

Biased activated random walks

Laurent TOURNIER

Joint work with Leonardo ROLLA

LAGA (Université Paris 13)

Probability seminar

University of Bristol — 23 April 2016

1 Introduction of the model, results

2 Elements of proofs

3 Conclusion

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- Mixed use of site-wise and particle-wise constructions
- Particle fixation
- Application to biased walks on \mathbb{Z}^d
- Existence

3 Conclusion

Dynamics: Particles evolve in continuous time on \mathbb{Z}^d , and can be either

- active, in **state A**: jump at rate 1 according to law $p(\cdot)$, independently from each other (*random walks*);
- passive (sleeping), in **state S**: do not move.

Two kinds of mutations/interactions happen:

- $A \rightarrow S$ at rate λ : each particle gets asleep at rate λ (independently);
- $A + S \rightarrow 2A$ immediately: active particles awake the others on same site.

NB. Mutations $A \rightarrow S$ are only effective when the particle A is alone

\Rightarrow *On each site, there is either nothing, one S, or any number of A particles.*

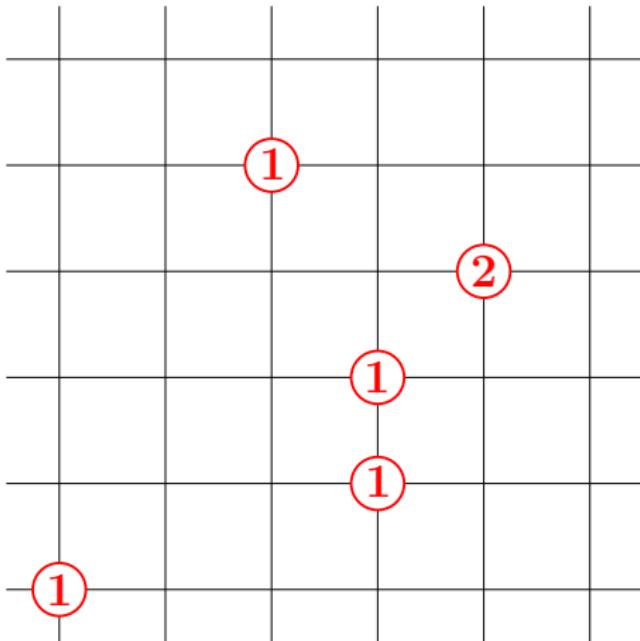
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



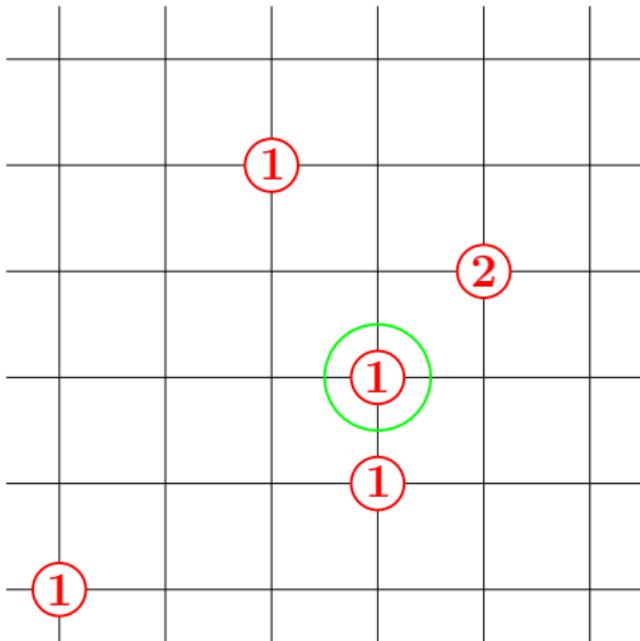
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



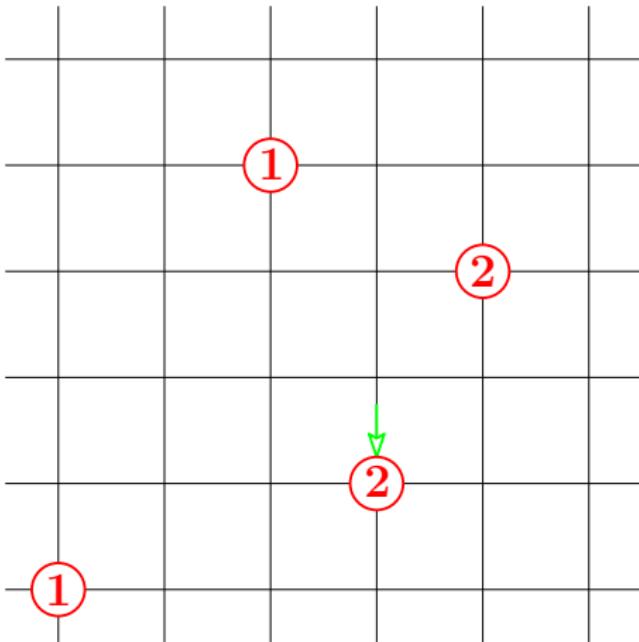
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



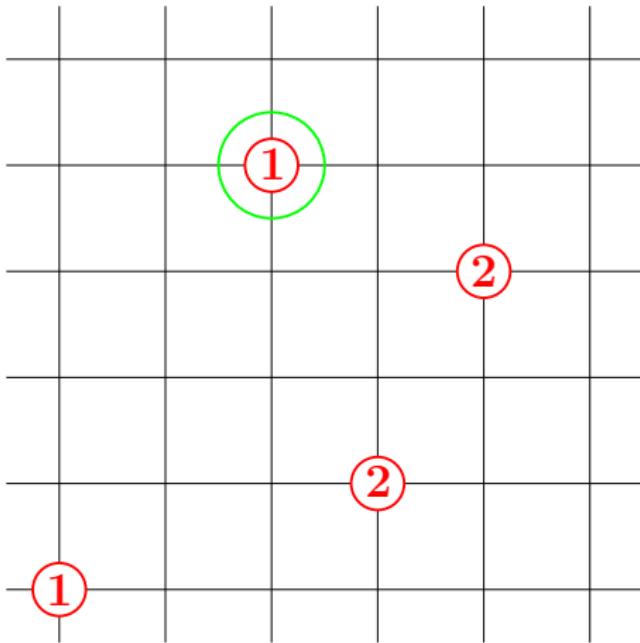
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



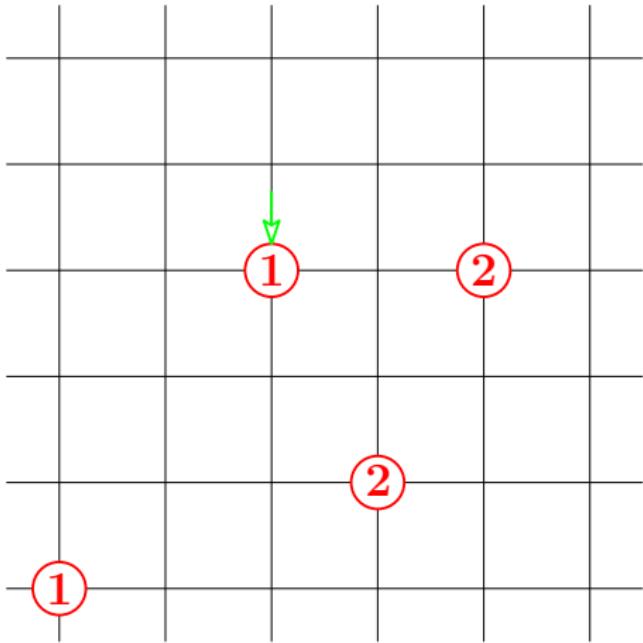
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



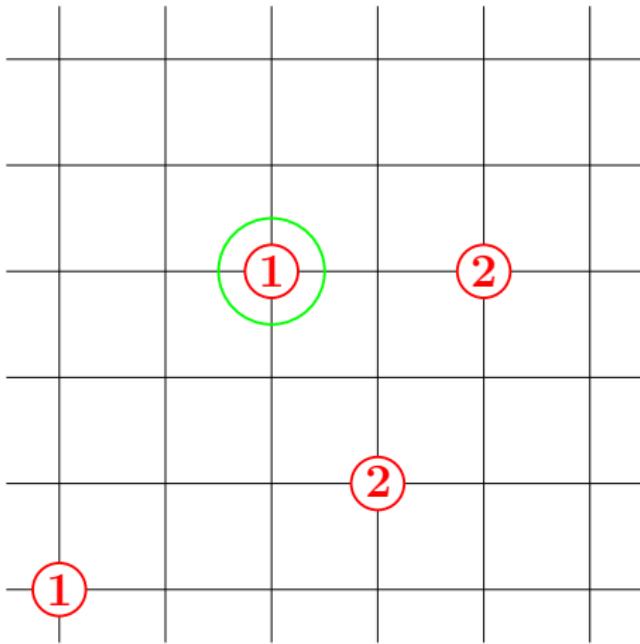
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



