A random string near a wall

Lorenzo Zambotti (LPMA, Univ. Paris 6)

13th November 2015, Bristol

< A > < E

Symmetric simple random walk

 $(Y_i)_{i\geq 1}$ i.i.d. sequence with $\mathbb{P}(Y_i = 1) = \mathbb{P}(Y_i = -1) = 1/2$

 $S_0 := a \in \mathbb{Z}, \qquad S_{n+1} = S_n + Y_{n+1},$

 $(S_n)_{n\geq 0}$ defines a Markov chain with valued in \mathbb{Z} .

イロン 不良 とくほどう

Symmetric simple random walk with reflection

$$X_{n+1} := \begin{cases} X_n + Y_{n+1} & \text{if } X_n > 0 \\ 1 & \text{if } X_n = 0. \end{cases}$$

This defines a Markov chain with values in $\mathbb{Z}_+ = \{0, 1, \ldots\}$.

イロン 不良 とくほどう

크

Absolute value of the SSRW

Let $Z_n := |S_n|$, with $S_0 = a \ge 0$. Although this is not obvious at first sight, $(Z_n)_{n\ge 0}$ is also a Markov chain:

$$Z_{n+1} = \begin{cases} Z_n + W_{n+1} & \text{if } Z_n > 0 \\ \\ 1 & \text{if } Z_n = 0, \end{cases}$$

where $W_{n+1} := Y_{n+1}(\mathbb{1}_{S_n \ge 0} - \mathbb{1}_{S_n < 0}).$

It is easy to see that $(W_i)_{i\geq 1}$ is a copy of $(Y_i)_{i\geq 1}$ and then $(Z_n)_{n\geq 0}$ and $(X_n)_{n\geq 0}$ (for the same fixed *a*) have the same law.

Discrete interfaces

We define now a Markov chain with values in discrete paths. We fix $N \in \mathbb{N}$ and we define the state space

$$E_N := \{ w \in \mathbb{Z}^{2N} : w(0) = w(2N) = 0, \\ |w(i) - w(i-1)| = 1, \ \forall \ i = 1, \dots, 2N \}.$$

Figure: A typical path in E_N

The free evolution

Then we define a Markov chain with values in E_N as follows: we define a map $F : E_N \times \{1, \dots, 2N - 1\} \to E_N$, $F(w, j) = \hat{w} \in E_N$, where

$$\hat{w}_{i} = \begin{cases} w_{i} + 2 & \text{if } i = j \text{ and } w_{i-1} = w_{i+1} > w_{i} \\ w_{i} - 2 & \text{if } i = j \text{ and } w_{i-1} = w_{i+1} < w_{i} \\ w_{i} & \text{otherwise.} \end{cases}$$

We let $(U_n)_{n\geq 1}$ be an i.i.d. sequence of uniform random variables on $\{1, \ldots, 2N-1\}$; then

$$e_{n+1} := F(e_n, U_{n+1}), \qquad e_0 \in E_N.$$

The free evolution

Then we define a Markov chain with values in E_N as follows: we define a map $F : E_N \times \{1, \dots, 2N - 1\} \to E_N$, $F(w, j) = \hat{w} \in E_N$, where

$$\hat{w}_{i} = \begin{cases} w_{i} + 2 & \text{if } i = j \text{ and } w_{i-1} = w_{i+1} > w_{i} \\ w_{i} - 2 & \text{if } i = j \text{ and } w_{i-1} = w_{i+1} < w_{i} \\ w_{i} & \text{otherwise.} \end{cases}$$

We let $(U_n)_{n\geq 1}$ be an i.i.d. sequence of uniform random variables on $\{1, \ldots, 2N-1\}$; then

$$e_{n+1} := F(e_n, U_{n+1}), \qquad e_0 \in E_N.$$

We denote the transition matrix of $(e_n)_{n\geq 0}$ by

 $P(x, y) = \mathbb{P}(F(x, U_1) = y).$

It is easy to see that P(x, y) = P(y, x) and therefore the uniform measure on E_N is invariant and reversible for P.

This is in fact the unique probability invariant measure of $(e_n)_{n\geq 0}$ by the following

Lemma

The Markov chain $(e_n)_{n\geq 0}$ *is aperiodic and irreducible.*

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

The reflected interface

Let us now add reflection to our discrete interface. We set

$$E_N^+ := \{ w \in E_N : w(i) \ge 0, \forall i = 0, \dots, 2N \}.$$

Figure: A typical path in E_N^+

Reflection means now suppression of transitions which would let e_n^+ take negative values:

The reflected interface

Let us now add reflection to our discrete interface. We set

$$E_N^+ := \{ w \in E_N : w(i) \ge 0, \forall i = 0, \dots, 2N \}.$$

Figure: A typical path in E_N^+

Reflection means now suppression of transitions which would let e_n^+ take negative values:

