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Activated Random Walks (ARW) — Quick presentation

Dynamics: Particles evolve in continuous time on Zd , and can be either

active, in state A: jump at rate 1 according to law p(·), independently from each
other (random walks);

passive (sleeping), in state S: do not move.

Two kinds of mutations/interactions happen:

A→ S at rate λ : each particle gets asleep at rate λ (independently);

A+S→ 2A immediately: active particles awake the others on same site.

NB. Mutations A→ S are only effective when the particle A is alone
⇒ On each site, there is either nothing, one S, or any number of A particles.
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Illustration of the 2D case

Dynamics for a finite number of
particles
At each time, a uniformly chosen active
particle may

→ Jump, with prob. 1
1+λ

, with law p(·),
(and wake up hit particles)
or
→ Attempt to deactivate, with prob. λ

1+λ
.
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Illustration of the 2D case

Dynamics for a finite number of
particles
At each time, a uniformly chosen active
particle may

→ Jump, with prob. 1
1+λ

, with law p(·),
(and wake up hit particles)
or
→ Attempt to deactivate, with prob. λ

1+λ
.

After a while, every particule is passive:
configuration is stable.
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Illustration of the 1D case: space-time representation
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Définition of the model

Dynamics: Particles evolve in continuous time on Zd , and can be either

active, in state A: jump at rate 1 according to law p(·), independently from each
other (random walks);

passive (sleeping), in state S: do not move.

Two kinds of mutations/interactions happen:

A→ S at rate λ : each particle gets asleep at rate λ (independently);

A+S→ 2A immediately: active particles awake the others on same site.

NB. Mutations A→ S are only effective when the particle A is alone
⇒ On each site, there is either nothing, one S, or any number of A particles.

Parameters:
jump distribution p(·) on Zd

sleeping rate λ ∈ (0,∞)

initial configuration of A particles (finite support, or i.i.d. in general).

Behaviors of interest:
fixation: in any finite box, activity vanishes eventually;

non-fixation: in any finite box, activity goes on forever.
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Motivations: 1. Phase transition

Let µ denote the initial density of particles (for i.i.d. initial configuration).
A phase transition is expected to happen: ∃µc(λ ) ∈ (0,1) s.t.

for µ < µc(λ ), a.s. fixation;
for µ > µc(λ ), a.s. non-fixation.

Furthermore, λ 7→ µc(λ ) is increasing, µc(0+) = 0 and µc(∞) = 1.
Or also: for µ ≥ 1 then a.s. fixation and, for µ < 1, ∃λc(µ) ∈ (0,∞) s.t.

for λ > λc(µ), a.s. fixation;
for λ < λc(µ), a.s. non-fixation.

Furthermore, µ 7→ λc(µ) is increasing, λc(0+) = 0 and λc(1−) = +∞.

λ

µO 1

Fixation

Non-fixation

- Existence of µc and λc by monotonicity, within each increasing family of initial
distributions (Poisson(µ), or Bernoulli(µ) for example).
- More difficult, and partly conjectural: nontrivial bounds, limits, and universality of
µc, λc with respect to initial distribution (but not with respect to p(·))
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Motivations: 2. Self-Organized Criticality (physics)

ARW relate to the sandspile model, and have also been introduced as an instance of
self-organized criticality: spontaneous (i.e. without tuning a parameter) critical
behavior (polynomial decrease of correlations...). To obtain this, one “progressively
augments the initial configutation”:
Assume λ fixed. Inside a finite box,

Drop a new particle at random,

Stabilize the configuration by running the dynamics inside the box and by
freezing particles that exit,

and repeat.
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↪→ Dynamics reach a stationary regime which, in large volume, should satisfy SOC.
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Motivations: 3. Connection with sandpiles and related properties

Abelian sandpile model

Integer-valued configuration η : Zd → N (number of grains of sand)
Deterministic rule of toppling at x ∈ Zd:
if η(x)≥ 2d (η is said to be “unstable at x”), one defines

Txη = η−2dδx + ∑
y∼x

δy.