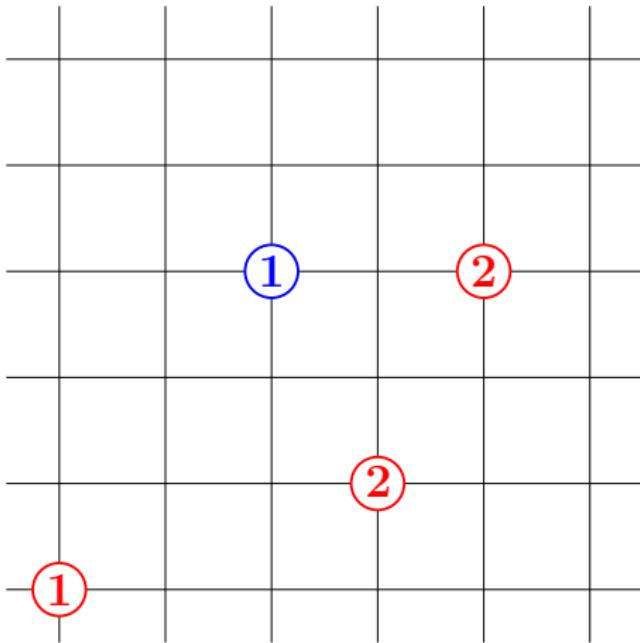
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



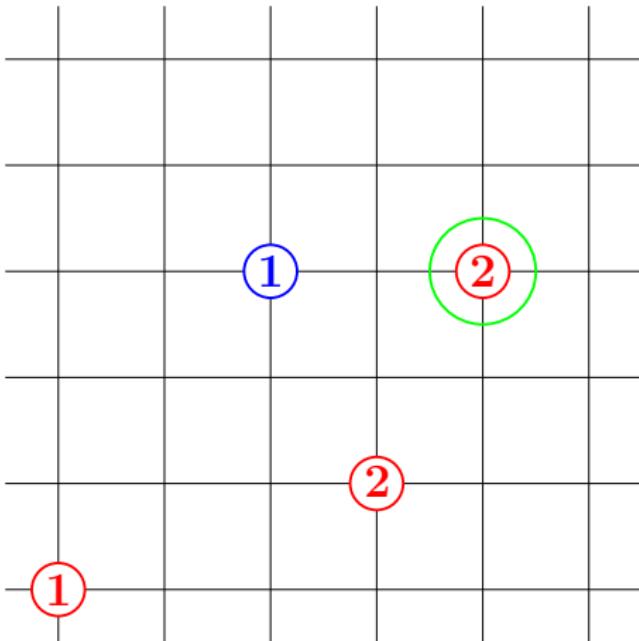
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



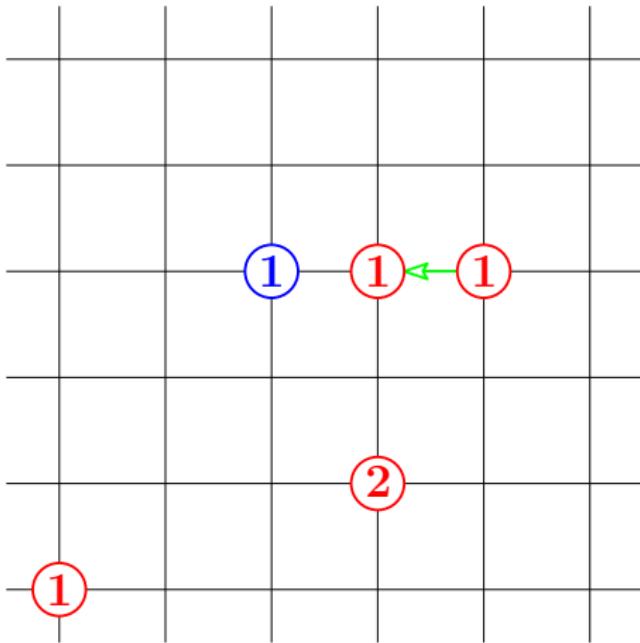
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



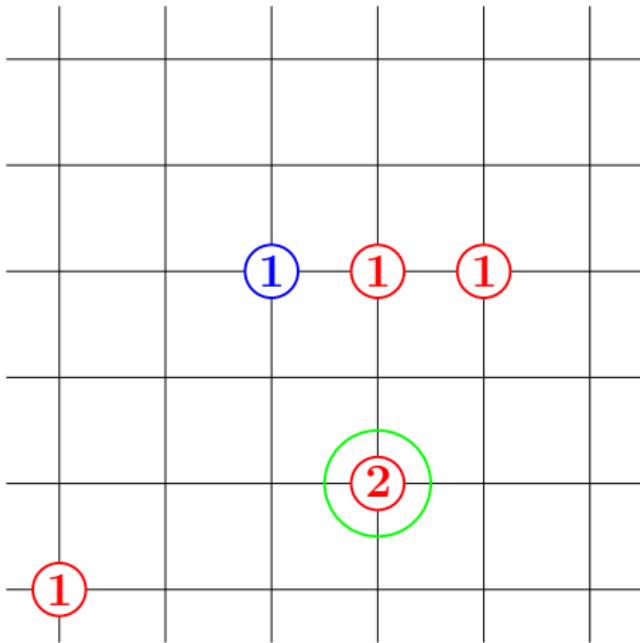
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



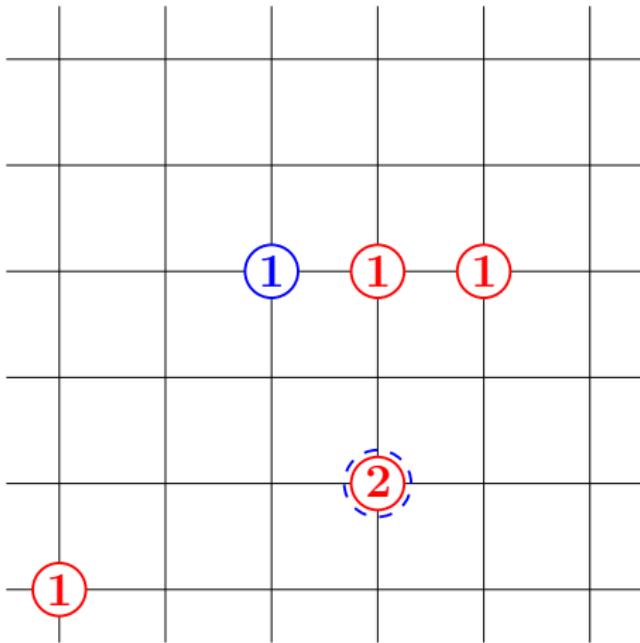
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



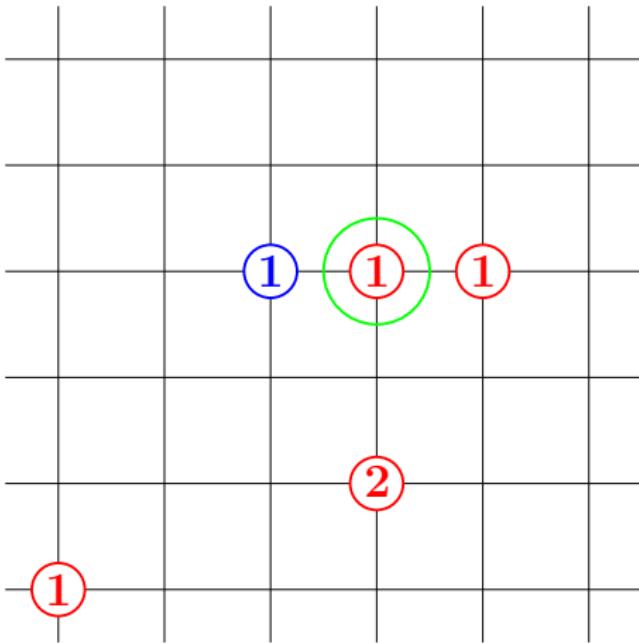
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



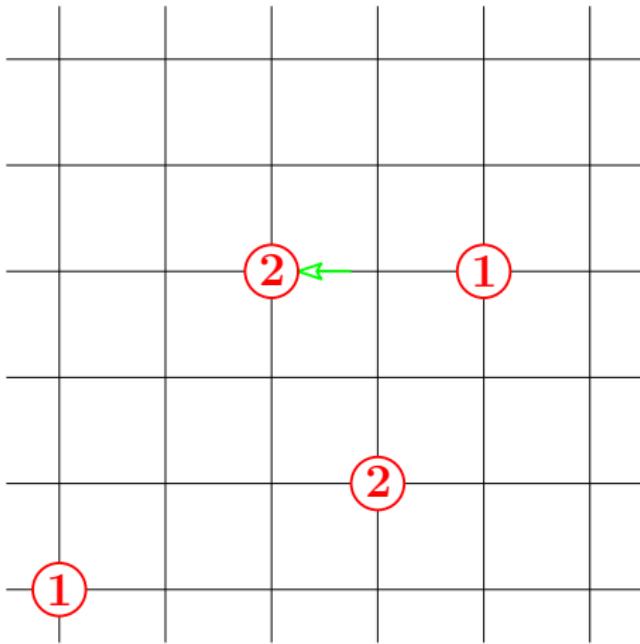
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