The reflected interface

The Markov evolution in E_N^+ is defined as follows: $F^+: E_N^+ \times \{1, \dots, 2N-1\} \to E_N^+$

$$F^+(w,j) = \begin{cases} F(w,j) & \text{if } F(w,j) \in E_N^+ \\ w & \text{otherwise.} \end{cases}$$

Then our E_N^+ -valued Markov chain $(e_n^+)_{n\geq 0}$ is defined by

$$e_{n+1}^+ := F^+(e_n^+, U_{n+1}), \qquad e_0^+ \in E_N^+.$$

Lemma

The Markov chain $(e_n^+)_{n\geq 0}$ has a unique invariant probability measure, the uniform probability measure on E_N^+ , which is furthermore reversible for $(e_n^+)_{n\geq 0}$.

We see that the reflection for the dynamics is equivalent to a conditioning for the invariant measure.

Let $|e_n|$ be the absolute value of the free interface $(e_n)_{n\geq 0}$. If $(e_n)_{n\geq 0}$ is stationary then the distribution of $|e_0|$ is a probability measure on E_N^+

$$\mathbb{P}(|e_0| = w) \propto \#\{w' \in E_N : |w'| = w\} = 2^{L(w)}$$
$$L(w) := \sum_{i=1}^{2N} \mathbb{1}_{(w_i=0)}, \qquad w \in E_N^+.$$

In other words L(w) is the number of excursions of w.

On the other hand, if $(e_n^+)_{n\geq 0}$ is stationary then the law of e_0^+ is uniform on E_N^+ , so that e_0^+ and $|e_0|$ have different laws.

Moreover $(|e_n|)_{n\geq 0}$ is not Markovian.

同下 (目下)(日下)

Scaling limits

Let $(S_n)_{n\geq 0}$ be the SSRW with $S_0 := 0$ and

$$B_t^N := rac{1}{\sqrt{N}} S_{\lfloor Nt
floor}, \qquad t \geq 0.$$

By Donsker's theorem $(B_t^N)_{t\geq 0} \Longrightarrow (B_t)_{t\geq 0}$ as $N \to +\infty$.

Under the same scaling the reflecting SSRW $(X_n)_{n\geq 0}$ converges to the reflecting Brownian motion $(\rho_t)_{t\geq 0}$.

This process is given by a stochastic differential equation

$$\mathrm{d}\rho_t = \mathrm{d}B_t + \mathrm{d}\ell_t, \qquad \rho_t \ge 0, \quad \mathrm{d}\ell_t \ge 0, \quad \int_0^\infty \rho_t \,\mathrm{d}\ell_t = 0,$$

• $t \mapsto (\rho_t, \ell_t)$ is continuous, ρ_t is non-negative

•
$$\ell_0 = 0, \, \ell_s \leq \ell_t \text{ for } s \leq t$$

• $\operatorname{supp}(\mathrm{d}\ell_t) \subset \{t \ge 0 : \rho_t = 0\}.$

The measure $d\ell_t$ is the reflection term.

Scaling of the free interface

Let us first consider the stationary version of $(e_n)_{n\geq 0}$ and define

$$v_N(t,x) = rac{1}{\sqrt{2N}} e_{\lfloor 4N^2t \rfloor}(\lfloor 2Nx \rfloor), \qquad t \ge 0, \ x \in [0,1].$$

Figure: A typical path of $v_N(t, \cdot)$ for any $t \ge 0$ when N is large

As $N \to +\infty$, $v_N \Longrightarrow (v(t, x), t \ge 0, x \in [0, 1])$, stationary solution to a stochastic partial differential equation (SPDE)

$$\begin{cases} \frac{\partial v}{\partial t} = \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + W, \\ v(t,0) = v(t,1) = 0, \quad t \ge 0, \\ v(0,x) = v_0(x), \quad x \in [0,1]. \end{cases}$$

Here *W* is a space-time white noise.

Scaling of the reflected interface

Let us now consider the stationary version of $(e_n^+)_{n\geq 0}$ and define

$$u_N(t,x) = \frac{1}{\sqrt{2N}} e^+_{\lfloor 4N^2t \rfloor}(\lfloor 2Nx \rfloor), \qquad t \ge 0, \ x \in [0,1].$$

Figure: A typical path of $u_N(t, \cdot)$ for any $t \ge 0$ when N is large

A SPDE with reflection

As $N \to +\infty$, $u_N \Longrightarrow (u(t, x), t \ge 0, x \in [0, 1])$, t, that we are going to study in detail from chapter 5 on and is a stationary solution to a SPDE with reflection (Funaki-Olla, Z., Etheridge-Labbé)

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + W + \eta \\ u(0, x) = u_0(x), \quad u(t, 0) = u(t, 1) = 0 \\ u \ge 0, \, \mathrm{d}\eta \ge 0, \, \int u \, \mathrm{d}\eta = 0. \end{cases}$$

Here (u, η) is a random pair that consists of

- ► a continuous non-negative functions $u(t, x) \ge 0$
- a Radon measure η on $]0, +\infty[\times]0, 1[,$

such that the support of η is contained in $\{(t,x) : u(t,x) = 0\}$.

