center

What if we started with a stricter relation?
Redefine $x \sim y$ by

$$
0 \leq \sum_{i, k} y_{i, k}-\sum_{i, k} x_{i, k} \leq 1
$$

Application: Call center

Application: Call center

Theorem (Jonckheere Leskelä 2008)
The processes X and Y stochastically preserve the relation $R=\{(x, y):|x-y| \in \Delta\}$, where

$$
\Delta=\left\{0, e_{2}, e_{2}-e_{1,1}, 2 e_{2}-e_{1,1}\right\} .
$$

Especially, the stationary distributions of the processes satisfy

$$
|Y|-1 \leq_{\text {st }}|X| \leq_{\text {st }}|Y|,
$$

and

$$
\begin{aligned}
X_{1,1} & \geq_{\text {st }} Y_{1,1}, \\
X_{1, k} & ={ }_{\text {st }} Y_{1, k} \quad \text { for all } k \neq 1, \\
\sum_{k} X_{2, k} & \leq_{\text {st }} \sum_{k} Y_{2, k} .
\end{aligned}
$$

Application: Load balancing

Common sense: $\mathrm{E}\left(X_{1}^{\mathrm{LB}}(t)+X_{2}^{\mathrm{LB}}(t)\right) \leq \mathrm{E}\left(X_{1}(t)+X_{2}(t)\right)$

Application: Load balancing

Common sense: $\mathrm{E}\left(X_{1}^{\mathrm{LB}}(t)+X_{2}^{\mathrm{LB}}(t)\right) \leq \mathrm{E}\left(X_{1}(t)+X_{2}(t)\right)$
Problem: $\left(Q^{\mathrm{LB}}, Q\right)$ does not stochastically preserve:

- $R^{\text {nat }}=\left\{(x, y): x_{1} \leq y_{1}, x_{2} \leq y_{2}\right\}$
- $R^{\text {sum }}=\{(x, y):|x| \leq|y|\}$, where $|x|=x_{1}+x_{2}$

Application: Load balancing

Common sense: $\mathrm{E}\left(X_{1}^{\mathrm{LB}}(t)+X_{2}^{\mathrm{LB}}(t)\right) \leq \mathrm{E}\left(X_{1}(t)+X_{2}(t)\right)$
Problem: $\left(Q^{\mathrm{LB}}, Q\right)$ does not stochastically preserve:

- $R^{\text {nat }}=\left\{(x, y): x_{1} \leq y_{1}, x_{2} \leq y_{2}\right\}$
- $R^{\text {sum }}=\{(x, y):|x| \leq|y|\}$, where $|x|=x_{1}+x_{2}$

How about a subrelation of $R^{\text {nat }}$ or $R^{\text {sum }}$?

Application: Load balancing

Subrelation algorithm applied to $R^{0}=R^{\text {nat }}$

Application: Load balancing

Starting with $R^{\text {sum }}$ instead of $R^{\text {nat }}$

Application: Load balancing

Theorem

The subrelation algorithm started from $R^{\text {sum }}$ yields

$$
\begin{aligned}
R^{(n)} & =\left\{(x, y):|x| \leq|y| \text { and } x_{1} \vee x_{2} \leq y_{1} \vee y_{2}+\left(y_{1} \wedge y_{2}-n\right)^{+}\right\} \\
& \downarrow \\
R^{*} & =\left\{(x, y):|x| \leq|y| \text { and } x_{1} \vee x_{2} \leq y_{1} \vee y_{2}\right\} .
\end{aligned}
$$

Especially, $\left(Q^{\mathrm{LB}}, Q\right)$ stochastically preserves the relation R^{*}.

Application: Load balancing

Theorem

The subrelation algorithm started from $R^{\text {sum }}$ yields

$$
\begin{aligned}
& R^{(n)}=\left\{(x, y):|x| \leq|y| \text { and } x_{1} \vee x_{2} \leq y_{1} \vee y_{2}+\left(y_{1} \wedge y_{2}-n\right)^{+}\right\} \\
& \downarrow \\
& R^{*}=\left\{(x, y):|x| \leq|y| \text { and } x_{1} \vee x_{2} \leq y_{1} \vee y_{2}\right\}
\end{aligned}
$$

Especially, $\left(Q^{\mathrm{LB}}, Q\right)$ stochastically preserves the relation R^{*}.

Remark

- R^{*} is the weak majorization order on \mathbb{Z}_{+}^{2}
- $X \sim_{\text {st }}^{*} Y$ if and only if $\mathrm{E} f(X) \leq \mathrm{E} f(Y)$ for all coordinatewise increasing Schur-convex functions f (Marshall Olkin 1979).