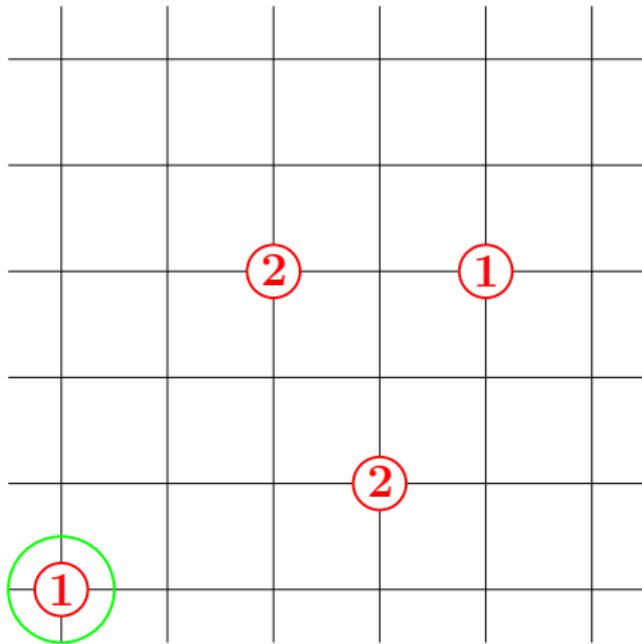
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



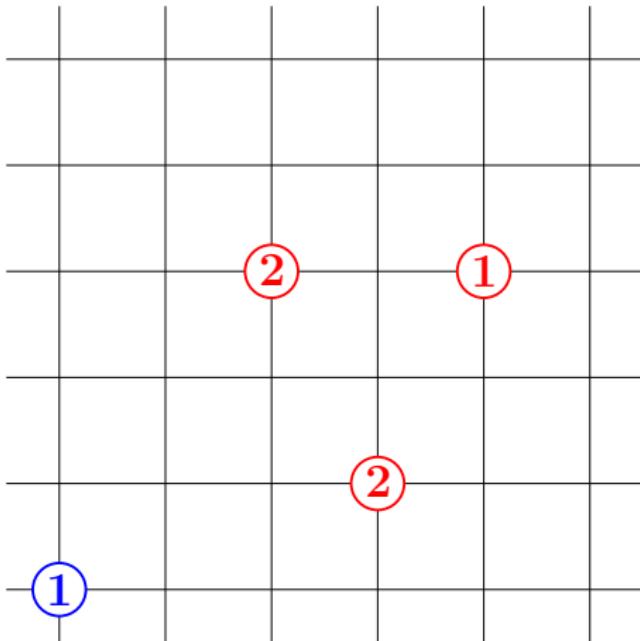
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



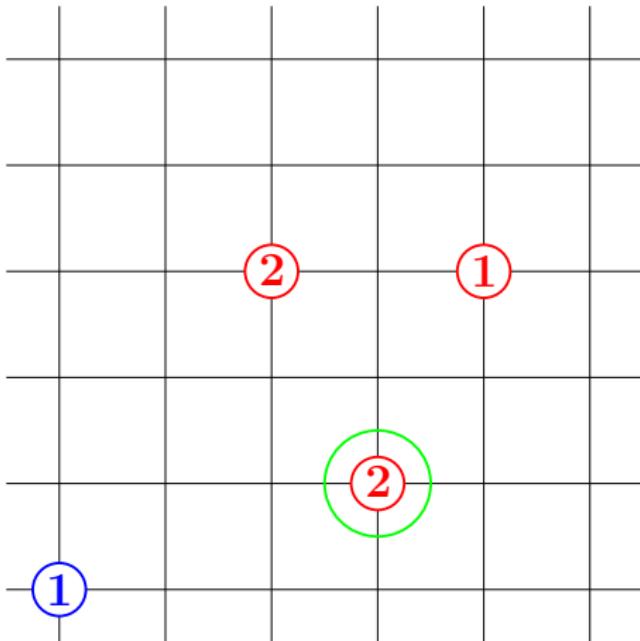
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



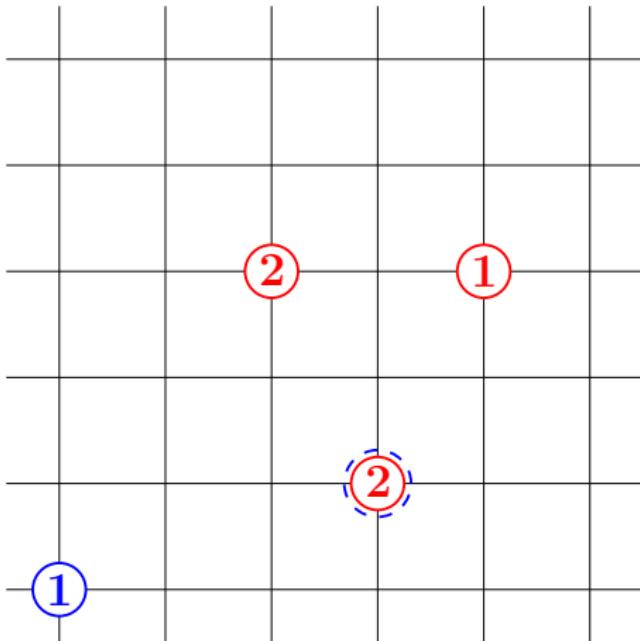
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



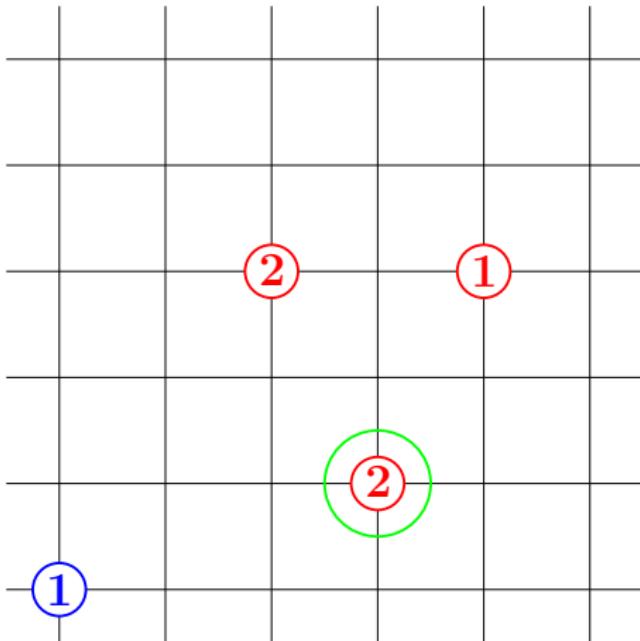
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



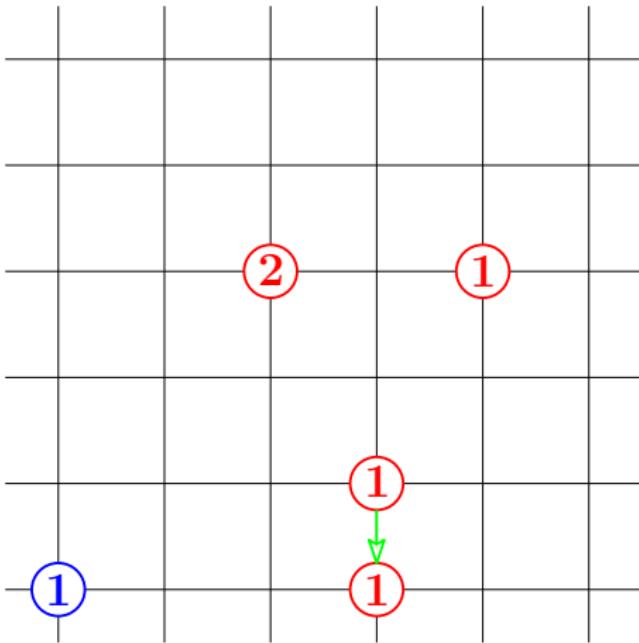
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



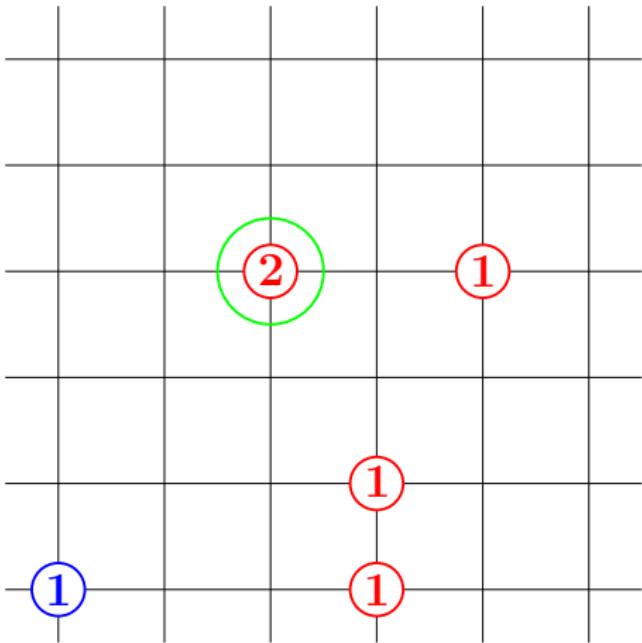
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