▲□→ ▲ □→ ▲ □→ -

For all $t \ge 0$ the typical profile of $u(t, \cdot)$ is positive on]0, 1[. Where does the reflection act?

▲掃♪ ▲屋♪ ▲屋♪

For all $t \ge 0$ the typical profile of $u(t, \cdot)$ is positive on]0, 1[. Where does the reflection act?

This apparent paradox is solved if we formulate the sentence more precisely: the correct result is that for all $t \ge 0$, a.s. $u(t, \cdot) > 0$ on]0, 1[:

 $\forall t > 0, \qquad \mathbb{P}(\exists x \in]0, 1[: u(t, x) = 0) = 0.$

However this does not exclude the existence, with positive probability, of exceptional times $t \ge 0$ and $x \in (0, 1)$ such that u(t, x) = 0:

 $\mathbb{P}(\exists t > 0, x \in]0, 1[: u(t, x) = 0) > 0.$

▲帰♪ ▲ 臣♪ ▲ 臣♪

The contact set

The next question is: what can be said about the contact set

 $\mathscr{Z} := \{(t,x) : t > 0, x \in]0, 1[, u(t,x) = 0\}.$

After proving that with positive probability *u* visits 0, one can ask:

- what is the typical behavior at exceptional times $t \ge 0$?
- ► That is, if t > 0 is such that there exists x ∈]0, 1[so that u(t, x) = 0, then how many such points x exist?

Figure: How many *x* such that u(t, x) = 0: infinitely many?

Figure: How many *x* such that u(t, x) = 0: finitely many?

Figure: How many *x* such that u(t, x) = 0: just one? or two? or three?

▲御▶ ▲ 副▶

< ≞ >

Proposition

Let $(B_t)_{t\geq 0}$ be a standard BM and $x \geq 0$. Then there exists a unique couple $(\rho_t, \ell_t)_{t\geq 0}$ of continuous real processes such that

$$\begin{cases} \rho_t = x + B_t + \int_0^t f(\rho_s) \, \mathrm{d}s + \ell_t, & t \ge 0\\ \ell_0 = 0, & (1)\\ \rho_t \ge 0, & \mathrm{d}\ell_t \ge 0, \int_0^\infty \rho_t \, \mathrm{d}\ell_t = 0. \end{cases}$$

同ト・モト・モト

If $f \equiv 0$ we call ρ the reflecting BM.

イロト イヨト イヨト イヨト

Penalisation

Let $n \ge 1, x \ge 0$ and

$$\rho_t^n = x + B_t + n \int_0^t (\rho_s^n)^- ds + \int_0^t f(\rho_s^n) ds, \quad t \in [0, T],$$

where $r^- = (r)^- := \max\{-r, 0\}, \quad r \in \mathbb{R}.$

Additive noise and Lipschitz drift, so clearly pathwise uniqueness and existence of solutions by a Picard iteration.

Proposition

- 1. *if* $n \leq m$ *then* $\rho_t^n \leq \rho_t^m$ *for all* $t \in [0, T]$.
- 2. $\rho^n \uparrow \rho$ uniformly on [0, T] as $n \uparrow +\infty$, where $(\rho_t, \ell_t)_{t\geq 0}$ is the unique solution to the equation with reflection (1). Moreover

$$\lim_{n\uparrow+\infty}n\int_0^t(\rho_s^n)^-\,\mathrm{d}s=\ell_t,\qquad t\in[0,T].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

<ロ> <同> <同> <同> < 同> < 同>

æ

The penalised SDE

For $x \in \mathbb{R}$ and *B* a standard BM we set

$$\rho_t^n(x) = x + B_t + n \int_0^t (\rho_s^n(x))^- ds + \int_0^t f(\rho_s^n(x)) ds, \quad t \ge 0,$$

The infinitesimal generator of ρ^n is for $\varphi \in C^2_c(\mathbb{R})$

$$L^{n}\varphi(x) := \frac{1}{2}\varphi''(x) + (nx^{-} + f(x))\varphi'(x), \qquad x \in \mathbb{R}.$$

Moreover ρ^n admits as reversible invariant measure

$$\mu_n(dx) = e^{-n(x^-)^2 + 2F(x)} dx$$

where $F : \mathbb{R} \mapsto \mathbb{R}$ is any function such that

$$F'(x) = f(x), \qquad x \in \mathbb{R}.$$

Note that $\mu_n(] - \infty, 0]) < +\infty$ for *n* large, but $\mu_n([0, +\infty[) \le +\infty \text{ in general.})$

