A random string near a wall

Lorenzo Zambotti
(LPMA, Univ. Paris 6)

13th November 2015, Bristol

Symmetric simple random walk

$\left(Y_{i}\right)_{i \geq 1}$ i.i.d. sequence with $\mathbb{P}\left(Y_{i}=1\right)=\mathbb{P}\left(Y_{i}=-1\right)=1 / 2$

$$
S_{0}:=a \in \mathbb{Z}, \quad S_{n+1}=S_{n}+Y_{n+1}
$$

$\left(S_{n}\right)_{n \geq 0}$ defines a Markov chain with valued in \mathbb{Z}.

Symmetric simple random walk with reflection

$$
X_{n+1}:= \begin{cases}X_{n}+Y_{n+1} & \text { if } X_{n}>0 \\ 1 & \text { if } X_{n}=0\end{cases}
$$

This defines a Markov chain with values in $\mathbb{Z}_{+}=\{0,1, \ldots\}$.

Absolute value of the SSRW

Let $Z_{n}:=\left|S_{n}\right|$, with $S_{0}=a \geq 0$. Although this is not obvious at first sight, $\left(Z_{n}\right)_{n \geq 0}$ is also a Markov chain:

$$
Z_{n+1}= \begin{cases}Z_{n}+W_{n+1} & \text { if } Z_{n}>0 \\ 1 & \text { if } Z_{n}=0\end{cases}
$$

where $W_{n+1}:=Y_{n+1}\left(\mathbb{1}_{S_{n} \geq 0}-\mathbb{1}_{S_{n}<0}\right)$.
It is easy to see that $\left(W_{i}\right)_{i \geq 1}$ is a copy of $\left(Y_{i}\right)_{i \geq 1}$ and then $\left(Z_{n}\right)_{n \geq 0}$ and $\left(X_{n}\right)_{n \geq 0}$ (for the same fixed a) have the same law.

Discrete interfaces

We define now a Markov chain with values in discrete paths. We fix $N \in \mathbb{N}$ and we define the state space

$$
\begin{aligned}
E_{N}:=\left\{w \in \mathbb{Z}^{2 N}:\right. & w(0)=w(2 N)=0, \\
& |w(i)-w(i-1)|=1, \forall i=1, \ldots, 2 N\} .
\end{aligned}
$$

Figure: A typical path in E_{N}

The free evolution

Then we define a Markov chain with values in E_{N} as follows: we define a map $F: E_{N} \times\{1, \ldots, 2 N-1\} \rightarrow E_{N}, \quad F(w, j)=\hat{w} \in E_{N}$, where

$$
\hat{w}_{i}= \begin{cases}w_{i}+2 & \text { if } i=j \text { and } w_{i-1}=w_{i+1}>w_{i} \\ w_{i}-2 & \text { if } i=j \text { and } w_{i-1}=w_{i+1}<w_{i} \\ w_{i} & \text { otherwise }\end{cases}
$$

We let $\left(U_{n}\right)_{n \geq 1}$ be an i.i.d. sequence of uniform random variables on $\{1, \ldots, 2 N-1\}$; then

$$
e_{n+1}:=F\left(e_{n}, U_{n+1}\right), \quad e_{0} \in E_{N}
$$

The free evolution

Then we define a Markov chain with values in E_{N} as follows: we define a map $F: E_{N} \times\{1, \ldots, 2 N-1\} \rightarrow E_{N}, \quad F(w, j)=\hat{w} \in E_{N}$, where

$$
\hat{w}_{i}= \begin{cases}w_{i}+2 & \text { if } i=j \text { and } w_{i-1}=w_{i+1}>w_{i} \\ w_{i}-2 & \text { if } i=j \text { and } w_{i-1}=w_{i+1}<w_{i} \\ w_{i} & \text { otherwise }\end{cases}
$$

We let $\left(U_{n}\right)_{n \geq 1}$ be an i.i.d. sequence of uniform random variables on $\{1, \ldots, 2 N-1\}$; then

$$
e_{n+1}:=F\left(e_{n}, U_{n+1}\right), \quad e_{0} \in E_{N}
$$

The free evolution

We denote the transition matrix of $\left(e_{n}\right)_{n \geq 0}$ by

$$
P(x, y)=\mathbb{P}\left(F\left(x, U_{1}\right)=y\right)
$$

It is easy to see that $P(x, y)=P(y, x)$ and therefore the uniform measure on E_{N} is invariant and reversible for P.