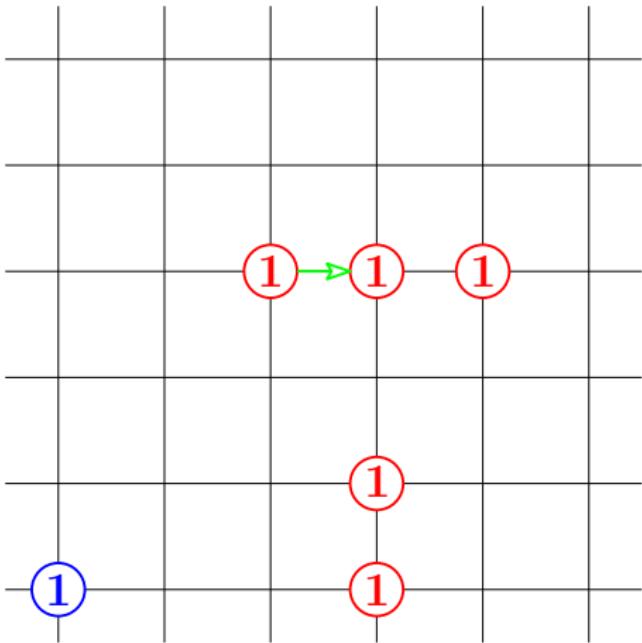
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



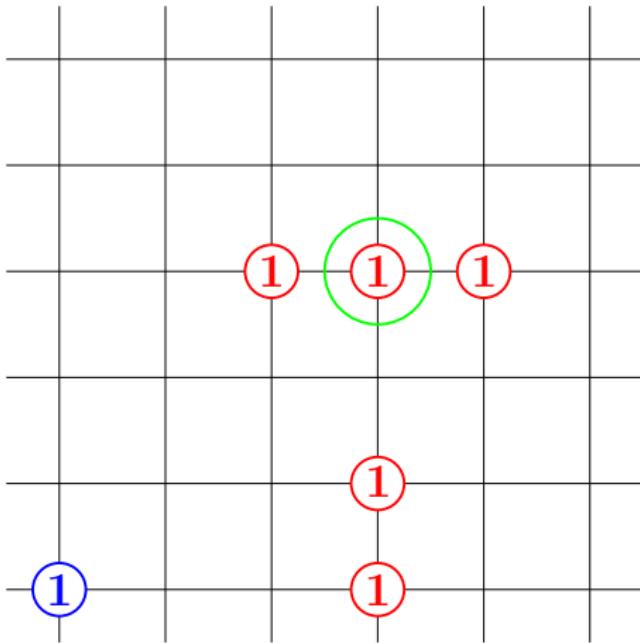
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



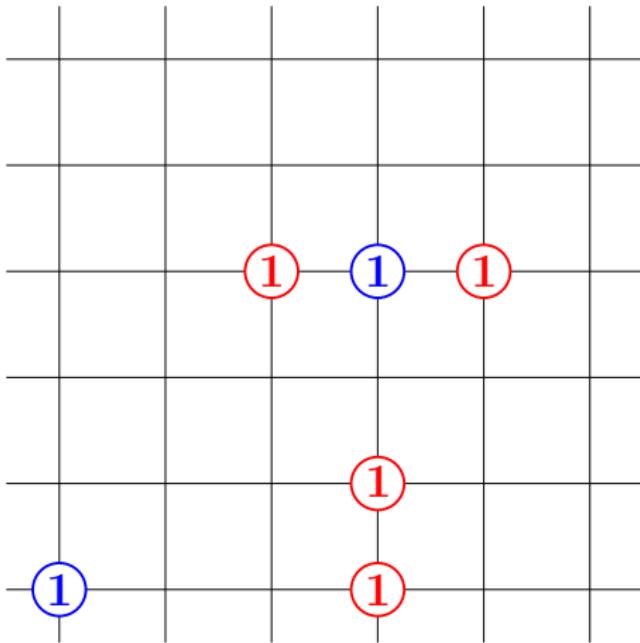
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



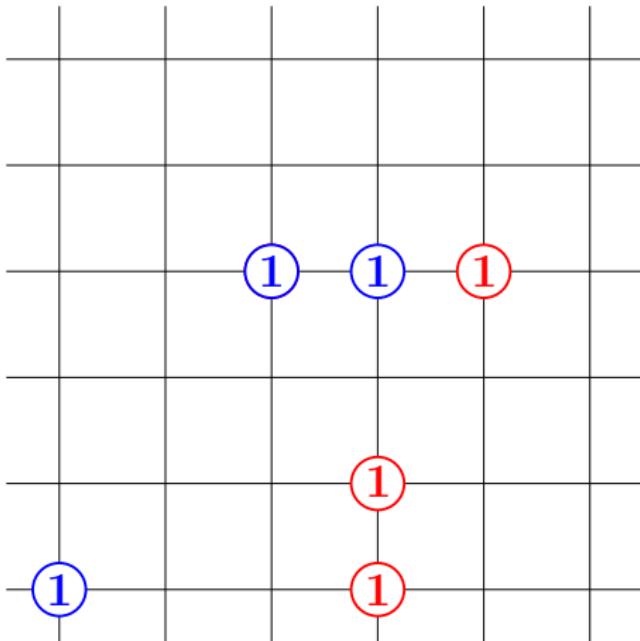
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



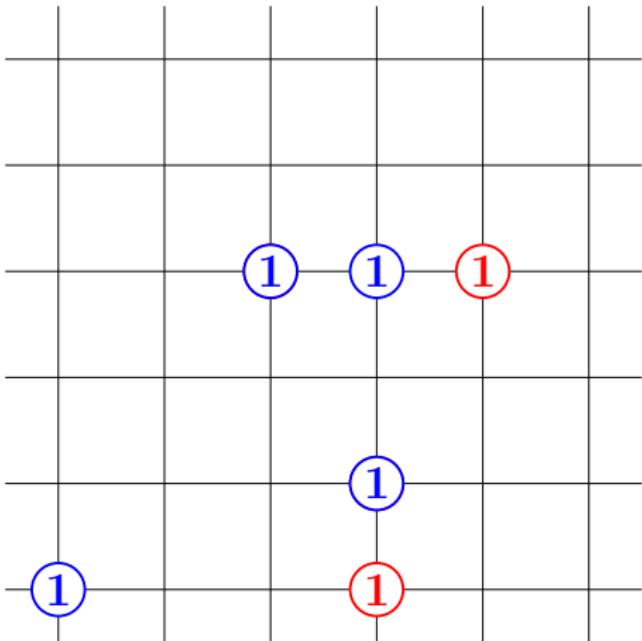
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



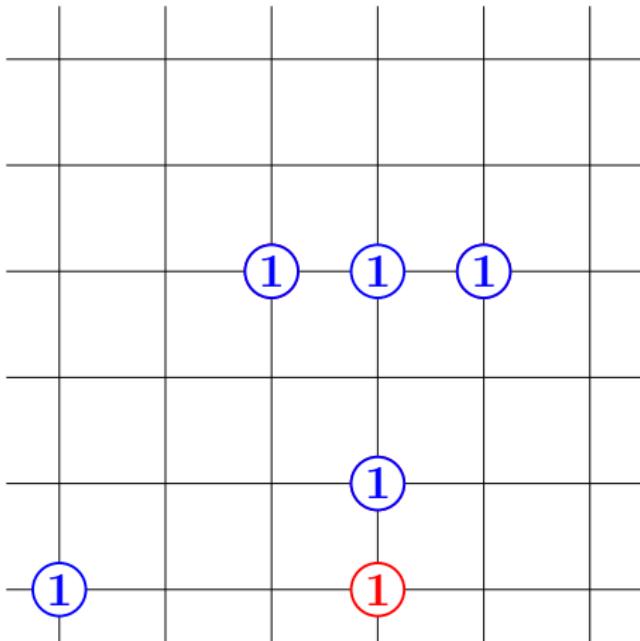
Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.



Dynamics for a finite number of particles

At each time, a uniformly chosen **active** particle may

→ Jump, with prob. $\frac{1}{1+\lambda}$, with law $p(\cdot)$,
(and wake up hit particles)

or

→ Attempt to **deactivate**, with prob. $\frac{\lambda}{1+\lambda}$.

After a while, every particule is passive:
configuration is *stable*.