Lemma

The measure μ *is invariant and reversible for* $(\rho_t)_{t\geq 0}$ *and*

$$\lim_{n\to+\infty}\int_{\mathbb{R}}\varphi\,\mathrm{d}\mu_n=\int_{\mathbb{R}}\varphi\,\mathrm{d}\mu,\qquad\forall\,\varphi\in C_c(\mathbb{R}),$$

where

$$\mu(\mathrm{d} x) := \mathbb{1}_{(x \ge 0)} e^{2F(x)} \,\mathrm{d} x.$$

Here is an important message, that we have already noticed for discrete interfaces:

Remark

A *reflection* for the dynamics means a *conditioning* for the invariant measure.

δ-Bessel processes are solutions $(\rho_t)_{t\geq 0}$ to the SDE with $\delta > 1$

$$\rho_t = x + \frac{\delta - 1}{2} \int_0^t \rho_s^{-1} \, \mathrm{d}s + B_t, \qquad \rho_t \ge 0, \quad t \ge 0, \quad (2)$$

where $(B_t)_{t\geq 0}$ is a BM. If $\delta \downarrow 1$ the equation becomes

$$\rho_t = x + \ell_t + B_t, \quad \ell_0 = 0, \quad d\ell \ge 0, \quad \int_0^t \rho_s \, d\ell_s = 0, \quad (3)$$

伺き イヨト イヨト

i.e. the reflecting Brownian motion.

Bessel processes have the same scaling invariance of BM.

It is well known that a δ -Bessel process visits 0 with positive probability iff $\delta < 2$.

White noise

 $W: L^2(\mathbb{R}^2_+) \to L^2(\Omega)$ isometry

Figure: The family $(W(A_i))_i$ is Gaussian and independent since the sets A_i are pairwise disjoint. $W(A_i) \sim \mathcal{N}(0, m(A_i))$ and $W(\cup_i A_i) \sim \mathcal{N}(0, \sum_i m(A_i))$.

For all measurable set A, W(A) is the amount of noise contained in A.

Lemma

Let $(e_i)_i$ be a complete orthonormal system in $L^2([0, +\infty[)$. Then

- 1. Let $w_t^i := W(\mathbb{1}_{[0,t]} \otimes e_i)$, $t \ge 0$, $i \in \mathbb{N}$. Then $(w^i)_i$ is an iid sequence of standard Brownian motions.
- 2. For all $h \in L^2([0, +\infty[) \text{ and } t \ge 0$

$$W(\mathbb{1}_{[0,t]}\otimes h)=\sum_{i}w_{t}^{i}\langle e_{i},h
angle$$

where the equality is in $L^2(\Omega)$.

A cylindrical Brownian motion in a separable Hilbert space H is

$$\langle W_t,h
angle:=\sum_i B^i_t \langle e_i,h
angle, \qquad t\geq 0,$$

where $(e_i)_i$ is a complete orthonormal system in H and $(B^i)_i$ is an iid sequence of Brownian motions.

The stochastic heat equation

We want to study the stochastic PDE

$$\begin{cases} \frac{\partial v}{\partial t} = \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + W, \\ v(t,0) = v(t,1) = 0, \quad t \ge 0, \\ v(0,x) = v_0(x), \quad x \in [0,1] \end{cases}$$
(4)

where W(t, x) is a space-time white-noise over $[0, +\infty[\times[0, 1]])$.

This SPDE is interpreted in the PDE-weak sense: for all $h \in C_c^2(0, 1)$ and $t \ge 0$

$$\langle v_t,h\rangle = \langle v_0,h\rangle + \frac{1}{2}\int_0^t \langle v_s,h''\rangle \,\mathrm{d}s + \int_0^t \int_0^1 h(x) W(\mathrm{d}s,\mathrm{d}x).$$

We set for all $k \ge 1$:

$$e_k(x) := \sqrt{2} \sin(k\pi x), \qquad x \in [0, 1].$$
 (5)

< □ > < □ > < □ >

Note that $\{e_k\}_{k\geq 1}$ is a complete basis of eigenvectors of the second derivative with homogeneous Dirichlet boundary conditions:

$$\frac{d^2}{dx^2}e_k = -(\pi k)^2 e_k, \qquad e_k(0) = e_k(1) = 0, \qquad k \ge 1.$$

Setting $v_t^k := \langle v(t, \cdot), e_k \rangle$ we obtain

$$\mathrm{d} v_t^k = -\frac{(k\pi)^2}{2} v_t^k \,\mathrm{d} t + \,\mathrm{d} B_t^k, \qquad v_0^k = \langle v_0, e_k \rangle$$

$$B_t^k := \int_{[0,t]\times[0,1]} e_k(x) W(\mathrm{d} s, \mathrm{d} x) = W\left(\mathbb{1}_{[0,t]}\otimes e_k\right).$$