If η(x)< 2d for all x ∈ Zd , η is called stable.

Abelian property

For all x 6= y where η is unstable, TxTyη = TyTxη .

If a sequence of topplings leads to a stable configuration, then the latter does not
depend on the toppling sequence, and neither does the number of topplings.

Monotonicity: if η ≤ η ′, stabilizing η ′ requires more topplings (at each site)
than stabilizing η .

Variant: stochastic sandpiles, where each grain is sent with law p(·).
→ abelian property is preserved provided a stack of instructions is given at each site,
to be used by any particle sitting there (Diaconis-Fulton construction, cf. DLA)
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Diaconis-Fulton coupling for ARW

Let η0 ∈ NZd
be a finitely supported configuration.

Let P = (Px)x∈Zd be i.i.d. Poisson processes of intensity 1 (clocks).
Let I = (Ix,n ; n ∈ N)x∈Zd be i.i.d. stacks of i.i.d. instructions in Zd ]{S}, s.t.

Ix,n =

{
y with probability p(y)

1+λ
, for all y ∈ Zd; (jump to x+ y)

S with probability λ

1+λ
. (attempt to sleep)

“Diaconis-Fulton coupling” is a construction of the ARW from η0 using I and P:
Clocks run at speed equal to number of active particles on each site;
When the clock at x rings, we apply to x the first unused instruction at x.
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When the clock at x rings, we apply to x the first unused instruction at x.

This actually defines two processes: (ηt)t≥0 (ARW) and (ht)t≥0 (odometer) where
- ηt(x) is the number of particles at x at time t (or ‘S’ if one sleepy particle);
- ht(x) counts how many instructions have been read at x by time t.
 η and h are functions of (η0,I ,P) and such that:

Lemma
1 (Abelian property) The final state η∞,h∞ does not depend on P .
2 (Monotonicity by addition of particles) For all t ≥ 0, ht increases with η0.
3 (Monotonicity by removal of S) For all t ≥ 0, ht increases when some ‘S’

instructions are replaced by neutral instructions (i.e. 0).

For i.i.d. η0, P(non-fixation) = P
(
h∞(0; η0 ·1V ,P,I )↗+∞ as V↗ Zd) ∈ {0,1}
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Current state of knowledge (cf. Lecture notes by Leonardo Rolla on arXiv)

In a summary,

µc ≤ 1 in very great generality;

µc ≥ λ

1+λ
> 0 in great generality (amenable graphs);

µc(0+) = 0, and µc < 1 for all λ in the case of biased random walks;

µc(0+) = 0 (and thus µc < 1 for small λ ) if d = 1 or d ≥ 3 (or transient graph).

With bias: Symmetric, d = 1 ou d ≥ 3: Symmetric, d = 2:
λ

µO 1

Fixation

Non-fixation

λ

µO 1

Fixation

Non-fixation

λ

µO 1

Fixation

Non-fixation
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λ

µO 1

Fixation

Non-fixation

λ

µO 1

Fixation

Non-fixation

λ

µO 1

Fixation

Non-fixation

Rolla–Sidoravicius ’09 d = 1
To nearest-neighbours, µc(λ )≥ λ

1+λ
. For any jump law, µc(λ )> 0.

Shellef ’10, Amir–Gurel-Gurevitch ’10 ∀d ≥ 1
For any jump law, µc(λ )≤ 1.

Sidoravicius–Teixeira ’14 ∀d ≥ 1
For the simple symmetric random walk, µc(λ )> 0.

Taggi ’15 d = 1
For biaised walks, µc ≤ 1−F(λ ) where F(·)> 0 et F(0+) = 1.
+ non-fixation criterion if d ≥ 2, depending on the law of η0.

Rolla–T. ’15 d ≥ 2
For biased walks, µc ≤ 1−F(λ ) where F(·)> 0 and F(0+) = 1.

Basu–Ganguly–Hoffman ’15 d = 1
For the simple symmetric random walk: for all µ > 0, λc(µ)> 0.