This is in fact the unique probability invariant measure of $\left(e_{n}\right)_{n \geq 0}$ by the following

Lemma
The Markov chain $\left(e_{n}\right)_{n \geq 0}$ is aperiodic and irreducible.

The reflected interface

Let us now add reflection to our discrete interface. We set

$$
E_{N}^{+}:=\left\{w \in E_{N}: w(i) \geq 0, \forall i=0, \ldots, 2 N\right\}
$$

Figure: A typical path in E_{N}^{+}
Reflection means now suppression of transitions which would let e_{n}^{+} take negative values:

The reflected interface

Let us now add reflection to our discrete interface. We set

$$
E_{N}^{+}:=\left\{w \in E_{N}: w(i) \geq 0, \forall i=0, \ldots, 2 N\right\}
$$

Figure: A typical path in E_{N}^{+}
Reflection means now suppression of transitions which would let e_{n}^{+} take negative values:

The reflected interface

The Markov evolution in E_{N}^{+}is defined as follows:

$$
F^{+}: E_{N}^{+} \times\{1, \ldots, 2 N-1\} \rightarrow E_{N}^{+}
$$

$$
F^{+}(w, j)= \begin{cases}F(w, j) & \text { if } F(w, j) \in E_{N}^{+} \\ w & \text { otherwise }\end{cases}
$$

Then our E_{N}^{+}-valued Markov chain $\left(e_{n}^{+}\right)_{n \geq 0}$ is defined by

$$
e_{n+1}^{+}:=F^{+}\left(e_{n}^{+}, U_{n+1}\right), \quad e_{0}^{+} \in E_{N}^{+}
$$

Lemma

The Markov chain $\left(e_{n}^{+}\right)_{n \geq 0}$ has a unique invariant probability measure, the uniform probability measure on E_{N}^{+}, which is furthermore reversible for $\left(e_{n}^{+}\right)_{n \geq 0}$.
We see that the reflection for the dynamics is equivalent to a conditioning for the invariant measure.

An important remark

Let $\left|e_{n}\right|$ be the absolute value of the free interface $\left(e_{n}\right)_{n \geq 0}$. If $\left(e_{n}\right)_{n \geq 0}$ is stationary then the distribution of $\left|e_{0}\right|$ is a probability measure on E_{N}^{+}

$$
\begin{gathered}
\mathbb{P}\left(\left|e_{0}\right|=w\right) \propto \#\left\{w^{\prime} \in E_{N}:\left|w^{\prime}\right|=w\right\}=2^{L(w)} \\
L(w):=\sum_{i=1}^{2 N} \mathbb{1}_{\left(w_{i}=0\right)}, \quad w \in E_{N}^{+}
\end{gathered}
$$

In other words $L(w)$ is the number of excursions of w.
On the other hand, if $\left(e_{n}^{+}\right)_{n \geq 0}$ is stationary then the law of e_{0}^{+}is uniform on E_{N}^{+}, so that e_{0}^{+}and $\left|e_{0}\right|$ have different laws.
Moreover $\left(\left|e_{n}\right|\right)_{n \geq 0}$ is not Markovian.

Scaling limits

Let $\left(S_{n}\right)_{n \geq 0}$ be the SSRW with $S_{0}:=0$ and

$$
B_{t}^{N}:=\frac{1}{\sqrt{N}} S_{\lfloor N t\rfloor}, \quad t \geq 0
$$

By Donsker's theorem $\left(B_{t}^{N}\right)_{t \geq 0} \Longrightarrow\left(B_{t}\right)_{t \geq 0}$ as $N \rightarrow+\infty$.
Under the same scaling the reflecting SSRW $\left(X_{n}\right)_{n \geq 0}$ converges to the reflecting Brownian motion $\left(\rho_{t}\right)_{t \geq 0}$.
This process is given by a stochastic differential equation

$$
\mathrm{d} \rho_{t}=\mathrm{d} B_{t}+\mathrm{d} \ell_{t}, \quad \rho_{t} \geq 0, \quad \mathrm{~d} \ell_{t} \geq 0, \quad \int_{0}^{\infty} \rho_{t} \mathrm{~d} \ell_{t}=0
$$

- $t \mapsto\left(\rho_{t}, \ell_{t}\right)$ is continuous, ρ_{t} is non-negative
- $\ell_{0}=0, \ell_{s} \leq \ell_{t}$ for $s \leq t$
- $\operatorname{supp}\left(\mathrm{d} \ell_{t}\right) \subset\left\{t \geq 0: \rho_{t}=0\right\}$.