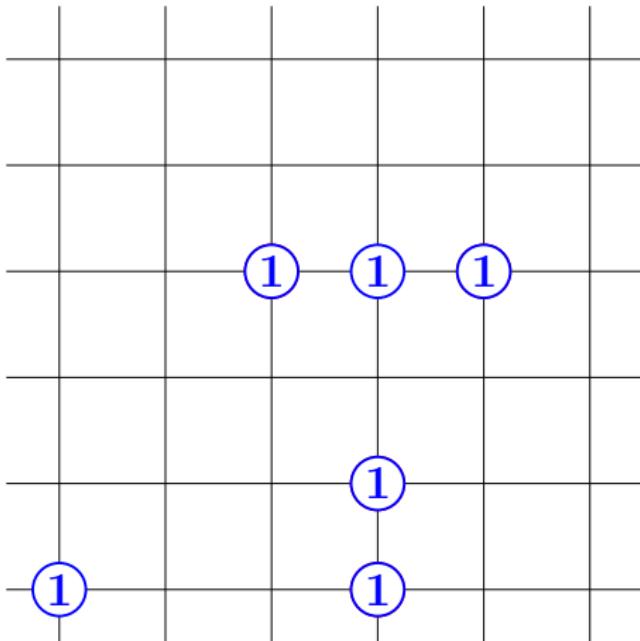
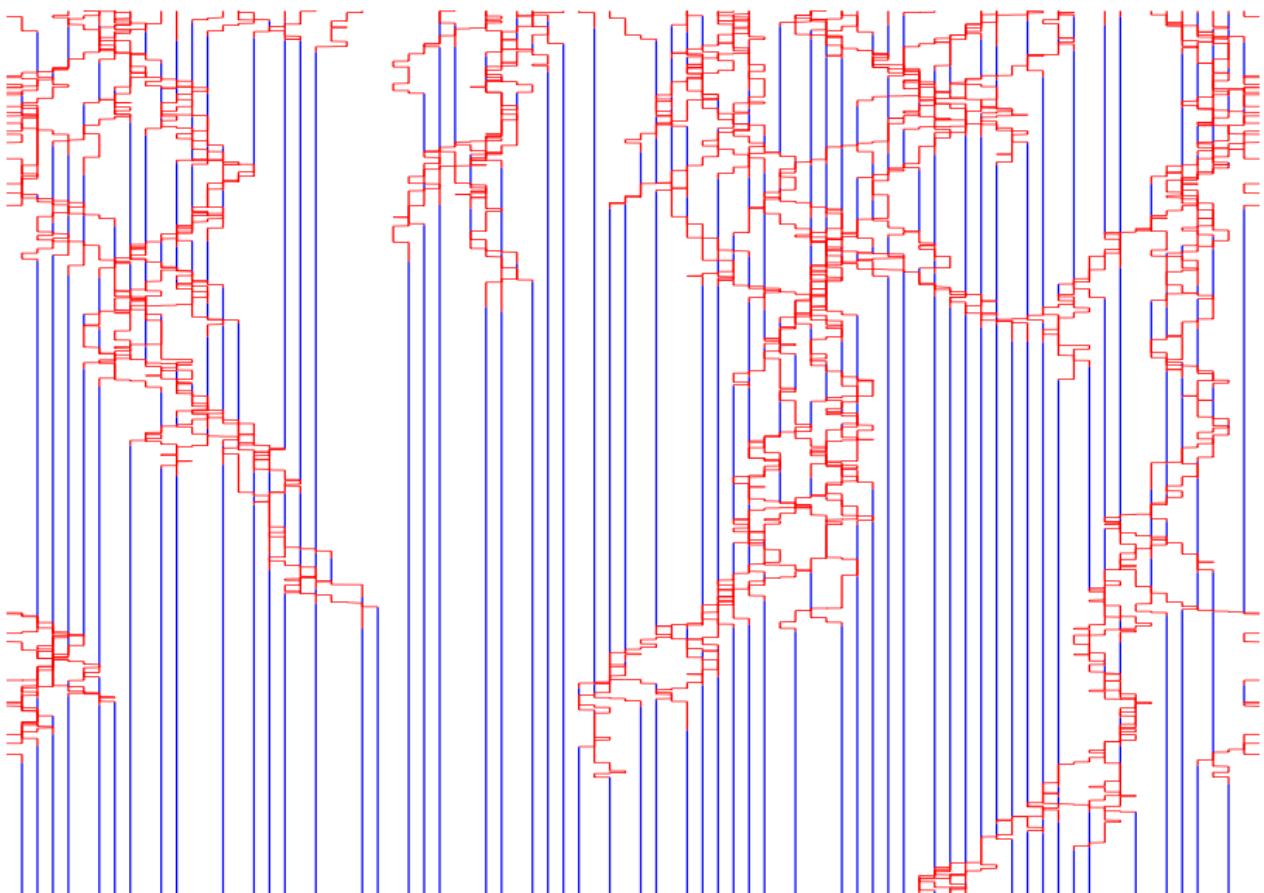


Illustration of the 1D case: space-time representation



Dynamics: Particles evolve in continuous time on \mathbb{Z}^d , and can be either

- active, in **state A**: jump at rate 1 according to law $p(\cdot)$, independently from each other (*random walks*);
- passive (sleeping), in **state S**: do not move.

Two kinds of mutations/interactions happen:

- $A \rightarrow S$ at rate λ : each particle gets asleep at rate λ (independently);
- $A + S \rightarrow 2A$ immediately: active particles awake the others on same site.

NB. Mutations $A \rightarrow S$ are only effective when the particle A is alone

\Rightarrow *On each site, there is either nothing, one S, or any number of A particles.*

Parameters:

- jump distribution $p(\cdot)$ on \mathbb{Z}^d
- sleeping rate $\lambda \in (0, \infty)$
- initial configuration of A particles (finite support, or i.i.d. in general).

Behaviors of interest:

- **fixation:** in any finite box, activity vanishes eventually;
- **non-fixation:** in any finite box, activity goes on forever.

1 Introduction of the model, results

- ARW: Definition of the model
- **Motivations**
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- Mixed use of site-wise and particle-wise constructions
- Particle fixation
- Application to biased walks on \mathbb{Z}^d
- Existence

3 Conclusion

Motivations: 1. Phase transition

Let μ denote the initial density of particles (for i.i.d. initial configuration).

A **phase transition** is *expected* to happen: $\exists \mu_c(\lambda) \in (0, 1)$ s.t.

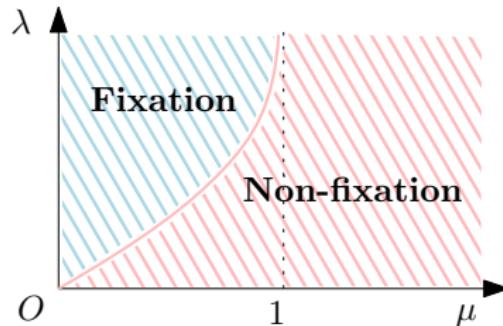
- for $\mu < \mu_c(\lambda)$, a.s. fixation;
- for $\mu > \mu_c(\lambda)$, a.s. non-fixation.

Furthermore, $\lambda \mapsto \mu_c(\lambda)$ is increasing, $\mu_c(0^+) = 0$ and $\mu_c(\infty) = 1$.

Or also: for $\mu \geq 1$ then a.s. fixation and, for $\mu < 1$, $\exists \lambda_c(\mu) \in (0, \infty)$ s.t.

- for $\lambda > \lambda_c(\mu)$, a.s. fixation;
- for $\lambda < \lambda_c(\mu)$, a.s. non-fixation.

Furthermore, $\mu \mapsto \lambda_c(\mu)$ is increasing, $\lambda_c(0^+) = 0$ and $\lambda_c(1^-) = +\infty$.



- Existence of μ_c and λ_c by monotonicity, within each increasing family of initial distributions (Poisson(μ), or Bernoulli(μ) for example).

- More difficult, and partly conjectural: nontrivial bounds, limits, and universality of μ_c , λ_c with respect to initial distribution (but not with respect to $p(\cdot)$)

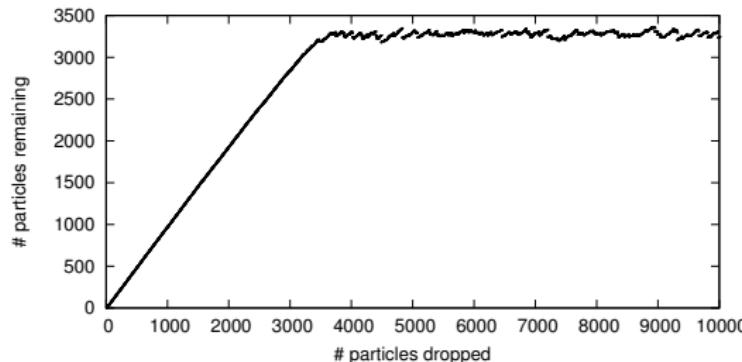
Motivations: 2. Self-Organized Criticality (physics)

ARW relate to the **sandpile** model, and have also been introduced as an instance of **self-organized criticality**: spontaneous (i.e. without tuning a parameter) critical behavior (polynomial decrease of correlations...). To obtain this, one “progressively augments the initial configuration”:

Assume λ fixed. Inside a *finite* box,

- Drop a new particle at random,
- Stabilize the configuration by running the dynamics inside the box and by freezing particles that exit,

and repeat.



→ Dynamics reach a stationary regime which, in large volume, should satisfy SOC.

Abelian sandpile model

Integer-valued configuration $\eta : \mathbb{Z}^d \rightarrow \mathbb{N}$ (number of grains of sand)

Deterministic rule of toppling at $x \in \mathbb{Z}^d$:

if $\eta(x) \geq 2d$ (η is said to be “unstable at x ”), one defines

$$T_x \eta = \eta - 2d\delta_x + \sum_{y \sim x} \delta_y.$$

If $\eta(x) < 2d$ for all $x \in \mathbb{Z}^d$, η is called *stable*.

Abelian property

- For all $x \neq y$ where η is unstable, $T_x T_y \eta = T_y T_x \eta$.
- If a sequence of topplings leads to a stable configuration, then the latter does not depend on the toppling sequence, and neither does the number of topplings.
- Monotonicity: if $\eta \leq \eta'$, stabilizing η' requires more topplings (at each site) than stabilizing η .

Variant: *stochastic* sandpiles, where each grain is sent with law $p(\cdot)$.

→ abelian property is preserved **provided** a stack of instructions is given at each site, to be used by any particle sitting there (*Diaconis-Fulton* construction, cf. DLA)

Diaconis-Fulton coupling for ARW

Let $\eta_0 \in \mathbb{N}^{\mathbb{Z}^d}$ be a finitely supported configuration.