Stauffer–Taggi ’15 ∀d ≥ 1
µc(λ )≥ λ

1+λ
, and µc(0+) = 0 if transient (d ≥ 3).
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Fixation for µ ≤ λ

1+λ

Theorem (Stauffer–Taggi ’15)

On any amenable graph, µc(λ )≥ λ

1+λ
.

Proof. Let V ⊂ Zd , finite. Let PV denote the law of ARW starting from η0 ·1V , and
θV(x) = P(after stabilization of V , there remains a particle at x) = PV(η∞(x) = S).

 
1
|V| ∑

x∈V
θV(x) = “mean density of particles in V after stabilization”≤ µ

Lemme

θV(x)≥ λ

1+λ
P(x is visiting while stabilizing V) = λ

1+λ
PV(h∞(x)≥ 1)

Proof of lemma: stabilize V while keeping for last the reading of the (maybe) last
instruction at x (if x is ever visited). If x was indeed visited, and the remaining
instruction is S (probability λ

1+λ
), then we did stabilize V and there remains one

particle at x.
Conclusion: If µ is supercritical, then for x ∈ B(0,n)\B(0,n− logn),

θB(0,n)(x)≥
λ

1+λ
PB(0,n)(h∞(x)≥ 1)≥ λ

1+λ
PB(x,logn)(h∞(x)≥ 1)→ λ

1+λ
,

hence, averaging over B(0,n), µ ≥ λ

1+λ
.
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Case of biased walks – Result

Assume the jump distribution p(·) has a bias: for the simple random walk X with
jump distribution p(·), for some direction ` we have Xn · `→+∞,a.s..

For λ > 0, v ∈ Rd \{0}, if Tv is the time spent by X in {x ∈ Zd : x · v≤ 0},

let Fv(λ ) = E
[ 1
(1+λ )Tv

]
= P(a walk killed at rate λ in {x · v≤ 0} survives forever)

NB. If v · ` > 0, then 0 < Fv(λ )−→ 1 as λ → 0+.

Theorem (Taggi ’14)

Assume d = 1. Then µ > 1−F1(λ )⇒ non-fixation a.s.

Assume d ≥ 2. Then µFv(λ )> P(η0(0) = 0)⇒ non-fixation a.s.

Theorem (Rolla-T. ’15)

Assume d ≥ 2. Then µ > 1−Fv(λ )⇒ non-fixation a.s.
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Site-wise vs. particle-wise

The site-wise viewpoint (this is “Diaconis-Fulton” construction) attaches
randomness to sites: from finite initial configuration,

each site contains a random stack of i.i.d. instructions (“jump to y”, or “sleep”),
and a Poisson clock;

when a clock rings at a site, apply the top instruction to a particle there;

each clock runs at speed equal to the number of active particles present at its site
(as if each particle read an instruction at rate 1).

↪→ we don’t distinguish particles at a site, and get ηt(x) ∈ {0,S,1,2, . . .}.
Crucial properties: abelianness and monotonicity.

The particle-wise viewpoint attaches randomness to particles:

each particle (x, i) (i-th particle starting at x) has a “life plan” (Xx,i
t )t≥0 (that is a

continuous-time RW, jumping at rate 1), and a Poisson clock with rate λ ;

particles move according to their life plan,

when the clock of a particle rings, if it is alone then its gets asleep, and in this
case its clock stops;

when a particle is awoken, its clock resumes ticking.

↪→ we get a whole family of paths (Yx,i
t )t≥0, which carries more information.

Properties: Not the above, but a control on the effect of adding one particle.
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Site fixation vs. particle fixation

Definition

Site fixation occurs when, at each site, there is eventually no active particle.
Particle fixation occurs when each particle is eventually sleeping.

Example of use. Assume particles fixate a.s., then

µ = E[# particles initially at 0]

= E[# sites where a particle initially at 0 settles]

= ∑
v
P(some particle initially at 0 settles at v)

= ∑
v
P(some particle initially at −v settles at 0)

= E[# particles settling at 0]≤ 1.

Theorem (Amir–Gurel-Gurevich ’10)

Site fixation implies particle fixation. Thus, they are equivalent. And µc ≤ 1.

