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Activated Random Walks (ARW) — Quick presentation

Dynamics: Particles evolve in continuous time on Z¢, and can be either

@ active, in state A: jump at rate 1 according to law p(-), independently from each
other (random walks),

@ passive (sleeping), in state S: do not move.
Two kinds of mutations/interactions happen:
@ A — S atrate A: each particle gets asleep at rate A (independently);
o A+ S — 2A immediately: active particles awake the others on same site.

NB. Mutations A — S are only effective when the particle A is alone
= On each site, there is either nothing, one S, or any number of A particles.

Laurent TOURNIER Biased activated random walks



Ilustration of the 2D case

Dynamics for a finite number of
particles

At each time, a uniformly chosen active
particle may

. D @
— Jump, with prob. 1, with law p(), N\
(and wake up hit particles)
or (2)
— Attempt to deactivate, with prob. HLA pd
1)
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Ilustration of the 2D case

Dynamics for a finite number of
particles

At each time, a uniformly chosen active
particle may

— Jump, with prob. ﬁ, with law p(-),
(and wake up hit particles)

or O—0O—1—
— Attempt to deactivate, with prob. HLA N

After a while, every particule is passive:
configuration is stable.

@
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Définition of the model

Dynamics: Particles evolve in continuous time on Z¢, and can be either

@ active, in state A: jump at rate 1 according to law p(-), independently from each
other (random walks),

@ passive (sleeping), in state S: do not move.
Two kinds of mutations/interactions happen:
@ A — S atrate A: each particle gets asleep at rate A (independently);
o A+S — 2A immediately: active particles awake the others on same site.

NB. Mutations A — S are only effective when the particle A is alone
= On each site, there is either nothing, one S, or any number of A particles.

Parameters:

e jump distribution p(-) on Z4

@ sleeping rate A € (0,c0)

@ initial configuration of A particles (finite support, or i.i.d. in general).
Behaviors of interest:

e fixation: in any finite box, activity vanishes eventually;

o non-fixation: in any finite box, activity goes on forever.
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Motivations: 1. Phase transition

Let u denote the initial density of particles (for i.i.d. initial configuration).
A phase transition is expected to happen: (1) € (0,1) s.t.
o for u < u.(A), a.s. fixation;
o for u > (1), a.s. non-fixation.
Furthermore, A — . (A) is increasing, u(0") = 0 and () = 1.
Or also: for it > 1 then a.s. fixation and, for g < 1, A () € (0,0) s.t.
o for A > A:(), a.s. fixation;
o for A < A.(i), a.s. non-fixation.
Furthermore, 1t — A.(ut) is increasing, A.(07) = 0 and A, (17) = .

A

Fixation
Non-fixation

»
»

@ 1 Iz
- Existence of U, and A. by monotonicity, within each increasing family of initial
distributions (Poisson(lL), or Bernoulli(1t) for example).

- More difficult, and partly conjectural: nontrivial bounds, limits, and universality of
We, Ac with respect to initial distribution (but not with respect to p(-))
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Motivations: 2. Self-Organized Criticality (physics)

ARW relate to the sandspile model, and have also been introduced as an instance of
self-organized criticality: spontaneous (i.e. without tuning a parameter) critical
behavior (polynomial decrease of correlations...). To obtain this, one “progressively
augments the initial configutation”:

Assume A fixed. Inside a finite box,

@ Drop a new particle at random,

@ Stabilize the configuration by running the dynamics inside the box and by
freezing particles that exit,

and repeat.

3500

T T T T T T
gty p P Pt O NN e pe e P ]
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# particles remaining

1000 - 1

500 |- Bl

0 I I I I I I I I I
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# particles dropped

— Dynamics reach a stationary regime which, in large volume, should satisfy SOC.
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Motivations: 3. Connection with sandpiles and related properties

Abelian sandpile model

Integer-valued configuration 1 : Z¢ — N (number of grains of sand)
Deterministic rule of toppling at x € Z:
if n(x) > 2d (n is said to be “unstable at x), one defines

TN :n72d5x+26y.

yoox

If 1 (x) < 2d for all x € Z4, 7 is called stable.