Outline

Stochastic orders and relations
 Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Two-node linear queueing network

Two queues with buffer capacities n_{1} and n_{2}

$$
\xrightarrow{\lambda 1\left(x_{1}<n_{1}\right)}\left(1 \xrightarrow{\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)}\right.
$$

Blocking

- Arrivals blocked when

$$
X_{1}(t)=n_{1}
$$

- 1st server halts when

$$
X_{2}(t)=n_{2}
$$

Two-node linear queueing network

Two queues with buffer capacities n_{1} and n_{2}

$$
\xrightarrow{\lambda 1\left(x_{1}<n_{1}\right)}(1) \xrightarrow{\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)}(2) \xrightarrow{\mu_{2}\left(x_{2}\right)}
$$

Blocking

- Arrivals blocked when

$$
X_{1}(t)=n_{1}
$$

- 1st server halts when

$$
X_{2}(t)=n_{2}
$$

Service station models

- Single-server: $\mu_{i}\left(x_{i}\right)=c_{i} 1\left(x_{i}>0\right)$
- Multi-server: $\mu_{i}\left(x_{i}\right)=c_{i} x_{i}$
- Peer-to-peer: $\mu_{i}=\mu_{i}\left(x_{1}, x_{2}\right)$

Balanced system modification

$$
\xrightarrow{\lambda 1\left(x_{1}<n_{1}\right) 1\left(x_{2}<n_{2}\right)} \text { (1) } \xrightarrow{\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)}(2) \xrightarrow{\mu_{2}\left(x_{2}\right) 1\left(x_{1}<n_{1}\right)}
$$

Balanced operation

- Arrivals blocked when $X_{1}(t)=n_{1}$ or $X_{2}(t)=n_{2}$
- 1st server halts when $X_{2}(t)=n_{2}$
- 2nd server halts when $X_{1}(t)=n_{1}$

Balanced system modification

$$
\xrightarrow{\lambda 1\left(x_{1}<n_{1}\right) 1\left(x_{2}<n_{2}\right)}(1) \xrightarrow{\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)}(2) \xrightarrow{\mu_{2}\left(x_{2}\right) 1\left(x_{1}<n_{1}\right)}
$$

Balanced operation

- Arrivals blocked when $X_{1}(t)=n_{1}$ or $X_{2}(t)=n_{2}$
- 1st server halts when $X_{2}(t)=n_{2}$
- 2nd server halts when $X_{1}(t)=n_{1}$

Balanced system has a product-form equilibrium distribution (van der Wal \& van Dijk 1989)

Balanced vs. original system

Balanced system

$B^{\text {bal }}=\left\{x: x_{1}=n_{1}\right.$ or $\left.x_{2}=n_{2}\right\}$

Original system

$B^{\text {orig }}=\left\{x: x_{1}=n_{1}\right\}$

Performance comparison

- Balanced system has more blocking states: $B^{\text {bal }} \supset B^{\text {orig }}$
- \rightsquigarrow Balanced system should have a higher loss rate
- \rightsquigarrow Conservative \& computable performance bound

How to prove the comparison statement?

- Sample path comparison

Sample path comparison

Heuristic reasoning:

- Balanced system has more blocking states

Sample path comparison

Heuristic reasoning:

- Balanced system has more blocking states
- \rightsquigarrow Blocks more jobs

Sample path comparison

Heuristic reasoning:

- Balanced system has more blocking states
- \rightsquigarrow Blocks more jobs
- \rightsquigarrow Has less jobs in the system

Sample path comparison

Heuristic reasoning:

- Balanced system has more blocking states
- \rightsquigarrow Blocks more jobs
- \rightsquigarrow Has less jobs in the system
- \rightsquigarrow Spends less time in blocking states

Sample path comparison

Heuristic reasoning:

- Balanced system has more blocking states
- \rightsquigarrow Blocks more jobs
- \rightsquigarrow Has less jobs in the system
- \rightsquigarrow Spends less time in blocking states
- \rightsquigarrow Blocks less jobs?

How to prove the comparison statement?

- Sample path comparisen

How to prove the comparison statement?

- Sample path comparisen
- Order-preserving Markov coupling

How to prove the comparison statement?

- Sample path comparison
- Order-preserving Markoveoupling

How to prove the comparison statement?

- Sample path comparison
- Order-preserving Markoveoupling
- Relation-preserving Markov coupling

Relation-preserving Markov couplings

Find a relation $R \subset S \times S^{\prime}$ such that

- $\left(x, x^{\prime}\right) \in R \Longrightarrow 1_{B}(x) \leq 1_{B^{\prime}}(x)$
- There exists an R-preserving Markov coupling of the systems.

Relation-preserving Markov couplings

Find a relation $R \subset S \times S^{\prime}$ such that

- $\left(x, x^{\prime}\right) \in R \Longrightarrow 1_{B}(x) \leq 1_{B^{\prime}}(x)$
- There exists an R-preserving Markov coupling of the systems.