(for i.i.d. initial conditions, 0-1 laws hold for site and particle fixation)
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A non-fixation condition

• Direct technique for proving non-fixation: proving that arbitrarily many particles
visit precisely the site o.
• In fact, proving that a positive density of particles exit a box is sufficient.
For n ∈ N, let Vn = {−n, . . . ,n}d , denote P[Vn] the law of the ARW restricted to Vn
(i.e. particles freeze outside), and Mn the number of particles exiting Vn.

Proposition

limsup
n

E[Vn][Mn]

|Vn|
> 0 ⇒ (particle) non-fixation, a.s.

Idea of proof:
Let Ṽn = Vn−logn. Then, if η0(x)≤ K a.s. (to simplify)

E[Mn]≤ µ|Vn \ Ṽn|+E[number of particles of Ṽn that quit Vn]

≤ o(|Vn|)+ |Ṽn|KP(particle Y0,1 reaches distance logn)

∼ |Vn|KP(particle Y(0,1) doesn’t fixate)

by using translation invariance under P. Hence

P(Y0,1 does not fixate)≥ 1
K

limsup
n

E[Mn]

|Vn|
 it remains to justify E[Mn]≥ E[Vn][Mn], which needs an extension of monotonicity.
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Non-fixation for biased ARW on Zd

Let v ∈ Rd and assume µ > 1−Fv(λ ).
Consider ARW restricted to Vn (particles freeze outside), with site-wise construction.
Let us devise a toppling strategy (i.e. a choice of clocks) that throws a positive
density of particles outside of Vn, i.e., we describe the order of sites in which we read
instructions – which is irrelevant for the value of Mn, by abelianness.

Preliminary step: levelling

Topple sites in Vn until all particles are either alone or outside Vn.

Label Vn = {x1, . . . ,xr} so that x1 · v≤ ·· · ≤ xr · v.

Main step

For i = 1, . . . ,r, if there is a particle in xi, then topple this particle, and topple it again,
and so on until either • it exits Vn,

• it reaches an empty site in {xi+1, . . . ,xr}, or
• it falls asleep on {x1, . . . ,xi}.

NB. By induction, there is always at most one particle at xi.

The probability of the last case is ≤ 1−Fv(λ ), hence in the end (for i = r), this
procedure has ‘left behind’ at most |Vn|(1−Fv(λ )) particles in average:

E[Vn][Mn]≥ µ|Vn|− (1−Fv(λ ))|Vn|.
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Construction of particle-wise process in infinite volume

Problem: existence of ARW with infinitely many particles?
→ for the usual process (ηt(·))t≥0 on {0,S,1, . . .}Zd

, the standard theory from
particle systems adapt (cf. Liggett, and Andjel on Zero-Range-Process)
→ for particle-wise process, non standard. (Amir and Gurel-Gurevich assume it)
Actually, we show that the previous particle-wise construction has a limit as more
and more particles are introduced, and its law is translation invariant.

Principle: follow and control spread of influence.

For η0, X, P , particle (x, i) has an influence on z ∈ Zd during [0, t] if removing that
particle changes the process η |[0,t]×{z}(η0,X,P).

Lemme

Let Zx,i
t (η0,X,P) be the set of sites influenced by (x, i) before t.

There exists a branching random walk Z̃ on Zd such that, for any finite config. π ,

Zx,i
t (π,X,P)⊂st. x+ Z̃t,

et E[|Z̃t|]≤ ect.

Assume supxE[η0(x)]< ∞. Then the construction of ARW by addition of particles is
a.s. well-defined, and translation invariant.
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Conclusion

Extensions of parts of the proof, of possible independent interest:

The non-fixation condition naturally extends to amenable graphs.

The particle-wise construction extends to transitive graphs for which the mass
transport principle holds (unimodular graphs).

Most striking open questions:

in the symmetric case, for d = 2, non-fixation for some λ > 0 and µ < 1?

And for large λ and some µ < 1 in d = 1 or d ≥ 3?

Study of critical case (non-fixation?), link with self-organized criticality,...
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