Fourier decomposition

We proved in Lemma 7 that $(B_t^k, t \ge 0)_{k\ge 1}$ is an independent sequence of Brownian motions. Then $(v_{\cdot}^k)_{k\ge 1}$ is an independent family of O-U processes of respective parameter $\frac{(\pi k)^2}{2} > 0$, and

$$v(t,x) = \sum_{k} \left(e^{-\frac{(\pi k)^2}{2}t} v_0^k + \int_0^t e^{-\frac{(\pi k)^2}{2}(t-s)} \, \mathrm{d}B_s^k \right) e_k(x).$$

An important remark is the following:

$$\sum_k \frac{2}{(\pi k)^2} < +\infty \qquad (d=1).$$

Proposition

There exists a continuous modification of v s.t.

$$\sup_{x,y\in[0,1],\,t,s\in[0,T]} \frac{|v(t,x)-v(s,y)|}{|t-s|^{\frac{1-\varepsilon}{4}}+|x-y|^{\frac{1-\varepsilon}{2}}} < +\infty.$$

If we let $t \to +\infty$ in

$$v(t,\cdot) = \sum_{k} \left(e^{-\frac{(\pi k)^2}{2}t} v_0^k + \int_0^t e^{-\frac{(\pi k)^2}{2}(t-s)} \, \mathrm{d}B_s^k \right) e_k$$

we obtain that the invariant measure of v is the law of

$$\beta := \sum_{k=1}^{+\infty} \frac{1}{\pi k} Z_k e_k,$$

同ト・モト・モト

where $(Z_k)_{k\geq 1}$ is an i.i.d. sequence of $\mathcal{N}(0, 1)$.

Proposition

 $\beta = (\beta(x), x \in [0, 1])$ is a Brownian bridge.

Let $a \ge 0$. We fix a space-time white noise *W* on $[0, +\infty[\times[0, 1]])$. We study the following SPDE with reflection:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + f(u) + W + \eta \\ u(0, x) = u_0(x), \ u(t, 0) = u(t, 1) = a \\ u \ge 0, \ d\eta \ge 0, \ \int u \, d\eta = 0 \end{cases}$$
(6)

同 とく ヨ とく ヨ と

where we assume that:

u₀: [0, 1] → ℝ is continuous and u₀ ≥ 0.
 f: ℝ → ℝ is Lipschitz and bounded.

Reduction to a PDE with random obstacle

Let $a \ge 0$ and v be the unique solution to

$$\begin{cases} \frac{\partial v}{\partial t} = \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + W, \\ v(t,0) = v(t,1) = a, \quad v(0,x) = u_0(x). \end{cases}$$
(7)

Then the function z := u - v solves

$$\begin{cases} \frac{\partial z}{\partial t} = \frac{1}{2} \frac{\partial^2 z}{\partial x^2} + f(z+v) + \eta \\ z(0,x) = 0, \ z(t,0) = z(t,1) = 0 \\ z \ge -v, \ d\eta \ge 0, \ \int (z+v) \ d\eta = 0. \end{cases}$$
(8)

The important remark here is that equation (8) is a PDE (rather than a SPDE) with random obstacle -v.

The Nualart-Pardoux equation

Theorem (Nualart-Pardoux, 1992) Let $w \in C([0,T] \times [0,1])$ with $w(0, \cdot) \ge 0$, $w(\cdot, 0) \ge 0$, $w(\cdot, 1) \ge 0$. Then there exists a unique pair (z, η) such that

- ► $z \in C([0,T] \times [0,1]), \quad z(0,\cdot) = 0, \quad z(\cdot,0) = z(\cdot,1) = 0$
- $\eta(dt, dx)$ is a measure on $]0, T] \times]0, 1[$ such that $\eta(]0, T] \times [\delta, 1 \delta]) < +\infty$ for all $\delta > 0$
- ▶ *For all* $t \in [0, T]$ *and* $h \in C_c^{\infty}(0, 1)$

$$\langle z_t, h \rangle = \frac{1}{2} \int_0^t \langle z_s, h'' \rangle \, \mathrm{d}s + \int_0^t \langle f(z_s + \mathbf{w}_s), h \rangle \, \mathrm{d}s$$

+
$$\int_0^t \int_0^1 h(x) \, \eta(\mathrm{d}s, \mathrm{d}x)$$
 (9)

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶ •

• $z \ge -w$, $\int (z+w) \, \mathrm{d}\eta = 0$.