Does it exist? The existence of such a relation can be checked using the subrelation algorithm

- The answer is NO

How to prove the comparison statement?

- Sample path comparison
- Order-preserving Markov coupling
- Relation-preserving Markov coupling
- Flow coupling

General Markov network

Network state: Markov process X on a subset of \mathbb{Z}_{+}^{n} with transitions

$$
x \mapsto x-e_{i}+e_{j} \text { at rate } \alpha_{i, j}(x), \quad(i, j) \in E(G)
$$

where e_{i} is the i-th unit vector in \mathbb{Z}^{n} and $e_{0}=0$

- Network $G=(V, E)$ has n internal nodes $\{1, \ldots, n\}$ and one external node 0
- $\alpha_{0, j}(x)$ is the arrival rate to node j
- $\alpha_{i, 0}(x)$ is the departure rate from node i

State-flow Markov process

Markov process (X, F) in $\mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{E(G)}$ with transitions

$$
(x, f) \mapsto\left(x-e_{i}+e_{j}, f+e_{i, j}\right) \text { at rate } \alpha_{i, j}(x), \quad(i, j) \in L
$$

- $X_{i}(t)$ is the number of jobs in node i at time t
- $F_{i, j}(t)-F_{i, j}(0)$ is the number of transitions over link (i, j) during $(0, t$]

Netflow ordering

State-flow relation

- (x, f) has smaller netflow than $\left(x^{\prime}, f^{\prime}\right)$ if

$$
\begin{aligned}
f_{i, i+1}-f_{i+1, i} & \leq f_{i, i+1}^{\prime}-f_{i+1, i}^{\prime} \quad \text { for all } i=0,1, \ldots, n, \\
x_{i}-f_{\text {in }, i}+f_{i, \text { out }} & =x_{i}^{\prime}-f_{\text {in }, i}^{\prime}+f_{i, \text { out }}^{\prime} \quad \text { for all } i=1, \ldots, n,
\end{aligned}
$$

Flow coupling for linear networks

Theorem
Assume that

$$
\begin{aligned}
x_{1} \geq x_{1}^{\prime} & \Longrightarrow \alpha_{0,1}(x) \leq \alpha_{0,1}^{\prime}\left(x^{\prime}\right) \text { and } \alpha_{1,0}(x) \geq \alpha_{1,0}^{\prime}\left(x^{\prime}\right), \\
x_{i} \leq x_{i}^{\prime} \text { and } x_{i+1} \geq x_{i+1}^{\prime} & \Longrightarrow \alpha_{i, i+1}(x) \leq \alpha_{i, i+1}^{\prime}\left(x^{\prime}\right) \text { and } \alpha_{i+1, i}(x) \geq \alpha_{i+1, i}^{\prime}\left(x^{\prime}\right), \\
x_{n} \leq x_{n}^{\prime} & \Longrightarrow \alpha_{n, 0}(x) \leq \alpha_{n, 0}^{\prime}\left(x^{\prime}\right) \text { and } \alpha_{0, n}(x) \geq \alpha_{0, n}^{\prime}\left(x^{\prime}\right)
\end{aligned}
$$

Then there exists a Markov coupling of (X, F) and $\left(X^{\prime}, F^{\prime}\right)$ which preserves the netflow relation. Especially, the netflow counting processes are ordered by

$$
\left(F_{i, i+1}(t)-F_{i+1, i}(t)\right)_{t \geq 0} \leq_{\mathrm{st}}\left(F_{i, i+1}^{\prime}(t)-F_{i+1, i}^{\prime}(t)\right)_{t \geq 0}
$$

for all $i=0, \ldots, n$, whenever $X(0)={ }_{\text {st }} X^{\prime}(0)$.

Flow coupling for linear networks

Proof: Marching soldiers coupling.
Let $\left(\tilde{X}, \tilde{F}, \tilde{X}^{\prime}, \tilde{F}^{\prime}\right)$ be a Markov process on
$\left(\mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{E(G)}\right) \times\left(\mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{E(G)}\right)$ with transitions
$\left((x, f),\left(x^{\prime}, f^{\prime}\right)\right) \mapsto\left\{\begin{aligned}\left(T_{i, j}(x, f), T_{i, j}\left(x^{\prime}, f^{\prime}\right)\right) & \text { at rate } \alpha_{i, j}(x) \wedge \alpha_{i, j}^{\prime}\left(x^{\prime}\right), \\ \left((x, f), T_{i, j}\left(x^{\prime}, f^{\prime}\right)\right) & \text { at rate }\left(\alpha_{i, j}^{\prime}\left(x^{\prime}\right)-\alpha_{i, j}(x)\right)_{+}, \\ \left(T_{i, j}(x, f),(x, f)\right) & \text { at rate }\left(\alpha_{i, j}(x)-\alpha_{i, j}^{\prime}\left(x^{\prime}\right)\right)_{+},\end{aligned}\right.$
where $T_{i, j}(x, f)=\left(x-e_{i}+e_{j}, f+e_{i, j}\right)$