Abelian property

@ For all x # y where 7 is unstable, T, Tyn = T,T\7.

o If a sequence of topplings leads to a stable configuration, then the latter does not
depend on the toppling sequence, and neither does the number of topplings.

@ Monotonicity: if 7 < 1’, stabilizing )’ requires more topplings (at each site)
than stabilizing 7.

Variant: stochastic sandpiles, where each grain is sent with law p(-).
— abelian property is preserved provided a stack of instructions is given at each site,
to be used by any particle sitting there (Diaconis-Fulton construction, cf. DLA)
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Diaconis-Fulton coupling for ARW

Letno € NZ be a finitely supported configuration.
Let & = (Zx), ez« be i.i.d. Poisson processes of intensity 1 (clocks).
Let S = (Iyn;n € N),pa be ii.d. stacks of i.i.d. instructions in Z4 W {S}, s.t.

1+A°

o)y with probability 20) for all yez4; (jump to x+Yy)
M |S with probability (25, (attempt to sleep)

“Diaconis-Fulton coupling” is a construction of the ARW from 1 using .# and Z7:

@ Clocks run at speed equal to number of active particles on each site;
@ When the clock at x rings, we apply to x the first unused instruction at x.

e .. =

L
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Diaconis-Fulton coupling for ARW

Letno € NZ be a finitely supported configuration.
Let & = (Zx), ez« be i.i.d. Poisson processes of intensity 1 (clocks).
Let S = (Iyn;n € N),pa be ii.d. stacks of i.i.d. instructions in Z4 W {S}, s.t.

o {y with probability fi}i ,forall y € Z¢; (jump to x+Yy)
xn =

S with probability ;2;.  (attempt to sleep)

“Diaconis-Fulton coupling” is a construction of the ARW from 1 using .# and Z7:

@ Clocks run at speed equal to number of active particles on each site;
@ When the clock at x rings, we apply to x the first unused instruction at x.

This actually defines two processes: (1;);>0 (ARW) and (/;),>¢ (odometer) where
- M¢(x) is the number of particles at x at time # (or °S” if one sleepy particle);

- hs(x) counts how many instructions have been read at x by time .

~ 1 and h are functions of (1y,.#, &) and such that:

@ (Abelian property) The final state Moo, hoo does not depend on .

© (Monotonicity by addition of particles) For all t > 0, h; increases with 1.

@ (Monotonicity by removal of S) For all t > 0, h; increases when some ‘S’
instructions are replaced by neutral instructions (i.e. 0).
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o {y with probability f(ﬁi ,forall y € Z¢; (jump to x+Yy)
xn =

S with probability ;2;.  (attempt to sleep)

“Diaconis-Fulton coupling” is a construction of the ARW from 1 using .# and Z7:

@ Clocks run at speed equal to number of active particles on each site;
@ When the clock at x rings, we apply to x the first unused instruction at x.

This actually defines two processes: (1;);>0 (ARW) and (/;),>¢ (odometer) where
- M¢(x) is the number of particles at x at time # (or °S” if one sleepy particle);

- hs(x) counts how many instructions have been read at x by time .

~ 1 and h are functions of (1y,.#, &) and such that:

@ (Abelian property) The final state Moo, hoo does not depend on .

© (Monotonicity by addition of particles) For all t > 0, h; increases with 1.

@ (Monotonicity by removal of S) For all t > 0, h; increases when some ‘S’
instructions are replaced by neutral instructions (i.e. 0).

For i.i.d. 19, P(non-fixation) = P (he(0; 09 - 1y, 2,.9) S +eoas V " Z4) € {0,1}
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Current state of knowledge (cf. Lecture notes by Leonardo Rolla on arXiv)

In a summary,
@ . <1in very great generality;
o U > HLA > 0 in great generality (amenable graphs);
@ 1.(07) =0, and y, < 1 for all A in the case of biased random walks;
@ 1:(0%) =0 (and thus y. < 1 for small ) if d = 1 or d > 3 (or transient graph).