We introduce the following approximating problem:

$$\begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} = \frac{1}{2} \frac{\partial^2 u^{\varepsilon}}{\partial x^2} + f(u^{\varepsilon}) + \frac{(u^{\varepsilon})^-}{\varepsilon} + W\\ u^{\varepsilon}(0, \cdot) = u_0, \quad u^{\varepsilon}(t, 0) = u^{\varepsilon}(t, 1) = a. \end{cases}$$

Proposition

The pair (u, η) *is the limit of the pair* $(u^{\varepsilon}, \eta^{\varepsilon})$ *where*

$$\eta^{\varepsilon}(\mathrm{d} t,\mathrm{d} x):=rac{(u^{\varepsilon}(t,x))^{-}}{\varepsilon}\,\mathrm{d} t\,\mathrm{d} x.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let us consider a Brownian motion $(B_t^{(d)})_{t\geq 0}$ in \mathbb{R}^d where $B^{(d)} = (B^1, \dots, B^d)$ and the B^i 's are iid standard BMs.

Let $V : \mathbb{R}^d \to \mathbb{R}$ be a smooth function and let

$$\mathrm{d}X_t = \nabla V(X_t) \,\mathrm{d}t + \,\mathrm{d}B_t^{(d)}, \qquad X_0 = x \in \mathbb{R}^d.$$

It is a classical fact that an invariant measure for $(X_t)_{t\geq 0}$ is given by

 $\exp(2V(x))\,\mathrm{d}x.$

・ 同 ト ・ ヨ ト ・ ヨ ト

If this measure is finite on \mathbb{R}^d , we obtain an invariant probability measure.

The penalised invariant measure

We consider now the penalised SPDE

$$\begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} = \frac{1}{2} \frac{\partial^2 u^{\varepsilon}}{\partial x^2} + f(u^{\varepsilon}) + \frac{(u^{\varepsilon})^{-}}{\varepsilon} + W\\ u^{\varepsilon}(0, \cdot) = u_0, \quad u^{\varepsilon}(t, 0) = u^{\varepsilon}(t, 1) = a. \end{cases}$$

The invariant measure is

$$u_{arepsilon}^{a}(\mathrm{d}\zeta) \, := \, rac{1}{Z_{arepsilon}^{a}} \, \exp\left(2\langle F_{arepsilon}(\zeta),1
angle
ight) \mathbf{W}_{a,a}(\mathrm{d}\zeta),$$

where $\mathbf{W}_{a,a}$ is the law of $a + \beta$ and F_{ε} satisfies

$$F_{\varepsilon}(0) = 0, \qquad F'_{\varepsilon}(y) := f(y) + \frac{y^{-}}{\varepsilon} = f_{\varepsilon}(y).$$

Note that

$$\frac{d}{dr}\left(r^{-}\right)^{2}=-2r^{-}.$$

Then for a > 0

$$\nu_{\varepsilon}^{a}(\mathrm{d}\zeta) = \frac{1}{Z_{\varepsilon}^{a}} \exp\left(2\langle F(\zeta),1\rangle - \frac{1}{\varepsilon}\langle\left(\zeta^{-}\right)^{2},1\rangle\right) \mathbf{W}_{a,a}(\mathrm{d}\zeta),$$

converges as $\varepsilon \downarrow 0$ to

$$\nu^{a}(\mathrm{d}\zeta) := \frac{1}{Z^{a}} \exp\left(2\langle F(\zeta), 1\rangle\right) \mathbb{1}_{K}(\zeta) \mathbf{W}_{a,a}(\mathrm{d}\zeta),$$

where $K := \{u_{0} : [0, 1] \to \mathbb{R} : u_{0} \in L^{2}(0, 1), u_{0} \ge 0\}.$

<ロ> <同> <同> <同> < 同> < 同>

It turns out that

$$\mathbf{P}_{a,a}^3 = \mathbf{W}_{a,a}(\,\cdot\,|\,K).$$

Then

$$u^{a}(\mathrm{d}\zeta) := rac{1}{\hat{Z}^{a}} \exp\left(2\langle F(\zeta),1\rangle\right) \mathbf{P}^{3}_{a,a}(\mathrm{d}\zeta),$$

and as $a \downarrow 0$

$$u^a(\mathrm{d}\zeta) \Longrightarrow \nu^0(\mathrm{d}\zeta) := rac{1}{\hat{Z}^a} \exp\left(2\langle F(\zeta),1\rangle\right) \mathbf{P}^3_{0,0}(\mathrm{d}\zeta).$$

同 🖌 🖉 🕨 🖌 🖻 🕨

In particular if $f \equiv 0$ then the invariant measure of the SPDE with reflection is simply $\mathbf{P}_{a,a}^3$.