The measure $\mathrm{d} \ell_{t}$ is the reflection term.

Scaling of the free interface

Let us first consider the stationary version of $\left(e_{n}\right)_{n \geq 0}$ and define

$$
v_{N}(t, x)=\frac{1}{\sqrt{2 N}} e_{\left\lfloor 4 N^{2} t\right\rfloor}(\lfloor 2 N x\rfloor), \quad t \geq 0, x \in[0,1] .
$$

Figure: A typical path of $v_{N}(t, \cdot)$ for any $t \geq 0$ when N is large

The stochastic heat equation

As $N \rightarrow+\infty, v_{N} \Longrightarrow(v(t, x), t \geq 0, x \in[0,1])$, stationary solution to a stochastic partial differential equation (SPDE)

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}+W, \\
v(t, 0)=v(t, 1)=0, \quad t \geq 0, \\
v(0, x)=v_{0}(x), \quad x \in[0,1] .
\end{array}\right.
$$

Here W is a space-time white noise.

Scaling of the reflected interface

Let us now consider the stationary version of $\left(e_{n}^{+}\right)_{n \geq 0}$ and define

$$
u_{N}(t, x)=\frac{1}{\sqrt{2 N}} e_{\left\lfloor 4 N^{2} t\right\rfloor}^{+}(\lfloor 2 N x\rfloor), \quad t \geq 0, x \in[0,1] .
$$

Figure: A typical path of $u_{N}(t, \cdot)$ for any $t \geq 0$ when N is large

A SPDE with reflection

As $N \rightarrow+\infty, u_{N} \Longrightarrow(u(t, x), t \geq 0, x \in[0,1])$, t , that we are going to study in detail from chapter 5 on and is a stationary solution to a SPDE with reflection (Funaki-Olla, Z., Etheridge-Labbé)

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+W+\eta \\
u(0, x)=u_{0}(x), \quad u(t, 0)=u(t, 1)=0 \\
u \geq 0, \mathrm{~d} \eta \geq 0, \int u \mathrm{~d} \eta=0
\end{array}\right.
$$

Here (u, η) is a random pair that consists of

- a continuous non-negative functions $u(t, x) \geq 0$
- a Radon measure η on $] 0,+\infty[\times] 0,1[$,
such that the support of η is contained in $\{(t, x): u(t, x)=0\}$.

The contact set

For all $t \geq 0$ the typical profile of $u(t, \cdot)$ is positive on $] 0,1[$. Where does the reflection act?

The contact set

For all $t \geq 0$ the typical profile of $u(t, \cdot)$ is positive on $] 0,1[$. Where does the reflection act?

This apparent paradox is solved if we formulate the sentence more precisely: the correct result is that for all $t \geq 0$, a.s. $u(t, \cdot)>0$ on $] 0,1[$:

$$
\forall t>0, \quad \mathbb{P}(\exists x \in] 0,1[: u(t, x)=0)=0
$$

However this does not exclude the existence, with positive probability, of exceptional times $t \geq 0$ and $x \in] 0,1[$ such that $u(t, x)=0$:

$$
\mathbb{P}(\exists t>0, x \in] 0,1[: u(t, x)=0)>0 .
$$

The contact set

The next question is: what can be said about the contact set

$$
\mathscr{Z}:=\{(t, x): t>0, x \in] 0,1[, u(t, x)=0\} .
$$

After proving that with positive probability u visits 0 , one can ask:

- what is the typical behavior at exceptional times $t \geq 0$?
- That is, if $t>0$ is such that there exists $x \in] 0,1[$ so that $u(t, x)=0$, then how many such points x exist?

Figure: How many x such that $u(t, x)=0$: infinitely many?

The contact set

Figure: How many x such that $u(t, x)=0$: finitely many?

Figure: How many x such that $u(t, x)=0$: just one? or two? or three?

SDEs with reflection

Proposition

Let $\left(B_{t}\right)_{t \geq 0}$ be a standard $B M$ and $x \geq 0$. Then there exists a unique couple $\left(\rho_{t}, \ell_{t}\right)_{t \geq 0}$ of continuous real processes such that

$$
\left\{\begin{array}{l}
\rho_{t}=x+B_{t}+\int_{0}^{t} f\left(\rho_{s}\right) \mathrm{d} s+\ell_{t}, \quad t \geq 0 \\
\ell_{0}=0, \tag{1}\\
\rho_{t} \geq 0, \quad \mathrm{~d} \ell_{t} \geq 0, \quad \int_{0}^{\infty} \rho_{t} \mathrm{~d} \ell_{t}=0
\end{array}\right.
$$

If $f \equiv 0$ we call ρ the reflecting BM.