With bias: Symmetric,d =1oud > 3: Symmetric, d = 2:
A , A . A .
Fixation Fixation Fixation
Non-fixation - Non-fixation _ Non-fixation o
o 1 u o 1 Iz o 1 I
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Current state of knowledge (cf. Lecture notes by Leonardo Rolla on arXiv)

With bias: Symmetric,d =1 oud > 3: Symmetric, d = 2:
A , A . A .
Fixation Fixation Fixation
Non-fixation - Non-fixation _ Non-fixation -
1 Iz o 1 14 o 1 w

Rolla—Sidoravicius 09 d =1
To nearest-neighbours, (. (1) > HLQL For any jump law, p.(1) > 0.
Shellef *10, Amir—Gurel-Gurevitch *10 Vd > 1
For any jump law, p.(1) < 1.
Sidoravicius—Teixeira 14 Vd > 1
For the simple symmetric random walk, (A1) > 0.
Taggi’15 d=1
For biaised walks, i, < 1—F(A) where F(-) > 0et F(0T) = 1.
+ non-fixation criterion if d > 2, depending on the law of 1.
Rolla-T.’15 d >2
For biased walks, (. < 1—F(A) where F(-) > 0and F(01) = 1.
Basu—-Ganguly—Hoffman *15 d =1
For the simple symmetric random walk: for all 4 > 0, A.(u) > 0.
Stauffer—Taggi *15 Vd > 1
Ue(A) > 1_%, and . (07) = 0 if transient (d > 3).
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Fixation for p < 5 H

Theorem (Stauffer—Taggi *15)

On any amenable graph, (1) = 177

Proof. Let V C Z, finite. Let Py denote the law of ARW starting from 1 - 1y, and
Oy (x ) P(after stabilization of V, there remains a particle at x) = Py (1 (x) = S).

|V| Z Oy (x) = “mean density of particles in V after stabilization” < u
xeV

Oy (x) > 1%ﬁ?’(}c is visiting while stabilizing V) = 1+7L Py (heo(x) > 1)

Proof of lemma: stabilize V while keeping for last the reading of the (maybe) last
instruction at x (if x is ever visited). If x was indeed visited, and the remaining
instruction is S (probability HLA)’ then we did stabilize V and there remains one
particle at x.

Conclusion: If i is supercritical, then for x € B(0,n) \ B(0,n —logn),

> A > > > A
Op(0.0) (X) > mHDB(O.n) (hoo(x) > 1) > mPB(x.logn) (hoo(x) > 1) — T

hence, averaging over B(0,n), u > 1+/1
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Case of biased walks — Result

Assume the jump distribution p(-) has a bias: for the simple random walk X with
jump distribution p(-), for some direction £ we have X, - £ — +o0,a.s.. J

For A >0, v € R\ {0}, if Ty is the time spent by X in {x € Z : x-v < 0},
1

= P(a walk killed at rate A in {x-v < 0} survives forever)

NB.Ify-£> 0, then 0 < Fy,(1) —> 1as A — 0T

Theorem (Taggi *14)

® Assume d = 1. Then |1 > 1— F|(A) = non-fixation a.s.
@ Assume d > 2. Then |LFy (1) > P(1n9(0) = 0) = non-fixation a.s.

Theorem (Rolla-T. *15)

o Assume d > 2. Then u > 1 — Fy,(A) = non-fixation a.s.
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Site-wise vs. particle-wise

The site-wise viewpoint (this is “Diaconis-Fulton” construction) attaches
randomness to sites: from finite initial configuration,

o each site contains a random stack of i.i.d. instructions (“jump to y”, or “sleep”),
and a Poisson clock;

e when a clock rings at a site, apply the top instruction to a particle there;

@ each clock runs at speed equal to the number of active particles present at its site
(as if each particle read an instruction at rate 1).
— we don’t distinguish particles at a site, and get 1;(x) € {0,5,1,2,...}.
Crucial properties: abelianness and monotonicity.

The particle-wise viewpoint attaches randomness to particles:

@ cach particle (x,i) (i-th particle starting at x) has a “life plan” (Xf’[) >0 (thatis a
continuous-time RW, jumping at rate 1), and a Poisson clock with rate 4

@ particles move according to their life plan,

@ when the clock of a particle rings, if it is alone then its gets asleep, and in this
case its clock stops;

@ when a particle is awoken, its clock resumes ticking.