- This is the marching soldiers coupling of (X, F) and $\left(X^{\prime}, F^{\prime}\right)$ (Mu-Fa Chen 2005).
- This coupling preserves the state-flow order relation

Balanced vs. original two-node network

Balanced system

- $\alpha_{0,1}^{\text {bal }}(x)=\lambda 1\left(x_{1}<n_{1}\right) 1\left(x_{2}<\right.$ n_{2})
- $\alpha_{1,2}^{\text {bal }}(x)=\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)$
- $\alpha_{2,0}^{\text {bal }}(x)=\mu_{2}\left(x_{2}\right) 1\left(x_{1}<n_{1}\right)$

Original system

- $\alpha_{0,1}^{\text {orig }}(x)=\lambda 1\left(x_{1}<n_{1}\right)$
- $\alpha_{1,2}^{\text {orig }}(x)=\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)$
- $\alpha_{2,0}^{\text {orig }}(x)=\mu_{2}\left(x_{2}\right)$

Balanced vs. original two-node network

Balanced system

- $\alpha_{0,1}^{\text {bal }}(x)=\lambda 1\left(x_{1}<n_{1}\right) 1\left(x_{2}<\right.$ n_{2})
- $\alpha_{1,2}^{\text {bal }}(x)=\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)$
- $\alpha_{2,0}^{\text {bal }}(x)=\mu_{2}\left(x_{2}\right) 1\left(x_{1}<n_{1}\right)$
$\left(X^{\text {bal }}, F^{\text {bal }}\right)$ has a stochastically smaller flow than $\left(X^{\text {orig }}, F^{\text {orig }}\right)$ if

$$
\begin{aligned}
x_{1} \geq x_{1}^{\prime} & \Longrightarrow \alpha_{0,1}^{\text {bal }}(x) \leq \alpha_{0,1}^{\text {orig }}\left(x^{\prime}\right) \\
x_{1} \leq x_{1}^{\prime} \text { and } x_{2} \geq x_{2}^{\prime} & \Longrightarrow \alpha_{1,2}^{\text {bal }}(x) \leq \alpha_{1,2}^{\text {orig }}\left(x^{\prime}\right) \\
x_{2} \leq x_{2}^{\prime} & \Longrightarrow \alpha_{2,0}^{\text {bal }}(x) \leq \alpha_{2,0}^{\text {orig }}\left(x^{\prime}\right) .
\end{aligned}
$$

Balanced vs. original two-node network

Balanced system

- $\alpha_{0,1}^{\text {bal }}(x)=\lambda 1\left(x_{1}<n_{1}\right) 1\left(x_{2}<\right.$ n_{2})
- $\alpha_{1,2}^{\text {bal }}(x)=\mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right)$
- $\alpha_{2,0}^{\text {bal }}(x)=\mu_{2}\left(x_{2}\right) 1\left(x_{1}<n_{1}\right)$
$\left(X^{\text {bal }}, F^{\text {bal }}\right)$ has a stochastically smaller flow than $\left(X^{\text {orig }}, F^{\text {orig }}\right)$ if

$$
\begin{aligned}
x_{1} \geq x_{1}^{\prime} & \Longrightarrow \lambda 1\left(x_{1}<n_{1}\right) 1\left(x_{2}<n_{2}\right) \leq \lambda 1\left(x_{1}^{\prime}<n_{1}\right) \\
x_{1} \leq x_{1}^{\prime} \text { and } x_{2} \geq x_{2}^{\prime} & \Longrightarrow \mu_{1}\left(x_{1}\right) 1\left(x_{2}<n_{2}\right) \leq \mu_{1}\left(x_{1}^{\prime}\right) 1\left(x_{2}^{\prime}<n_{2}\right) \\
x_{2} \leq x_{2}^{\prime} & \Longrightarrow \mu_{2}\left(x_{2}\right) 1\left(x_{1}<n_{1}\right) \leq \mu_{2}\left(x_{2}^{\prime}\right)
\end{aligned}
$$

The above conditions are valid when μ_{1} and μ_{2} are increasing.

How to prove the comparison statement?

- Sample path comparison
- Order preserving Markoveoupling
- Relation-preserving Markov coupling
- Flow coupling (OK for throughput distributions)

Generalizations

Other network structures?