The reflecting BM

Penalisation

Let $n \geq 1, x \geq 0$ and

$$
\rho_{t}^{n}=x+B_{t}+n \int_{0}^{t}\left(\rho_{s}^{n}\right)^{-} \mathrm{d} s+\int_{0}^{t} f\left(\rho_{s}^{n}\right) \mathrm{d} s, \quad t \in[0, T]
$$

$$
\text { where } \quad r^{-}=(r)^{-}:=\max \{-r, 0\}, \quad r \in \mathbb{R}
$$

Additive noise and Lipschitz drift, so clearly pathwise uniqueness and existence of solutions by a Picard iteration.

Proposition

1. if $n \leq m$ then $\rho_{t}^{n} \leq \rho_{t}^{m}$ for all $t \in[0, T]$.
2. $\rho^{n} \uparrow \rho$ uniformly on $[0, T]$ as $n \uparrow+\infty$, where $\left(\rho_{t}, \ell_{t}\right)_{t \geq 0}$ is the unique solution to the equation with reflection (1). Moreover

$$
\lim _{n \uparrow+\infty} n \int_{0}^{t}\left(\rho_{s}^{n}\right)^{-} \mathrm{d} s=\ell_{t}, \quad t \in[0, T]
$$

Penalisation

The penalised SDE

For $x \in \mathbb{R}$ and B a standard BM we set

$$
\rho_{t}^{n}(x)=x+B_{t}+n \int_{0}^{t}\left(\rho_{s}^{n}(x)\right)^{-} \mathrm{d} s+\int_{0}^{t} f\left(\rho_{s}^{n}(x)\right) \mathrm{d} s, \quad t \geq 0
$$

The infinitesimal generator of ρ^{n} is for $\varphi \in C_{c}^{2}(\mathbb{R})$

$$
L^{n} \varphi(x):=\frac{1}{2} \varphi^{\prime \prime}(x)+\left(n x^{-}+f(x)\right) \varphi^{\prime}(x), \quad x \in \mathbb{R}
$$

Moreover ρ^{n} admits as reversible invariant measure

$$
\mu_{n}(\mathrm{~d} x)=e^{-n\left(x^{-}\right)^{2}+2 F(x)} \mathrm{d} x
$$

where $F: \mathbb{R} \mapsto \mathbb{R}$ is any function such that

$$
F^{\prime}(x)=f(x), \quad x \in \mathbb{R}
$$

Note that $\left.\left.\mu_{n}(]-\infty, 0\right]\right)<+\infty$ for n large, but $\mu_{n}([0,+\infty[) \leq+\infty$ in general.

The penalised SDE

Lemma

The measure μ is invariant and reversible for $\left(\rho_{t}\right)_{t \geq 0}$ and

$$
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}} \varphi \mathrm{d} \mu_{n}=\int_{\mathbb{R}} \varphi \mathrm{d} \mu, \quad \forall \varphi \in C_{c}(\mathbb{R})
$$

where

$$
\mu(\mathrm{d} x):=\mathbb{1}_{(x \geq 0)} e^{2 F(x)} \mathrm{d} x .
$$

Here is an important message, that we have already noticed for discrete interfaces:

Remark

A reflection for the dynamics means a conditioning for the invariant measure.

Bessel processes

δ-Bessel processes are solutions $\left(\rho_{t}\right)_{t \geq 0}$ to the SDE with $\delta>1$

$$
\begin{equation*}
\rho_{t}=x+\frac{\delta-1}{2} \int_{0}^{t} \rho_{s}^{-1} \mathrm{~d} s+B_{t}, \quad \rho_{t} \geq 0, \quad t \geq 0 \tag{2}
\end{equation*}
$$

where $\left(B_{t}\right)_{t \geq 0}$ is a BM. If $\delta \downarrow 1$ the equation becomes

$$
\begin{equation*}
\rho_{t}=x+\ell_{t}+B_{t}, \quad \ell_{0}=0, \quad \mathrm{~d} \ell \geq 0, \quad \int_{0}^{t} \rho_{s} \mathrm{~d} \ell_{s}=0 \tag{3}
\end{equation*}
$$

i.e. the reflecting Brownian motion.

Bessel processes have the same scaling invariance of BM.
It is well known that a δ-Bessel process visits 0 with positive probability iff $\delta<2$.