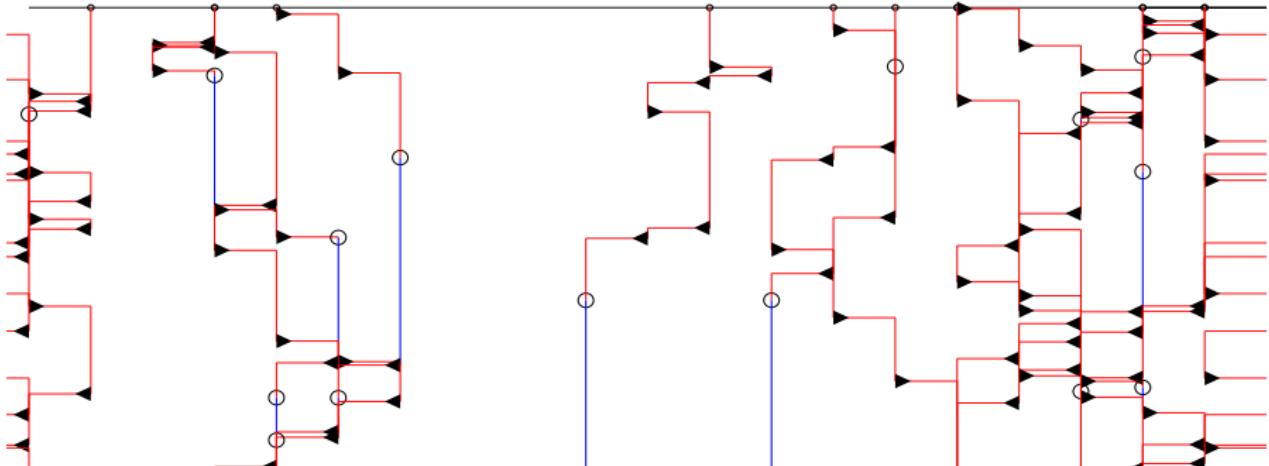
Let $\mathcal{P} = (\mathcal{P}_x)_{x \in \mathbb{Z}^d}$ be i.i.d. Poisson processes of intensity 1 (*clocks*).

Let $\mathcal{I} = (I_{x,n}; n \in \mathbb{N})_{x \in \mathbb{Z}^d}$ be i.i.d. *stacks* of i.i.d. *instructions* in $\mathbb{Z}^d \uplus \{S\}$, s.t.

$$I_{x,n} = \begin{cases} y & \text{with probability } \frac{p(y)}{1+\lambda}, \text{ for all } y \in \mathbb{Z}^d; \\ S & \text{with probability } \frac{\lambda}{1+\lambda}. \end{cases} \quad \begin{array}{l} \text{(jump to } x+y\text{)} \\ \text{(attempt to sleep)} \end{array}$$

“Diaconis-Fulton coupling” is a construction of the ARW from η_0 using \mathcal{I} and \mathcal{P} :

- Clocks run at speed equal to number of *active* particles on each site;
- When the clock at x rings, we apply to x the first unused instruction at x .



Let $\eta_0 \in \mathbb{N}^{\mathbb{Z}^d}$ be a finitely supported configuration.

Let $\mathcal{P} = (\mathcal{P}_x)_{x \in \mathbb{Z}^d}$ be i.i.d. Poisson processes of intensity 1 (*clocks*).

Let $\mathcal{I} = (I_{x,n}; n \in \mathbb{N})_{x \in \mathbb{Z}^d}$ be i.i.d. *stacks* of i.i.d. *instructions* in $\mathbb{Z}^d \uplus \{S\}$, s.t.

$$I_{x,n} = \begin{cases} y & \text{with probability } \frac{p(y)}{1+\lambda}, \text{ for all } y \in \mathbb{Z}^d; \\ S & \text{with probability } \frac{\lambda}{1+\lambda}. \end{cases} \quad \begin{array}{l} (\text{jump to } x+y) \\ (\text{attempt to sleep}) \end{array}$$

“Diaconis-Fulton coupling” is a construction of the ARW from η_0 using \mathcal{I} and \mathcal{P} :

- Clocks run at speed equal to number of *active* particles on each site;
- When the clock at x rings, we apply to x the first unused instruction at x .

This actually defines two processes: $(\eta_t)_{t \geq 0}$ (ARW) and $(h_t)_{t \geq 0}$ (odometer) where

- $\eta_t(x)$ is the number of particles at x at time t (or ‘S’ if one sleepy particle);

- $h_t(x)$ counts how many instructions have been read at x by time t .

~ η and h are functions of $(\eta_0, \mathcal{I}, \mathcal{P})$ and such that:

Lemma

- ❶ (Abelian property) The final state η_∞, h_∞ does not depend on \mathcal{P} .
- ❷ (Monotonicity by addition of particles) For all $t \geq 0$, h_t increases with η_0 .
- ❸ (Monotonicity by removal of S) For all $t \geq 0$, h_t increases when some ‘S’ instructions are replaced by neutral instructions (i.e. 0).

Let $\eta_0 \in \mathbb{N}^{\mathbb{Z}^d}$ be a finitely supported configuration.

Let $\mathcal{P} = (\mathcal{P}_x)_{x \in \mathbb{Z}^d}$ be i.i.d. Poisson processes of intensity 1 (*clocks*).

Let $\mathcal{I} = (I_{x,n}; n \in \mathbb{N})_{x \in \mathbb{Z}^d}$ be i.i.d. *stacks* of i.i.d. *instructions* in $\mathbb{Z}^d \uplus \{S\}$, s.t.

$$I_{x,n} = \begin{cases} y & \text{with probability } \frac{p(y)}{1+\lambda}, \text{ for all } y \in \mathbb{Z}^d; \\ S & \text{with probability } \frac{\lambda}{1+\lambda}. \end{cases} \quad \begin{array}{l} (\text{jump to } x+y) \\ (\text{attempt to sleep}) \end{array}$$

“**Diaconis-Fulton coupling**” is a construction of the ARW from η_0 using \mathcal{I} and \mathcal{P} :

- Clocks run at speed equal to number of *active* particles on each site;
- When the clock at x rings, we apply to x the first unused instruction at x .

This actually defines two processes: $(\eta_t)_{t \geq 0}$ (ARW) and $(h_t)_{t \geq 0}$ (odometer) where

- $\eta_t(x)$ is the number of particles at x at time t (or ‘S’ if one sleepy particle);

- $h_t(x)$ counts how many instructions have been read at x by time t .

~ η and h are functions of $(\eta_0, \mathcal{I}, \mathcal{P})$ and such that:

Lemma

- ➊ (Abelian property) The final state η_∞, h_∞ does not depend on \mathcal{P} .
- ➋ (Monotonicity by addition of particles) For all $t \geq 0$, h_t increases with η_0 .
- ➌ (Monotonicity by removal of S) For all $t \geq 0$, h_t increases when some ‘S’ instructions are replaced by neutral instructions (i.e. 0).

For i.i.d. η_0 , $P(\text{non-fixation}) = P(h_\infty(0; \eta_0 \cdot \mathbf{1}_V, \mathcal{P}, \mathcal{I}) \nearrow +\infty \text{ as } V \nearrow \mathbb{Z}^d) \in \{0, 1\}$

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

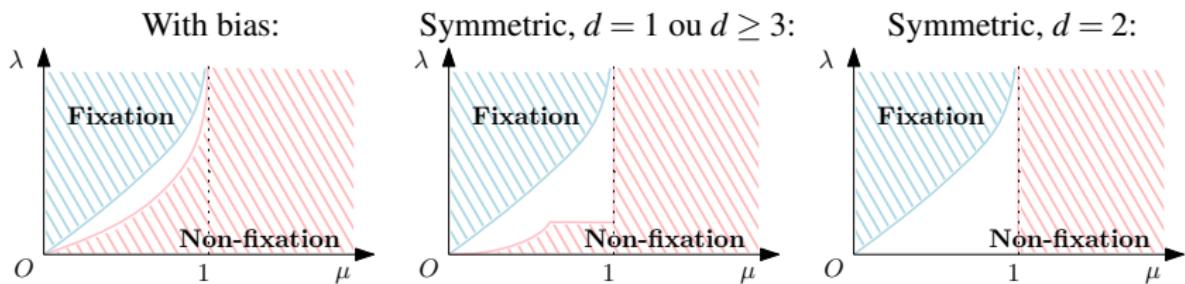
2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- Mixed use of site-wise and particle-wise constructions
- Particle fixation
- Application to biased walks on \mathbb{Z}^d
- Existence

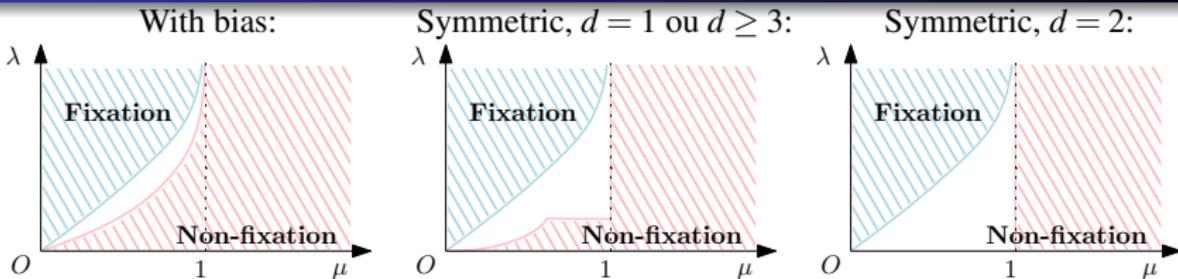
3 Conclusion

In a summary,

- $\mu_c \leq 1$ in very great generality;
- $\mu_c \geq \frac{\lambda}{1+\lambda} > 0$ in great generality (amenable graphs);
- $\mu_c(0^+) = 0$, and $\mu_c < 1$ for all λ in the case of **biased random walks**;
- $\mu_c(0^+) = 0$ (and thus $\mu_c < 1$ for small λ) if $d = 1$ or $d \geq 3$ (or transient graph).