- Closed cyclic networks
- Aggregate flows across linear partitions

Flow ordering in cyclic networks

Theorem
Assume that for all i and for all x and x^{\prime},

$$
\begin{aligned}
& x_{i} \leq x_{i}^{\prime} \text { and } x_{i+1} \geq x_{i+1}^{\prime} \\
& \quad \Longrightarrow \\
& \alpha_{i, i+1}(x) \leq \alpha_{i, i+1}^{\prime}\left(x^{\prime}\right) \text { and } \alpha_{i+1, i}(x) \geq \alpha_{i+1, i}^{\prime}\left(x^{\prime}\right) .
\end{aligned}
$$

Then (X, F) has stochastically smaller clockwise netflow than $\left(X^{\prime}, F^{\prime}\right)$.

Aggregate flows through linear partitions

State-flow (x, f) has a smaller netflow through $N_{1} \rightarrow N_{2} \rightarrow N_{3}$ than $\left(x^{\prime}, f^{\prime}\right)$ if

$$
\begin{aligned}
f_{N_{r}, N_{r+1}}-f_{N_{r+1}, N_{r}} & \leq f_{N_{r}, N_{r+1}}^{\prime}-f_{N_{r+1}, N_{r}}^{\prime} \quad \text { for all clusters } N_{r}, \\
x_{i}-f_{\text {in }, i}+f_{i, \text { out }} & =x_{i}^{\prime}-f_{\text {in }, i}^{\prime}+f_{i, \text { out }}^{\prime} \quad \text { for all nodes } i,
\end{aligned}
$$

where

$$
f_{N_{r}, N_{s}}=\sum_{i \in N_{r}, j \in N_{s}} f_{i, j}
$$

Aggregate flows through linear partitions

Theorem

There exists a Markov coupling of state-flow processes (X, F) and $\left(X^{\prime}, F^{\prime}\right)$ which preserves the netflow ordering if and only if for all $x, x^{\prime} \in \mathbb{Z}_{+}^{n}$:

$$
\left.\begin{array}{rl}
\left|x_{N_{1}}\right| \geq\left|x_{N_{1}}^{\prime}\right| & \Longrightarrow\left\{\begin{array}{l}
\alpha_{\{0\}, N_{1}}(x) \leq \alpha_{\{0\}, N_{1}}^{\prime}\left(x^{\prime}\right) \\
\alpha_{N_{1},\{0\}}(x) \geq \alpha_{N_{1},\{0\}}^{\prime}\left(x^{\prime}\right)
\end{array}\right. \\
\left|x_{N_{k}}\right| \leq\left|x_{N_{k}}^{\prime}\right| \\
\left|x_{N_{k+1}}\right| \geq\left|x_{N_{k+1}}^{\prime}\right|
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\alpha_{N_{k}, N_{k+1}}(x) \leq \alpha_{N_{k}, N_{k+1}}^{\prime}\left(x^{\prime}\right) \\
\alpha_{N_{k+1}, N_{k}}(x) \geq \alpha_{N_{k+1}, N_{k}}^{\prime}\left(x^{\prime}\right)
\end{array}\right] \begin{aligned}
& \left|x_{N_{m}}\right| \leq\left|x_{N_{m}}^{\prime}\right|
\end{aligned} \Longrightarrow\left\{\begin{array}{l}
\alpha_{N_{m},\{0\}}(x) \leq \alpha_{N_{m},\{0\}}^{\prime}\left(x^{\prime}\right) \\
\alpha_{\{0\}, N_{m}}(x) \geq \alpha_{\{0\}, N_{m}}^{\prime}\left(x^{\prime}\right),
\end{array}\right.
$$

where $\left|x_{I}\right|:=\sum_{i \in I} x_{i}$ and $\alpha_{N_{r}, N_{s}}:=\sum_{i \in N_{r}, j \in N_{s}} \alpha_{i, j}$.

Outline

Stochastic orders and relations

Stochastic ordering of network populations

Stochastic ordering of network flows

Stochastic boundedness

Stochastic boundedness

When is a family of positive random variables $\left(X_{\alpha}\right)$ bounded

- in the strong order?

$$
X_{\alpha} \leq_{\mathrm{st}} Z \quad \text { if } \quad \mathrm{E} \phi\left(X_{\alpha}\right) \leq \mathrm{E} \phi(Z) \text { for } \phi \text { increasing }
$$

Stochastic boundedness

When is a family of positive random variables $\left(X_{\alpha}\right)$ bounded

- in the strong order?

$$
X_{\alpha} \leq_{\mathrm{st}} Z \quad \text { if } \quad \mathrm{E} \phi\left(X_{\alpha}\right) \leq \mathrm{E} \phi(Z) \text { for } \phi \text { increasing }
$$

- in the increasing convex order?
$X_{\alpha} \leq{ }_{\text {icx }} Z \quad$ if $\quad \mathrm{E} \phi\left(X_{\alpha}\right) \leq \mathrm{E} \phi(Z)$ for ϕ increasing and convex

For any $p>1$:

$\left\{\left|X_{\alpha}\right|^{p}\right\}$ is st-bounded
by an integrable r.v. $\Leftrightarrow \begin{gathered}\left\{\left|X_{\alpha}\right|\right\} \text { is st-bounded by } \\ \text { a } p \text {-integrable r.v. }\end{gathered} \Leftrightarrow \begin{aligned} & \left\{\left|X_{\alpha}\right|\right\} \text { is icx-bounded } \\ & \text { by a } p \text {-integrable r.v. }\end{aligned}$

$$
\begin{gathered}
\left\{X_{\alpha}\right\} \text { is uniformly } \\
p \text {-integrable }
\end{gathered}
$$

$\left\{X_{\alpha}\right\}$ is uniformly
integrable

$$
\Leftrightarrow \quad \begin{gathered}
\left\{\left|X_{\alpha}\right|\right\} \text { is icx-bounded } \\
\text { by an integrable r.v. }
\end{gathered} \Leftrightarrow \begin{gathered}
\left\{\mu_{\alpha}\right\} \text { is rel. compact in } \\
\text { the } 1 \text {-Wasserstein metric }
\end{gathered}
$$ $\left\{X_{\alpha}\right\}$ is bounded $\quad \Leftrightarrow \quad\left\{\mu_{\alpha}\right\}$ is bounded in in $L^{1} \quad \Leftrightarrow$ the 1-Wasserstein metric

 \(\Downarrow\)
 $\left\{X_{\alpha}\right\}$ is tight \Leftrightarrow| $\left\{\left\|X_{\alpha}\right\|\right\}$ is st-bounded |
| :---: |
| by a finite r.v. |\Leftrightarrow| $\left\{\mu_{\alpha}\right\}$ is rel. compact in |
| :---: |
| the Prohorov metric |

Conclusions

You can compare things without ordering them.

Comparing populations

- Subrelation algorithm may help to reveal hidden monotone structure

Comparing flows

- Redundant state-flow model \rightsquigarrow non-Markov couplings

L Leskelä, J Theor Probab 2010, arXiv:0806.3562
M Jonckheere \& L Leskelä, Stoch Mod 2008, arXiv:0708.1927
L Leskelä \& M Vihola, Stat Probab Lett 2013, arXiv:1106.0607

Lebesgue's dominated convergence theorem

Theorem
Assume that $X_{n} \rightarrow X$ almost surely. $\mathrm{E}\left|X_{n}-X\right| \rightarrow 0$ if for some integrable Y,

$$
\left|X_{n}\right| \leq_{\text {st }} Y \quad \text { for all } n .
$$

Sharp dominated convergence theorem

Theorem
Assume that $X_{n} \rightarrow X$ almost surely. $\mathrm{E}\left|X_{n}-X\right| \rightarrow 0$ if and only if for some integrable Y,

$$
\left|X_{n}\right| \leq_{\text {icx }} Y \quad \text { for all } n .
$$

Stochastic boundedness - Examples

Let U be a uniform r.v. in $(0,1)$ and

$$
\phi_{n}=\left\{\begin{array}{l}
n \text { w.pr. } n^{-1}, \\
0 \text { else },
\end{array} \quad \psi_{n}=\left\{\begin{array}{l}
n \text { w.pr. }(n \log n)^{-1} \\
0 \text { else. }
\end{array}\right.\right.
$$

Then for any $p>1$:

- $\left\{e^{1 / U}\right\}$ is st-bounded by a finite r.v. (itself) but not bounded in L^{ϵ} for any $\epsilon>0$.
- $\left\{\phi_{n}\right\}$ is bounded in L^{1} but not uniformly integrable.
- $\left\{\psi_{n}\right\}$ is uniformly integrable but not st-bounded by an integrable r.v.
- $\left\{U^{-1 / p}\right\}$ is st-bounded by an integrable r.v. but not bounded in L^{p}.
- $\left\{\phi_{n}^{1 / p}\right\}$ is bounded in L^{p} but not uniformly p-integrable.
- $\left\{\psi_{n}^{1 / p}\right\}$ is uniformly p-integrable but not st-bounded by a r.v. in L^{p}.

Prohorov metric

The Prohorov metric on the space M of probability measures on \mathbb{R}^{d} is defined by
$d_{P}(\mu, \nu)=\inf \left\{\epsilon>0: \mu(B) \leq \nu\left(B^{\epsilon}\right)+\epsilon\right.$ and $\nu(B) \leq \mu\left(B^{\epsilon}\right)+\epsilon$ for all B where $B^{\epsilon}=\left\{x \in \mathbb{R}^{d}:|x-b|<\epsilon\right.$ for some $\left.b \in B\right\}$ denotes the ϵ-neighborhood of a Borel set B

- $\left(M, d_{P}\right)$ is a complete separable metric space.
- Convergence in d_{P} is convergence in distribution

Wasserstein metric

For $p \geq 1$, denote by M_{p} the space of probability measures on \mathbb{R}^{d} with a finite p-th moment. The p-Wasserstein metric on M_{p} is defined by

$$
d_{W, p}(\mu, \nu)=\left(\inf _{\gamma \in K(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{p} \gamma(d x, d y)\right)^{1 / p}
$$

where $K(\mu, \nu)$ is the set of couplings of μ and ν.