White noise

$W: L^{2}\left(\mathbb{R}_{+}^{2}\right) \rightarrow L^{2}(\Omega)$ isometry

Figure: The family $\left(W\left(A_{i}\right)\right)_{i}$ is Gaussian and independent since the sets A_{i} are pairwise disjoint. $W\left(A_{i}\right) \sim \mathscr{N}\left(0, m\left(A_{i}\right)\right)$ and $W\left(\cup_{i} A_{i}\right) \sim \mathscr{N}\left(0, \sum_{i} m\left(A_{i}\right)\right)$.

For all measurable set $A, W(A)$ is the amount of noise contained in A.

Space-time white noise and Cylindrical Brownian motion

Lemma

Let $\left(e_{i}\right)_{i}$ be a complete orthonormal system in $L^{2}([0,+\infty[)$. Then

1. Let $w_{t}^{i}:=W\left(\mathbb{1}_{[0, t]} \otimes e_{i}\right), t \geq 0, i \in \mathbb{N}$. Then $\left(w^{i}\right)_{i}$ is an iid sequence of standard Brownian motions.
2. For all $h \in L^{2}([0,+\infty[)$ and $t \geq 0$

$$
W\left(\mathbb{1}_{[0, t]} \otimes h\right)=\sum_{i} w_{t}^{i}\left\langle e_{i}, h\right\rangle
$$

where the equality is in $L^{2}(\Omega)$.
A cylindrical Brownian motion in a separable Hilbert space H is

$$
\left\langle W_{t}, h\right\rangle:=\sum_{i} B_{t}^{i}\left\langle e_{i}, h\right\rangle, \quad t \geq 0
$$

where $\left(e_{i}\right)_{i}$ is a complete orthonormal system in H and $\left(B^{i}\right)_{i}$ is an iid sequence of Brownian motions.

The stochastic heat equation

We want to study the stochastic PDE

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}+W, \tag{4}\\
v(t, 0)=v(t, 1)=0, \quad t \geq 0 \\
v(0, x)=v_{0}(x), \quad x \in[0,1]
\end{array}\right.
$$

where $W(t, x)$ is a space-time white-noise over $[0,+\infty[\times[0,1]$.
This SPDE is interpreted in the PDE-weak sense: for all $h \in C_{c}^{2}(0,1)$ and $t \geq 0$

$$
\left\langle v_{t}, h\right\rangle=\left\langle v_{0}, h\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle v_{s}, h^{\prime \prime}\right\rangle \mathrm{d} s+\int_{0}^{t} \int_{0}^{1} h(x) W(\mathrm{~d} s, \mathrm{~d} x)
$$

Fourier decomposition

We set for all $k \geq 1$:

$$
\begin{equation*}
e_{k}(x):=\sqrt{2} \sin (k \pi x), \quad x \in[0,1] . \tag{5}
\end{equation*}
$$

Note that $\left\{e_{k}\right\}_{k \geq 1}$ is a complete basis of eigenvectors of the second derivative with homogeneous Dirichlet boundary conditions:

$$
\frac{d^{2}}{d x^{2}} e_{k}=-(\pi k)^{2} e_{k}, \quad e_{k}(0)=e_{k}(1)=0, \quad k \geq 1
$$

Setting $v_{t}^{k}:=\left\langle v(t, \cdot), e_{k}\right\rangle$ we obtain

$$
\begin{gathered}
\mathrm{d} v_{t}^{k}=-\frac{(k \pi)^{2}}{2} v_{t}^{k} \mathrm{~d} t+\mathrm{d} B_{t}^{k}, \quad v_{0}^{k}=\left\langle v_{0}, e_{k}\right\rangle \\
B_{t}^{k}:=\int_{[0, t] \times[0,1]} e_{k}(x) W(\mathrm{~d} s, \mathrm{~d} x)=W\left(\mathbb{1}_{[0, t]} \otimes e_{k}\right) .
\end{gathered}
$$

Fourier decomposition

We proved in Lemma 7 that $\left(B_{t}^{k}, t \geq 0\right)_{k \geq 1}$ is an independent sequence of Brownian motions. Then $\left(v^{k}\right)_{k \geq 1}$ is an independent family of O-U processes of respective parameter $\frac{(\pi k)^{2}}{2}>0$, and

$$
v(t, x)=\sum_{k}\left(e^{-\frac{(\pi k)^{2}}{2} t} v_{0}^{k}+\int_{0}^{t} e^{-\frac{(\pi k)^{2}}{2}(t-s)} \mathrm{d} B_{s}^{k}\right) e_{k}(x)
$$