— we get a whole family of paths (Yf’i) >0, Which carries more information.
Properties: Not the above, but a control on the effect of adding one particle.
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© Elements of proofs

@ Particle fixation
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Site fixation vs. particle fixation

Site fixation occurs when, at each site, there is eventually no active particle.
Particle fixation occurs when each particle is eventually sleeping.
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Site fixation vs. particle fixation

Site fixation occurs when, at each site, there is eventually no active particle.
Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

u = E[# particles initially at 0]
= E[# sites where a particle initially at O settles]

=) P(some particle initially at 0 settles at v)
v

= Z]P’(some particle initially at —v settles at 0)
v

= E[# particles settling at 0] < 1.
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Site fixation vs. particle fixation

Site fixation occurs when, at each site, there is eventually no active particle.
Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

u = E[# particles initially at 0]
= E[# sites where a particle initially at O settles]

=) P(some particle initially at 0 settles at v)
v

= Z]P’(some particle initially at —v settles at 0)
v

= E[# particles settling at 0] < 1.

Theorem (Amir—Gurel-Gurevich *10)

Site fixation implies particle fixation. Thus, they are equivalent. And . < 1.

(for i.i.d. initial conditions, 0-1 laws hold for site and particle fixation)
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A non-fixation condition

o Direct technique for proving non-fixation: proving that arbitrarily many particles
visit precisely the site o.

o In fact, proving that a positive density of particles exit a box is sufficient.

Forn €N, let V, = {—n,...,n}, denote P(y,) the law of the ARW restricted to V,
(i.e. particles freeze outside), and M,, the number of particles exiting V.

Proposition

Eiy 1My
limsup [V”][ ]

—————>0 = (particle) non-fixation, a.s.
n Vil
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A non-fixation condition

o Direct technique for proving non-fixation: proving that arbitrarily many particles
visit precisely the site o.

e In fact, proving that a positive density of particles exit a box is sufficient.

Forn €N, let V, = {—n,...,n}, denote P(y,) the law of the ARW restricted to V,
(i.e. particles freeze outside), and M,, the number of particles exiting V.

Proposition

Eiy 1My,
limsup w

>0 = (particle) non-fixation, a.s.
n Vil

Idea of proof:
Let Vi = Vy_iogn- Then, if 79 (x) < K a.s. (to simplify)

E[M,] < |V, \ V,| + E[number of particles of V,, that quit V,,]
< o(|Vy|) + |V | K P(particle Y*! reaches distance logn)
~ |V, |KP(particle Y(*1) doesn’t fixate)

by using translation invariance under P. Hence

1 EM,
P(Y%! does not fixate) > — limsup [M,]
K n ‘Vn|
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A non-fixation condition

o Direct technique for proving non-fixation: proving that arbitrarily many particles
visit precisely the site o.

e In fact, proving that a positive density of particles exit a box is sufficient.

Forn €N, let V, = {—n,...,n}, denote P(y,) the law of the ARW restricted to V,
(i.e. particles freeze outside), and M,, the number of particles exiting V.

Proposition

Ey 1M
limsup M

>0 = (particle) non-fixation, a.s.
n Vil

Idea of proof:
Let Vi = Vy_iogn- Then, if 79 (x) < K a.s. (to simplify)

E[M,] < |V, \ V,| + E[number of particles of V,, that quit V,,]
< o(|Vy|) + |V | K P(particle Y*! reaches distance logn)
~ |V, |KP(particle Y(*1) doesn’t fixate)

by using translation invariance under P. Hence

E[M,]

‘Vn|

~> it remains to justify E[M,] > Ey, [My], which needs an extension of monotonicity.

1
P(Y%! does not fixate) > % hmsup
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Plan of the talk

© Elements of proofs

@ Application to biased walks on Z¢
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Non-fixation for biased ARW on Z¢

Letv € R? and assume y > 1 — F,(A).