Current state of knowledge (cf. Lecture notes by Leonardo Rolla on arXiv)



Rolla–Sidoravicius '09 $d = 1$

To nearest-neighbours, $\mu_c(\lambda) \geq \frac{\lambda}{1+\lambda}$. For any jump law, $\mu_c(\lambda) > 0$.

Shellef '10, Amir–Gurel–Gurevitch '10 $\forall d \geq 1$

For any jump law, $\mu_c(\lambda) \leq 1$.

Sidoravicius–Teixeira '14 $\forall d \geq 1$

For the simple symmetric random walk, $\mu_c(\lambda) > 0$.

Taggi '15 $d = 1$

For biaised walks, $\mu_c \leq 1 - F(\lambda)$ where $F(\cdot) > 0$ et $F(0^+) = 1$.

+ non-fixation criterion if $d \geq 2$, depending on the law of η_0 .

Rolla–T. '15 $d \geq 2$

For biassed walks, $\mu_c \leq 1 - F(\lambda)$ where $F(\cdot) > 0$ and $F(0^+) = 1$.

Basu–Ganguly–Hoffman '15 $d = 1$

For the simple symmetric random walk: for all $\mu > 0$, $\lambda_c(\mu) > 0$.

Stauffer–Taggi '15 $\forall d \geq 1$

$\mu_c(\lambda) \geq \frac{\lambda}{1+\lambda}$, and $\mu_c(0^+) = 0$ if transient ($d \geq 3$).

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- Mixed use of site-wise and particle-wise constructions
- Particle fixation
- Application to biased walks on \mathbb{Z}^d
- Existence

3 Conclusion

Theorem (Stauffer–Taggi '15)

On any amenable graph, $\mu_c(\lambda) \geq \frac{\lambda}{1+\lambda}$.

Proof. Let $V \subset \mathbb{Z}^d$, finite. Let \mathbb{P}_V denote the law of ARW starting from $\eta_0 \cdot \mathbf{1}_V$, and $\theta_V(x) = \mathbb{P}(\text{after stabilization of } V, \text{ there remains a particle at } x) = \mathbb{P}_V(\eta_\infty(x) = S)$.

$\rightsquigarrow \frac{1}{|V|} \sum_{x \in V} \theta_V(x) = \text{“mean density of particles in } V \text{ after stabilization”} \leq \mu$

Lemme

$$\theta_V(x) \geq \frac{\lambda}{1+\lambda} \mathbb{P}(x \text{ is visiting while stabilizing } V) = \frac{\lambda}{1+\lambda} \mathbb{P}_V(h_\infty(x) \geq 1)$$

Proof of lemma: stabilize V while keeping for last the reading of the (maybe) last instruction at x (if x is ever visited). If x was indeed visited, and the remaining instruction is S (probability $\frac{\lambda}{1+\lambda}$), then we did stabilize V and there remains one particle at x .

Conclusion: If μ is supercritical, then for $x \in B(0, n) \setminus B(0, n - \log n)$,

$$\theta_{B(0, n)}(x) \geq \frac{\lambda}{1+\lambda} \mathbb{P}_{B(0, n)}(h_\infty(x) \geq 1) \geq \frac{\lambda}{1+\lambda} \mathbb{P}_{B(x, \log n)}(h_\infty(x) \geq 1) \rightarrow \frac{\lambda}{1+\lambda},$$

hence, averaging over $B(0, n)$, $\mu \geq \frac{\lambda}{1+\lambda}$.

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- **Non-fixation with $\mu < 1$ in case of bias: statement**
- Mixed use of site-wise and particle-wise constructions
- Particle fixation
- Application to biased walks on \mathbb{Z}^d
- Existence

3 Conclusion

Assume the jump distribution $p(\cdot)$ has a **bias**: for the simple random walk X with jump distribution $p(\cdot)$, for some direction ℓ we have $X_n \cdot \ell \rightarrow +\infty$, a.s..

For $\lambda > 0$, $\mathbf{v} \in \mathbb{R}^d \setminus \{0\}$, if $T_{\mathbf{v}}$ is the time spent by X in $\{x \in \mathbb{Z}^d : x \cdot \mathbf{v} \leq 0\}$,

$$\text{let } F_{\mathbf{v}}(\lambda) = E\left[\frac{1}{(1+\lambda)^{T_{\mathbf{v}}}}\right]$$

$= P(\text{a walk killed at rate } \lambda \text{ in } \{x \cdot \mathbf{v} \leq 0\} \text{ survives forever})$

NB. If $\mathbf{v} \cdot \ell > 0$, then $0 < F_{\mathbf{v}}(\lambda) \rightarrow 1$ as $\lambda \rightarrow 0^+$.

Theorem (Taggi '14)

- Assume $d = 1$. Then $\mu > 1 - F_{\mathbf{v}}(\lambda) \Rightarrow$ non-fixation a.s.
- Assume $d \geq 2$. Then $\mu F_{\mathbf{v}}(\lambda) > \mathbb{P}(\eta_0(0) = 0) \Rightarrow$ non-fixation a.s.

Theorem (Rolla-T. '15)

- Assume $d \geq 2$. Then $\mu > 1 - F_{\mathbf{v}}(\lambda) \Rightarrow$ non-fixation a.s.

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- **Mixed use of site-wise and particle-wise constructions**
- Particle fixation
- Application to biased walks on \mathbb{Z}^d
- Existence

3 Conclusion

The **site-wise viewpoint** (*this is “Diaconis-Fulton” construction*) attaches randomness to *sites*: from finite initial configuration,

- each **site** contains a random stack of i.i.d. *instructions* (“jump to y ”, or “sleep”), and a Poisson clock;
- when a clock rings at a site, apply the top instruction to a particle there;
- each clock runs at speed equal to the number of active particles present at its site (as if each particle read an instruction at rate 1).

↪ we don’t distinguish particles at a site, and get $\eta_t(x) \in \{0, S, 1, 2, \dots\}$.

Crucial properties: abelianness and monotonicity.

The **particle-wise viewpoint** attaches randomness to *particles*:

- each **particle** (x, i) (i -th particle starting at x) has a “life plan” $(X_t^{x,i})_{t \geq 0}$ (that is a continuous-time RW, jumping at rate 1), and a Poisson clock with rate λ ;
- particles move according to their life plan,
- when the clock of a particle rings, if it is alone then its gets asleep, and in this case its clock stops;
- when a particle is awoken, its clock resumes ticking.

↪ we get a whole family of paths $(Y_t^{x,i})_{t \geq 0}$, which carries more information.

Properties: Not the above, but a control on the effect of adding one particle.

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- Mixed use of site-wise and particle-wise constructions
- **Particle fixation**
- Application to biased walks on \mathbb{Z}^d
- Existence

3 Conclusion

Definition

Site fixation occurs when, at each site, there is eventually no active particle.

Particle fixation occurs when each particle is eventually sleeping.

Definition

Site fixation occurs when, at each site, there is eventually no active particle.

Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

$$\begin{aligned}\mu &= \mathbb{E}[\# \text{ particles initially at } 0] \\ &= \mathbb{E}[\# \text{ sites where a particle initially at } 0 \text{ settles}] \\ &= \sum_v \mathbb{P}(\text{some particle initially at } 0 \text{ settles at } v) \\ &= \sum_v \mathbb{P}(\text{some particle initially at } -v \text{ settles at } 0) \\ &= \mathbb{E}[\# \text{ particles settling at } 0] \leq 1.\end{aligned}$$

Definition

Site fixation occurs when, at each site, there is eventually no active particle.

Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

$$\begin{aligned}\mu &= \mathbb{E}[\# \text{ particles initially at } 0] \\ &= \mathbb{E}[\# \text{ sites where a particle initially at } 0 \text{ settles}] \\ &= \sum_v \mathbb{P}(\text{some particle initially at } 0 \text{ settles at } v) \\ &= \sum_v \mathbb{P}(\text{some particle initially at } -v \text{ settles at } 0) \\ &= \mathbb{E}[\# \text{ particles settling at } 0] \leq 1.\end{aligned}$$

Theorem (Amir–Gurel-Gurevich '10)

Site fixation implies particle fixation. Thus, they are equivalent. And $\mu_c \leq 1$.

(for i.i.d. initial conditions, 0-1 laws hold for site and particle fixation)

A non-fixation condition

- Direct technique for proving non-fixation: proving that arbitrarily many particles *visit precisely* the site o .
- In fact, proving that a positive density of particles *exit a box* is sufficient.

For $n \in \mathbb{N}$, let $V_n = \{-n, \dots, n\}^d$, denote $\mathbb{P}_{[V_n]}$ the law of the ARW restricted to V_n (i.e. particles freeze outside), and M_n the number of particles exiting V_n .