An important remark is the following:

$$
\sum_{k} \frac{2}{(\pi k)^{2}}<+\infty \quad(d=1)
$$

Proposition

There exists a continuous modification of v s.t.

$$
\sup _{x, y \in[0,1], t, s \in[0, T]} \frac{|v(t, x)-v(s, y)|}{|t-s|^{\frac{1-\varepsilon}{4}}+|x-y|^{\frac{1-\varepsilon}{2}}}<+\infty .
$$

The invariant measure

If we let $t \rightarrow+\infty$ in

$$
v(t, \cdot)=\sum_{k}\left(e^{-\frac{(\pi k)^{2}}{2} t} v_{0}^{k}+\int_{0}^{t} e^{-\frac{(\pi k)^{2}}{2}(t-s)} \mathrm{d} B_{s}^{k}\right) e_{k}
$$

we obtain that the invariant measure of v is the law of

$$
\beta:=\sum_{k=1}^{+\infty} \frac{1}{\pi k} Z_{k} e_{k},
$$

where $\left(Z_{k}\right)_{k \geq 1}$ is an i.i.d. sequence of $\mathcal{N}(0,1)$.

Proposition

$\beta=(\beta(x), x \in[0,1])$ is a Brownian bridge.

Obstacle problems

Let $a \geq 0$. We fix a space-time white noise W on $[0,+\infty[\times[0,1]$. We study the following SPDE with reflection:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+f(u)+W+\eta \tag{6}\\
u(0, x)=u_{0}(x), u(t, 0)=u(t, 1)=a \\
u \geq 0, \mathrm{~d} \eta \geq 0, \int u \mathrm{~d} \eta=0
\end{array}\right.
$$

where we assume that:

1. $u_{0}:[0,1] \mapsto \mathbb{R}$ is continuous and $u_{0} \geq 0$.
2. $f: \mathbb{R} \mapsto \mathbb{R}$ is Lipschitz and bounded.

Reduction to a PDE with random obstacle

Let $a \geq 0$ and v be the unique solution to

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}+W \tag{7}\\
v(t, 0)=v(t, 1)=a, \quad v(0, x)=u_{0}(x)
\end{array}\right.
$$

Then the function $z:=u-v$ solves

$$
\left\{\begin{array}{l}
\frac{\partial z}{\partial t}=\frac{1}{2} \frac{\partial^{2} z}{\partial x^{2}}+f(z+v)+\eta \tag{8}\\
z(0, x)=0, z(t, 0)=z(t, 1)=0 \\
z \geq-v, \mathrm{~d} \eta \geq 0, \int(z+v) \mathrm{d} \eta=0
\end{array}\right.
$$

The important remark here is that equation (8) is a PDE (rather than a SPDE) with random obstacle $-v$.

The Nualart-Pardoux equation

Theorem (Nualart-Pardoux, 1992)
Let $\mathrm{w} \in C([0, T] \times[0,1])$ with $\mathrm{w}(0, \cdot) \geq 0, \mathrm{w}(\cdot, 0) \geq 0, \mathrm{w}(\cdot, 1) \geq 0$.
Then there exists a unique pair (z, η) such that

- $z \in C([0, T] \times[0,1]), \quad z(0, \cdot)=0, \quad z(\cdot, 0)=z(\cdot, 1)=0$
- $\eta(\mathrm{d} t, \mathrm{~d} x)$ is a measure on $] 0, T] \times] 0,1[$ such that $\eta(] 0, T] \times[\delta, 1-\delta])<+\infty$ for all $\delta>0$
- For all $t \in[0, T]$ and $h \in C_{c}^{\infty}(0,1)$

$$
\begin{align*}
\left\langle z_{t}, h\right\rangle= & \frac{1}{2} \int_{0}^{t}\left\langle z_{s}, h^{\prime \prime}\right\rangle \mathrm{d} s+\int_{0}^{t}\left\langle f\left(z_{s}+\mathrm{w}_{s}\right), h\right\rangle \mathrm{d} s \\
& +\int_{0}^{t} \int_{0}^{1} h(x) \eta(\mathrm{d} s, \mathrm{~d} x) \tag{9}
\end{align*}
$$

- $z \geq-w, \quad \int(z+w) d \eta=0$.