- $\left(M_{p}, d_{W, p}\right)$ is a complete separable metric space.
- A sequence converges in $d_{W, p}$ if and only if it is uniformly p-integrable and converges in distribution.

Open problems \& discussion

Open problems

- Stochastic relations of diffusions
- Weak stochastic relations
- Structured Markov chains

Related work on non-Markov couplings

- Generalized semi-Markov processes (Glasserman \& Yao 1994)
- Linear bandwidth-sharing networks (Verloop \& Ayesta \& Borst 2010)
- Chip-firing games (Eriksson 1996)
- Sleepy random walkers (Dickman \& Rolla \& Sidoravicius 2010)

Open problem: Coupling of diffusions

Assume that A_{i} are differential operators on \mathbb{R} of the form

$$
A_{i} f\left(x_{i}\right)=\frac{1}{2} a^{(i)}\left(x_{i}\right) f^{\prime \prime}\left(x_{i}\right)+b^{(i)}\left(x_{i}\right) f^{\prime}\left(x_{i}\right)
$$

and let A be a differential operator on \mathbb{R}^{2} such that

$$
A f(x)=\frac{1}{2} \sum_{i, j=1}^{2} a_{i, j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)+\sum_{i=1}^{2} b_{i}(x) \frac{\partial}{\partial x_{i}} f(x)
$$

Then A couples A_{1} and A_{2} if

$$
\frac{1}{2} a_{i, i}(x) f^{\prime \prime}\left(x_{i}\right)+b_{i}(x) f^{\prime}\left(x_{i}\right)=\frac{1}{2} a^{(i)}\left(x_{i}\right) f^{\prime \prime}\left(x_{i}\right)+b^{(i)}\left(x_{i}\right) f^{\prime}\left(x_{i}\right) .
$$

Discussion: Coupling vs. mass transportation

$$
W_{\phi}(\mu, \nu)=\inf _{\lambda \in K(\mu, \nu)} \int_{S_{1} \times S_{2}} \phi\left(x_{1}, x_{2}\right) \lambda(d x)
$$

- $K(\mu, \nu)$ is the set of couplings of μ and ν

- W_{ϕ} is a Wasserstein metric, if ϕ is a metric.
- $\mu \sim_{\text {st }} \nu$ if and only if $W_{\phi}(\mu, \nu)=0$ for $\phi\left(x_{1}, x_{2}\right)=1\left(x_{1} \nsim x_{2}\right)$.
(Monge 1781, Kantorovich 1942, Wasserstein 1969, Chen 2005)

Discussion: Subrelations vs. minimal bounding chains

Subrelation approach

- Given transition kernels P_{1} and P_{2}, and a relation R, find a maximal subrelation of R stochastically preserved by $\left(X_{1}, X_{2}\right)$
- Intuitive bounding: P_{2} needs to be a priori given

Minimal bounding chains
(Truffet 2000, Fourneau Lecoz Quessette 2004, Ben Mamoun Bušić Pekergin 2007)

- Given a transition matrix P_{1} and an order relation R, find a minimal transition matrix P_{2} (in a suitable class) such that X_{1} and X_{2} stochastically preserve R
- Computational bounding: P_{2} found numerically

Questions and comments

- How to interpret minimal (when R is not a total order)?
- Can we combine the two approaches?

Truncated subrelation algorithm

- Assume Q_{1} and Q_{2} have locally bounded jumps
- Truncation operators $T_{N}: S_{1} \times S_{2} \rightarrow S_{1, N} \times S_{2, N}$
- Truncated subrelation algorithm can be computed in finite time and memory

Algorithm for computing $R^{(K)}$ truncated into $S_{1, N} \times S_{2, N}$:

$$
\begin{aligned}
& R^{\prime} \leftarrow T_{N+K}(R) \\
& \text { for } k=1, \ldots, K \text { do } \\
& \quad n \leftarrow N+K+1-k \\
& Q_{1, n} \leftarrow \text { truncation of } Q_{1} \text { into } S_{1, n} \\
& Q_{2, n} \leftarrow \text { truncation of } Q_{2} \text { into } S_{2, n} \\
& R^{\prime} \leftarrow T_{n}\left(R^{\prime}\right) \\
& \quad R^{\prime} \leftarrow \text { subrelation algorithm applied to }\left(Q_{1, n}, Q_{2, n}, R^{\prime}\right) \\
& \text { end for } \\
& R^{\prime} \leftarrow T_{N}\left(R^{\prime}\right)
\end{aligned}
$$