Proposition

$$\limsup_n \frac{\mathbb{E}_{[V_n]}[M_n]}{|V_n|} > 0 \quad \Rightarrow \quad (\text{particle}) \text{ non-fixation, a.s.}$$

A non-fixation condition

- Direct technique for proving non-fixation: proving that arbitrarily many particles *visit precisely* the site o .
- In fact, proving that a positive density of particles *exit a box* is sufficient.

For $n \in \mathbb{N}$, let $V_n = \{-n, \dots, n\}^d$, denote $\mathbb{P}_{[V_n]}$ the law of the ARW restricted to V_n (i.e. particles freeze outside), and M_n the number of particles exiting V_n .

Proposition

$$\limsup_n \frac{\mathbb{E}_{[V_n]}[M_n]}{|V_n|} > 0 \quad \Rightarrow \quad (\text{particle}) \text{ non-fixation, a.s.}$$

Idea of proof:

Let $\tilde{V}_n = V_n \setminus \{0\}$. Then, if $\eta_0(x) \leq K$ a.s. (to simplify)

$$\begin{aligned} \mathbb{E}[M_n] &\leq \mu|V_n \setminus \tilde{V}_n| + \mathbb{E}[\text{number of particles of } \tilde{V}_n \text{ that quit } V_n] \\ &\leq o(|V_n|) + |\tilde{V}_n|K\mathbb{P}(\text{particle } Y^{0,1} \text{ reaches distance } \log n) \\ &\sim |V_n|K\mathbb{P}(\text{particle } Y^{(0,1)} \text{ doesn't fixate}) \end{aligned}$$

by using translation invariance under \mathbb{P} . Hence

$$\mathbb{P}(Y^{0,1} \text{ does not fixate}) \geq \frac{1}{K} \limsup_n \frac{\mathbb{E}[M_n]}{|V_n|}$$

A non-fixation condition

- Direct technique for proving non-fixation: proving that arbitrarily many particles *visit precisely* the site o .
- In fact, proving that a positive density of particles *exit a box* is sufficient.

For $n \in \mathbb{N}$, let $V_n = \{-n, \dots, n\}^d$, denote $\mathbb{P}_{[V_n]}$ the law of the ARW restricted to V_n (i.e. particles freeze outside), and M_n the number of particles exiting V_n .

Proposition

$$\limsup_n \frac{\mathbb{E}_{[V_n]}[M_n]}{|V_n|} > 0 \quad \Rightarrow \quad (\text{particle}) \text{ non-fixation, a.s.}$$

Idea of proof:

Let $\tilde{V}_n = V_n - \log n$. Then, if $\eta_0(x) \leq K$ a.s. (to simplify)

$$\begin{aligned} \mathbb{E}[M_n] &\leq \mu|V_n \setminus \tilde{V}_n| + \mathbb{E}[\text{number of particles of } \tilde{V}_n \text{ that quit } V_n] \\ &\leq o(|V_n|) + |\tilde{V}_n|K\mathbb{P}(\text{particle } Y^{0,1} \text{ reaches distance } \log n) \\ &\sim |V_n|K\mathbb{P}(\text{particle } Y^{(0,1)} \text{ doesn't fixate}) \end{aligned}$$

by using translation invariance under \mathbb{P} . Hence

$$\mathbb{P}(Y^{0,1} \text{ does not fixate}) \geq \frac{1}{K} \limsup_n \frac{\mathbb{E}[M_n]}{|V_n|}$$

↔ it remains to justify $\mathbb{E}[M_n] \geq \mathbb{E}_{[V_n]}[M_n]$, which needs an extension of monotonicity.

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- Mixed use of site-wise and particle-wise constructions
- Particle fixation
- **Application to biased walks on \mathbb{Z}^d**
- Existence

3 Conclusion

Let $v \in \mathbb{R}^d$ and assume $\mu > 1 - F_v(\lambda)$.

Consider ARW restricted to V_n (particles freeze outside), with site-wise construction.

Let us devise a **toppling strategy** (i.e. a choice of clocks) that throws a positive density of particles outside of V_n , i.e., we describe the order of sites in which we read instructions – which is irrelevant for the value of M_n , by **abelianness**.

Preliminary step: levelling

Topple sites in V_n until all particles are either alone or outside V_n .

Let $\mathbf{v} \in \mathbb{R}^d$ and assume $\mu > 1 - F_{\mathbf{v}}(\lambda)$.

Consider ARW restricted to V_n (particles freeze outside), with site-wise construction.

Let us devise a **toppling strategy** (i.e. a choice of clocks) that throws a positive density of particles outside of V_n , i.e., we describe the order of sites in which we read instructions – which is irrelevant for the value of M_n , by **abelianness**.

Preliminary step: levelling

Topple sites in V_n until all particles are either alone or outside V_n .

Label $V_n = \{x_1, \dots, x_r\}$ so that $x_1 \cdot \mathbf{v} \leq \dots \leq x_r \cdot \mathbf{v}$.

Main step

For $i = 1, \dots, r$, if there is a particle in x_i , then topple this particle, and topple it again, and so on until either

- it exits V_n ,
- it reaches an empty site in $\{x_{i+1}, \dots, x_r\}$, or
- it falls asleep on $\{x_1, \dots, x_i\}$.

NB. By induction, there is always at most one particle at x_i .

Let $\mathbf{v} \in \mathbb{R}^d$ and assume $\mu > 1 - F_{\mathbf{v}}(\lambda)$.

Consider ARW restricted to V_n (particles freeze outside), with site-wise construction.

Let us devise a **toppling strategy** (i.e. a choice of clocks) that throws a positive density of particles outside of V_n , i.e., we describe the order of sites in which we read instructions – which is irrelevant for the value of M_n , by **abelianness**.

Preliminary step: levelling

Topple sites in V_n until all particles are either alone or outside V_n .

Label $V_n = \{x_1, \dots, x_r\}$ so that $x_1 \cdot \mathbf{v} \leq \dots \leq x_r \cdot \mathbf{v}$.

Main step

For $i = 1, \dots, r$, if there is a particle in x_i , then topple this particle, and topple it again, and so on until either

- it exits V_n ,

- it reaches an empty site in $\{x_{i+1}, \dots, x_r\}$, or
- it falls asleep on $\{x_1, \dots, x_i\}$.

NB. By induction, there is always at most one particle at x_i .

The probability of the last case is $\leq 1 - F_{\mathbf{v}}(\lambda)$, hence in the end (for $i = r$), this procedure has ‘left behind’ at most $|V_n|(1 - F_{\mathbf{v}}(\lambda))$ particles in average:

$$\mathbb{E}_{[V_n]}[M_n] \geq \mu |V_n| - (1 - F_{\mathbf{v}}(\lambda))|V_n|.$$

1 Introduction of the model, results

- ARW: Definition of the model
- Motivations
- Results

2 Elements of proofs

- Fixation for $\mu \leq \frac{\lambda}{1+\lambda}$
- Non-fixation with $\mu < 1$ in case of bias: statement
- Mixed use of site-wise and particle-wise constructions
- Particle fixation
- Application to biased walks on \mathbb{Z}^d
- **Existence**

3 Conclusion

Problem: **existence** of ARW with infinitely many particles?

→ for the usual process $(\eta_t(\cdot))_{t \geq 0}$ on $\{0, S, 1, \dots\}^{\mathbb{Z}^d}$, the standard theory from particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process)

→ for particle-wise process, non standard. (Amir and Gurel-Gurevich *assume* it)

Actually, we show that the previous particle-wise construction has a limit as more and more particles are introduced, and its law is translation invariant.

Construction of particle-wise process in infinite volume

Problem: **existence** of ARW with infinitely many particles?

→ for the usual process $(\eta_t(\cdot))_{t \geq 0}$ on $\{0, S, 1, \dots\}^{\mathbb{Z}^d}$, the standard theory from particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process)

→ for particle-wise process, non standard. (Amir and Gurel-Gurevich *assume* it)

Actually, we show that the previous particle-wise construction has a limit as more and more particles are introduced, and its law is translation invariant.

Principle: follow and control spread of influence.

For η_0, X, \mathcal{P} , particle (x, i) **has an influence on** $z \in \mathbb{Z}^d$ **during** $[0, t]$ if removing that particle changes the process $\bar{\eta}|_{[0,t] \times \{z\}}(\eta_0, X, \mathcal{P})$.

Lemme

Let $Z_t^{x,i}(\eta_0, X, \mathcal{P})$ be the set of sites influenced by (x, i) before t .

There exists a branching random walk \tilde{Z} on \mathbb{Z}^d such that, for any finite config. π ,

$$Z_t^{x,i}(\pi, X, \mathcal{P}) \subset_{\text{st.}} x + \tilde{Z}_t,$$

$$\text{et } E[|\tilde{Z}_t|] \leq e^{ct}.$$

Assume $\sup_x \mathbb{E}[\eta_0(x)] < \infty$. Then the construction of ARW by addition of particles is a.s. well-defined, and translation invariant.

Extensions of parts of the proof, of possible independent interest:

- The non-fixation condition naturally extends to amenable graphs.
- The particle-wise construction extends to transitive graphs for which the mass transport principle holds (unimodular graphs).

Most striking open questions:

- in the symmetric case, for $d = 2$, non-fixation for some $\lambda > 0$ and $\mu < 1$?
- And for large λ and some $\mu < 1$ in $d = 1$ or $d \geq 3$?
- Study of critical case (non-fixation?), link with self-organized criticality,...