Existence: penalisation

We introduce the following approximating problem:

$$
\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=\frac{1}{2} \frac{\partial^{2} u^{\varepsilon}}{\partial x^{2}}+f\left(u^{\varepsilon}\right)+\frac{\left(u^{\varepsilon}\right)^{-}}{\varepsilon}+W \\
u^{\varepsilon}(0, \cdot)=u_{0}, \quad u^{\varepsilon}(t, 0)=u^{\varepsilon}(t, 1)=a .
\end{array}\right.
$$

Proposition

The pair (u, η) is the limit of the pair $\left(u^{\varepsilon}, \eta^{\varepsilon}\right)$ where

$$
\eta^{\varepsilon}(\mathrm{d} t, \mathrm{~d} x):=\frac{\left(u^{\varepsilon}(t, x)\right)^{-}}{\varepsilon} \mathrm{d} t \mathrm{~d} x .
$$

The invariant measure

Let us consider a Brownian motion $\left(B_{t}^{(d)}\right)_{t \geq 0}$ in \mathbb{R}^{d} where $B^{(d)}=\left(B^{1}, \ldots, B^{d}\right)$ and the B^{i},s are iid standard BMs.
Let $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a smooth function and let

$$
\mathrm{d} X_{t}=\nabla V\left(X_{t}\right) \mathrm{d} t+\mathrm{d} B_{t}^{(d)}, \quad X_{0}=x \in \mathbb{R}^{d} .
$$

It is a classical fact that an invariant measure for $\left(X_{t}\right)_{t \geq 0}$ is given by

$$
\exp (2 V(x)) \mathrm{d} x
$$

If this measure is finite on \mathbb{R}^{d}, we obtain an invariant probability measure.

The penalised invariant measure

We consider now the penalised SPDE

$$
\left\{\begin{array}{l}
\frac{\partial u^{\varepsilon}}{\partial t}=\frac{1}{2} \frac{\partial^{2} u^{\varepsilon}}{\partial x^{2}}+f\left(u^{\varepsilon}\right)+\frac{\left(u^{\varepsilon}\right)^{-}}{\varepsilon}+W \\
u^{\varepsilon}(0, \cdot)=u_{0}, \quad u^{\varepsilon}(t, 0)=u^{\varepsilon}(t, 1)=a
\end{array}\right.
$$

The invariant measure is

$$
\nu_{\varepsilon}^{a}(\mathrm{~d} \zeta):=\frac{1}{Z_{\varepsilon}^{a}} \exp \left(2\left\langle F_{\varepsilon}(\zeta), 1\right\rangle\right) \mathbf{W}_{a, a}(\mathrm{~d} \zeta)
$$

where $\mathbf{W}_{a, a}$ is the law of $a+\beta$ and F_{ε} satisfies

$$
F_{\varepsilon}(0)=0, \quad F_{\varepsilon}^{\prime}(y):=f(y)+\frac{y^{-}}{\varepsilon}=f_{\varepsilon}(y)
$$

The penalised invariant measure

Note that

$$
\frac{d}{d r}\left(r^{-}\right)^{2}=-2 r^{-}
$$

Then for $a>0$

$$
\nu_{\varepsilon}^{a}(\mathrm{~d} \zeta)=\frac{1}{Z_{\varepsilon}^{a}} \exp \left(2\langle F(\zeta), 1\rangle-\frac{1}{\varepsilon}\left\langle\left(\zeta^{-}\right)^{2}, 1\right\rangle\right) \mathbf{W}_{a, a}(\mathrm{~d} \zeta),
$$

converges as $\varepsilon \downarrow 0$ to

$$
\nu^{a}(\mathrm{~d} \zeta):=\frac{1}{Z^{a}} \exp (2\langle F(\zeta), 1\rangle) \mathbb{1}_{K}(\zeta) \mathbf{W}_{a, a}(\mathrm{~d} \zeta)
$$

where $K:=\left\{u_{0}:[0,1] \rightarrow \mathbb{R}: u_{0} \in L^{2}(0,1), u_{0} \geq 0\right\}$.

The Brownian excursion, or the 3-Bessel bridge

It turns out that

$$
\mathbf{P}_{a, a}^{3}=\mathbf{W}_{a, a}(\cdot \mid K) .
$$

Then

$$
\nu^{a}(\mathrm{~d} \zeta):=\frac{1}{\hat{Z}^{a}} \exp (2\langle F(\zeta), 1\rangle) \mathbf{P}_{a, a}^{3}(\mathrm{~d} \zeta)
$$

and as $a \downarrow 0$

$$
\nu^{a}(\mathrm{~d} \zeta) \Longrightarrow \nu^{0}(\mathrm{~d} \zeta):=\frac{1}{\hat{Z}^{a}} \exp (2\langle F(\zeta), 1\rangle) \mathbf{P}_{0,0}^{3}(\mathrm{~d} \zeta)
$$

In particular if $f \equiv 0$ then the invariant measure of the SPDE with reflection is simply $\mathbf{P}_{a, a}^{3}$.