Integration by parts

Consider a regular bounded open set $O \subset \mathbb{R}^d$. Then the classical Gauss-Green formula states that for all $h \in \mathbb{R}^d$

$$\int_{O} (\partial_{h} \varphi) \rho \, \mathrm{d}x = - \int_{O} \varphi \, \frac{\partial_{h} \rho}{\rho} \rho \, \mathrm{d}x - \int_{\partial O} \varphi \, \langle \hat{n}, h \rangle \, \rho \, \mathrm{d}\sigma$$

- $\varphi, \rho \in C_b^1(O)$ with $\lambda \le \rho \le \lambda^{-1}, \lambda \in]0, 1]$ is a constant,
- \hat{n} is the inward-pointing normal vector to the boundary ∂O
- σ is the surface measure on ∂O
- $\partial_h \varphi$ is the directional derivative of φ along h
- $\bullet \ \partial_h \log \rho = (\partial_h \rho) / \rho.$

□▶★■▶★■▶

Integration by parts

Consider a regular bounded open set $O \subset \mathbb{R}^d$. Then the classical Gauss-Green formula states that for all $h \in \mathbb{R}^d$

$$\int_{O} (\partial_{h} \varphi) \rho \, \mathrm{d}x = - \int_{O} \varphi \, \frac{\partial_{h} \rho}{\rho} \rho \, \mathrm{d}x - \int_{\partial O} \varphi \, \langle \hat{n}, h \rangle \, \rho \, \mathrm{d}\sigma$$

- $\varphi, \rho \in C_b^1(O)$ with $\lambda \le \rho \le \lambda^{-1}, \lambda \in]0, 1]$ is a constant,
- \hat{n} is the inward-pointing normal vector to the boundary ∂O
- σ is the surface measure on ∂O
- $\partial_h \varphi$ is the directional derivative of φ along h

$$\bullet \ \partial_h \log \rho = (\partial_h \rho) / \rho.$$

For us, $\mathbf{W}_{a,a} = \rho \, \mathrm{d}x$, K = O.

What is the analog of $\rho d\sigma$? and of \hat{n} ? and of ∂O ?

The boundary measure

$$\mathbf{P}_{a,a}^{3}\left[\partial_{h}\varphi\right] = -\mathbf{P}_{a,a}^{3}\left[\varphi(X)\left\langle X,h''\right\rangle\right] \\ -\int_{0}^{1} \mathrm{d}r\,h(r)\,\gamma(r,a)\,\mathbf{P}_{a,a}^{3}\left[\varphi(X)\,|\,X_{r}=0\right].$$

where $\gamma(r, a) \ge 0$ is an explicit function of $r \in]0, 1[, a \ge 0.$

$$\int_{O} (\partial_h \varphi) \rho \, \mathrm{d}x = - \int_{O} \varphi \, \frac{\partial_h \rho}{\rho} \, \rho \, \mathrm{d}x - \int_{\partial O} \varphi \, \langle \hat{n}, h \rangle \, \rho \, \mathrm{d}\sigma.$$

イロト 人間 とくほ とくほとう

The boundary measure

Figure: A typical path under the boundary measure.

< ≞ >

Theorem

For all bounded Borel φ : $H \mapsto \mathbb{R}$ *and* $h \in C_c(0, 1)$

$$\int \nu^{a}(\mathrm{d} u_{0}) \mathbb{E}\left[\int_{0}^{t} \int_{0}^{1} h(x) \varphi(u_{s}) \eta(\mathrm{d} s, \mathrm{d} x)\right] =$$

= $\frac{t}{2Z^{a}} \int_{0}^{1} \mathrm{d} r h(r) \gamma(r, a) \int \varphi(\zeta) e^{2F(\zeta)} \Sigma_{a}(r, \mathrm{d} \zeta).$

where $\Sigma_a(r, \cdot) := \mathbf{P}^3_{a,a}[\,\cdot\,|\,X_r = 0].$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

The contact set

We denote by $\pi : [0, +\infty[\times[0, 1] \mapsto [0, +\infty[$ the projection $(t, x) \mapsto t$, and for a set $S \subset [0, +\infty[\times[0, 1]]$ we write

 $S_t := \{x \in [0,1] : (t,x) \in S\}, \quad t \ge 0.$

Theorem

Let (u, η) be the stationary solution to equation (6). Let us denote by

 $\mathscr{C} := \{(t, x) : u(t, x) = 0, t > 0, x \in]0, 1[\}$

the contact set and let us recall that the support of η is contained in \mathscr{C} . Then a.s. the set $\pi(\mathscr{C})$ has zero Lebesgue measure and there exists a measurable set $S \subset \mathscr{C}$ such that

- 1. $\eta(\mathscr{C} \setminus S) = 0$
- 2. *for all* t > 0, *either* $S_t = \emptyset$ *or* $S_t = \{r_t\}$, *with* $r_t \in]0, 1[$.
- 3. *if* $S_t = \{r_t\}$, *then* u(t, x) > 0 *for all* $x \in]0, 1[\setminus \{r_t\} and u(t, r_t) = 0.$

The contact set

We study now the SPDE

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \frac{c}{u^3} + W \\ u(t,0) = u(t,1) = a, \quad t \ge 0 \\ u(0,x) = u_0(x), \quad x \in [0,1] \end{cases}$$

where $a \ge 0$ and c > 0 are fixed and we search for solutions $u \ge 0$.