Operator coupling

Denote by π_{i} the projection map from $S_{1} \times S_{2}$ to S_{i}. A linear operator A the space of bounded function on $S_{1} \times S_{2}$ is a coupling of linear operators A_{1} and A_{2}, if $f \circ \pi_{i} \in \mathcal{D}(A)$ and

$$
A\left(f \circ \pi_{i}\right)=\left(A_{i} f\right) \circ \pi_{i} \quad \text { for all } f \in \mathcal{D}\left(A_{i}\right)
$$

If A_{1} and A_{2} are the generators of Markov processes on S_{i}, then we say that A is a Markov coupling for A_{1} and A_{2} if A couples the linear operators A_{1} and A_{2}, and the martingale problem for A is well-posed.

Operator coupling

Conjecture

Assume that $A_{1} f(x) \leq A_{2} g(y)$ for all $x \sim y$ and $f \sim g$. Then there exists a coupling of A_{1} and A_{2} that preserves the relation R.

- We denote $f \sim g$ if $f \in \mathcal{D}\left(A_{1}\right)$ and $g \in \mathcal{D}\left(A_{2}\right)$, and

$$
x \sim y \Longrightarrow f(x) \leq g(y)
$$

固 M. Ben Mamoun, A. Bušić, and N. Pekergin.
Generalized class \mathcal{C} Markov chains and computation of closed-form bounding distributions.

```
Probab. Engrg. Inform. Sci., 21(2):235-260, 2007.
```

固 M.-F. Chen.
Coupling for jump processes.
Acta Math. Sin., 2(2):123-136, 1986.
(M.-F. Chen.
Eigenvalues, Inequalities, and Ergodic Theory. Springer, 2005.

R R. Delgado, F. J. López, and G. Sanz.
Local conditions for the stochastic comparison of particle systems.
Adv. Appl. Probab., 36:1252-1277, 2004.
(in P. Diaconis and W. Fulton.
A growth model, a game, an algebra, Lagrange inversion, and characteristic classes.

Rend．Sem．Mat．Univ．Politec．Torino，49（1）：95－119（1993）， 1991.

R R．Dickman，L．T．Rolla，and V．Sidoravicius．
Activated random walkers：facts，conjectures and challenges．
J．Stat．Phys．，138（1－3）：126－142， 2010.
N．M．van Dijk and J．van der Wal．
Simple bounds and monotonicity results for finite multi－server exponential tandem queues．
Queueing Syst．，4（1）：1－15， 1989.
图 K．Eriksson．
Chip－firing games on mutating graphs．
SIAM J．Discrete Math．，9（1）：118－128， 1996.
围 J．M．Fourneau，M．Lecoz，and F．Quessette．
Algorithms for an irreducible and lumpable strong stochastic bound．
Linear Algebra Appl．，386：167－185， 2004.
P．Glasserman and D．D．Yao．

Monotone Structure in Discrete－Event Systems．
Wiley， 1994.
（1）M．Jonckheere and L．Leskelä．
Stochastic bounds for two－layer loss systems．
Stoch．Models，24（4）：583－603， 2008.
© T．Kamae，U．Krengel，and G．L．O＇Brien．
Stochastic inequalities on partially ordered spaces．
Ann．Probab．，5（6）：899－912， 1977.
目 L．Leskelä．
Computational methods for stochastic relations and Markovian couplings．
In Proc．4th International Workshop on Tools for Solving Structured Markov Chains（SMCTools）， 2009.

固 L．Leskelä．
Stochastic relations of random variables and processes．
J．Theor．Probab．，23（2）：523－546， 2010.
圊 F．J．López and G．Sanz．

Markovian couplings staying in arbitrary subsets of the state space.
J. Appl. Probab., 39:197-212, 2002.
(i) W. A. Massey.

Stochastic orderings for Markov processes on partially ordered spaces.
Math. Oper. Res., 12(2):350-367, 1987.
© M. Shaked and J. G. Shanthikumar.
Stochastic Orders.
Springer, 2007.
围 V. Strassen.
The existence of probability measures with given marginals.
Ann. Math. Statist., 36(2):423-439, 1965.
H. Thorisson.

Coupling, Stationarity, and Regeneration. Springer, 2000.
E L. Truffet.

Reduction techniques for discrete-time Markov chains on totally ordered state space using stochastic comparisons. J. Appl. Probab., 37(3):795-806, 2000.
I. Verloop, U. Ayesta, and S. Borst.

Monotonicity properties for multi-class queueing systems.
Discrete Event Dyn. Syst., 20:473-509, 2010.
目 W. Whitt.
Stochastic comparisons for non-Markov processes.
Math. Oper. Res., 11(4):608-618, 1986.