Consider ARW restricted to V,, (particles freeze outside), with site-wise construction.
Let us devise a toppling strategy (i.e. a choice of clocks) that throws a positive
density of particles outside of V,,, i.e., we describe the order of sites in which we read
instructions — which is irrelevant for the value of M,,, by abelianness.

Preliminary step: levelling

Topple sites in V), until all particles are either alone or outside V,.
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Non-fixation for biased ARW on Z¢

Letv € R? and assume y > 1 — F,(A).

Consider ARW restricted to V,, (particles freeze outside), with site-wise construction.
Let us devise a toppling strategy (i.e. a choice of clocks) that throws a positive
density of particles outside of V,,, i.e., we describe the order of sites in which we read
instructions — which is irrelevant for the value of M,,, by abelianness.

Preliminary step: levelling

Topple sites in V), until all particles are either alone or outside V,.

Label V,, = {x1,...,x,} so thatx; -v < -+ < x,-v.

Fori=1,...,r, if there is a particle in x;, then topple this particle, and topple it again,
and so on until either e it exits V,,
e it reaches an empty site in {x;q,...,%,}, or

o it falls asleep on {xq,...,x;}.
NB. By induction, there is always at most one particle at x;.

Laurent TOURNIER Biased activated random walks



Non-fixation for biased ARW on Z¢

Letv € R? and assume y > 1 — F,(A).

Consider ARW restricted to V,, (particles freeze outside), with site-wise construction.
Let us devise a toppling strategy (i.e. a choice of clocks) that throws a positive
density of particles outside of V,,, i.e., we describe the order of sites in which we read
instructions — which is irrelevant for the value of M,,, by abelianness.

Preliminary step: levelling

Topple sites in V), until all particles are either alone or outside V,.

Label V,, = {x1,...,x,} so thatx; -v < -+ < x,-v.

Fori=1,...,r, if there is a particle in x;, then topple this particle, and topple it again,
and so on until either e it exits V,,

e it reaches an empty site in {x;q,...,%,}, or

o it falls asleep on {xq,...,x;}.

NB. By induction, there is always at most one particle at x;.

The probability of the last case is < 1 — F, (1), hence in the end (for i = r), this
procedure has ‘left behind’ at most |V,|(1 — F,, (1)) particles in average:

IE[V,,] [Mn} > ,u|vn| - (1 7Fv(l))‘vn"
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Construction of particle-wise process in infinite volume

Problem: existence of ARW with infinitely many particles?

— for the usual process (1;(+));>0 on {0,S,1,.. .}Zd, the standard theory from
particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process)

— for particle-wise process, non standard. (Amir and Gurel-Gurevich assume it)
Actually, we show that the previous particle-wise construction has a limit as more
and more particles are introduced, and its law is translation invariant.
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Construction of particle-wise process in infinite volume

Problem: existence of ARW with infinitely many particles?

— for the usual process (1;(+));>0 on {0,S,1,.. ,}Zd, the standard theory from
particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process)

— for particle-wise process, non standard. (Amir and Gurel-Gurevich assume it)
Actually, we show that the previous particle-wise construction has a limit as more
and more particles are introduced, and its law is translation invariant.

Principle: follow and control spread of influence.

For 1, X, 2, patticle (x,7) has an influence on z € Z¢ during [0, 7] if removing that
particle changes the process Tl (no,X, 2).

Lemme

Let Z¥' (19, X, P) be the set of sites influenced by (x,1) before t.
There exists a branching random walk Z on Z¢ such that, for any finite config. T,

Z5(n,X, P) Cy. x+ 7y,

et E[|Z]] < .

Assume sup, E[1g(x)] < co. Then the construction of ARW by addition of particles is
a.s. well-defined, and translation invariant.
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Conclusion

Extensions of parts of the proof, of possible independent interest:
@ The non-fixation condition naturally extends to amenable graphs.
@ The particle-wise construction extends to transitive graphs for which the mass
transport principle holds (unimodular graphs).
Most striking open questions:
@ in the symmetric case, for d = 2, non-fixation for some A >0 and u < 1?
o And for large A and some yt < 1ind=1ord > 3?

@ Study of critical case (non-fixation?), link with self-organized criticality....
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