This SPDE has the same invariance scaling as the linear and the reflected SPDE.

This SPDE is an analogue of Bessel processes for $\delta > 1$ (see the slide no. 28).

Theorem

Let $a \ge 0$, c > 0 and $u_0 \in C([0, 1]) \cap K$. Then there exists a unique continuous $u : [0, +\infty[\times[0, 1]] \mapsto [0, +\infty[$ such that

1. $u^{-3} \in L^1_{loc}([0, +\infty[\times]0, 1[)$

2. *A.s. for all* $t \ge 0$ *and* $h \in C_c^{\infty}(0, 1)$

$$\langle u_t, h \rangle = \langle u_0, h \rangle + \frac{1}{2} \int_0^t \langle u_s, h'' \rangle \, \mathrm{d}s + \int_0^1 h(x) \, W(\mathrm{d}s, \mathrm{d}x)$$

+ $c \int_0^t \int_0^1 h(x) \, u^{-3}(s, x) \, \mathrm{d}s \, \mathrm{d}x.$ (10)

「同ト・ヨト・ヨト

If $\delta > 3$ is such that $c = \frac{(\delta - 3)(\delta - 1)}{8}$, then the only invariant probability measure of (10) is $\mathbf{P}_{a,a}^{\delta}$, law of the δ -Bessel bridge.

We have now functions $u = u^{\delta}$ for $\delta \ge 3$, stationary solutions to equations with reflection ($\delta = 3$) or repulsion from 0 ($\delta > 3$).

One of the main results of this course is the following

Theorem (Dalang, Mueller, Z. 2006) Let $\delta \ge 3$. If $k \in \mathbb{N}$ satisfies

$$k > \frac{4}{\delta - 2},$$

the probability that there exist t > 0 and $x_1, \ldots, x_k \in [0, 1]$ such that $0 < x_1 < \cdots < x_k < 1$ and $u(t, x_i) = 0$ for all $i = 1, \ldots, k$, is zero.

▲冊 ▶ ▲ 臣 ▶ ★ 臣 ▶

Hitting of zero

In particular, setting for $\delta \geq 3$

 $\zeta(\delta) := \sup\{k : \exists (t, x_1, \dots, x_k) \in]0, 1] \times]0, 1[, u(t, x_i) = 0\}$

then

- for $\delta = 3$, a.s. $\zeta(\delta) \le 4$
- for $\delta \in [3, 3 + 1/3]$, a.s. $\zeta(\delta) \le 3$
- for $\delta \in [3 + 1/3, 4]$, a.s. $\zeta(\delta) \leq 2$
- for $\delta \in]4, 6]$, a.s. $\zeta(\delta) \leq 1$
- for $\delta > 6$, a.s. $\zeta(\delta) = 0$.

In any case $\zeta(\delta) \le 4$ a.s. for all $\delta \ge 3$. The behavior at the transition points $\delta \in \{3, 3 + 1/3, 4, 6\}$ might be non-optimal. Indeed, we conjecture that a.s.

 $\zeta(3) \le 3, \qquad \zeta(3+1/3) \le 2, \qquad \zeta(4) \le 1, \qquad \zeta(6) = 0.$

(本部) (本語) (本語) (二語

Theorem (Dalang, Mueller, Z.)

- (a) For all $\delta \in [3, 5]$, with positive probability, there exist t > 0 and $x \in]0, 1[$ such that $u_t(x) = 0$.
- (b) For $\delta = 3$, with positive probability there exist t > 0 and $\{x_1, x_2, x_3\} \subset [0, 1[, x_1 < x_2 < x_3, such that <math>u_t(x_i) = 0, i = 1, 2, 3.$

We conjecture that for all $\delta \geq 3$ a.s.

$$\zeta(\delta) = \left\lceil \frac{4}{\delta - 2} \right\rceil - 1.$$

□ ▶ ▲ □ ▶ ▲ □ ▶

Back to the discrete interface

What can be said on the contact set of the dynamical discrete interface as N → +∞?

Other open problems

- Construct SPDEs whose invariant measure is the δ -Bessel bridge for $\delta < 3$ (log-concavity is lost).
- One can conjecture that a.s.

$$\zeta(\delta) = \left\lceil \frac{4}{\delta - 2} \right\rceil - 1, \qquad \delta \ge 2.$$

- For δ < 2 the situation is even more complicated since 0 is hit by the stationary profile.
- The case $\delta = 1$ (reflecting BM) is the most intriguing since it is the limit of homogeneous pinning models.
- There is an IbPF for $\delta = 1$ but the form of the dynamics is hard even to conjecture.
- Dynamics of random trees (Aldous' CRT)