Integration by parts

Consider a regular bounded open set $O \subset \mathbb{R}^{d}$. Then the classical Gauss-Green formula states that for all $h \in \mathbb{R}^{d}$

$$
\int_{O}\left(\partial_{h} \varphi\right) \rho \mathrm{d} x=-\int_{O} \varphi \frac{\partial_{h} \rho}{\rho} \rho \mathrm{~d} x-\int_{\partial O} \varphi\langle\hat{n}, h\rangle \rho \mathrm{d} \sigma
$$

- $\varphi, \rho \in C_{b}^{1}(O)$ with $\left.\left.\lambda \leq \rho \leq \lambda^{-1}, \lambda \in\right] 0,1\right]$ is a constant,
- \hat{n} is the inward-pointing normal vector to the boundary ∂O
- σ is the surface measure on ∂O
- $\partial_{h} \varphi$ is the directional derivative of φ along h
- $\partial_{h} \log \rho=\left(\partial_{h} \rho\right) / \rho$.

Integration by parts

Consider a regular bounded open set $O \subset \mathbb{R}^{d}$. Then the classical Gauss-Green formula states that for all $h \in \mathbb{R}^{d}$

$$
\int_{O}\left(\partial_{h} \varphi\right) \rho \mathrm{d} x=-\int_{O} \varphi \frac{\partial_{h} \rho}{\rho} \rho \mathrm{~d} x-\int_{\partial O} \varphi\langle\hat{n}, h\rangle \rho \mathrm{d} \sigma
$$

- $\varphi, \rho \in C_{b}^{1}(O)$ with $\left.\left.\lambda \leq \rho \leq \lambda^{-1}, \lambda \in\right] 0,1\right]$ is a constant,
- \hat{n} is the inward-pointing normal vector to the boundary ∂O
- σ is the surface measure on ∂O
- $\partial_{h} \varphi$ is the directional derivative of φ along h
- $\partial_{h} \log \rho=\left(\partial_{h} \rho\right) / \rho$.

For us, $\mathbf{W}_{a, a}=\rho \mathrm{d} x, \quad K=O$.
What is the analog of $\rho \mathrm{d} \sigma$? and of \hat{n} ? and of ∂O ?

The boundary measure

$$
\begin{aligned}
\mathbf{P}_{a, a}^{3}\left[\partial_{h} \varphi\right]= & -\mathbf{P}_{a, a}^{3}\left[\varphi(X)\left\langle X, h^{\prime \prime}\right\rangle\right] \\
& -\int_{0}^{1} \mathrm{~d} r h(r) \gamma(r, a) \mathbf{P}_{a, a}^{3}\left[\varphi(X) \mid X_{r}=0\right] .
\end{aligned}
$$

where $\gamma(r, a) \geq 0$ is an explicit function of $r \in] 0,1[, a \geq 0$.

$$
\int_{O}\left(\partial_{h} \varphi\right) \rho \mathrm{d} x=-\int_{O} \varphi \frac{\partial_{h} \rho}{\rho} \rho \mathrm{~d} x-\int_{\partial O} \varphi\langle\hat{n}, h\rangle \rho \mathrm{d} \sigma .
$$

The boundary measure

Figure: A typical path under the boundary measure.

The Revuz measure of η

Theorem

For all bounded Borel $\varphi: H \mapsto \mathbb{R}$ and $h \in C_{c}(0,1)$

$$
\begin{aligned}
& \int \nu^{a}\left(\mathrm{~d} u_{0}\right) \mathbb{E}\left[\int_{0}^{t} \int_{0}^{1} h(x) \varphi\left(u_{s}\right) \eta(\mathrm{d} s, \mathrm{~d} x)\right]= \\
& =\frac{t}{2 Z^{a}} \int_{0}^{1} \mathrm{~d} r h(r) \gamma(r, a) \int \varphi(\zeta) e^{2 F(\zeta)} \Sigma_{a}(r, \mathrm{~d} \zeta)
\end{aligned}
$$

where $\Sigma_{a}(r, \cdot):=\mathbf{P}_{a, a}^{3}\left[\cdot \mid X_{r}=0\right]$.

The contact set

We denote by $\pi:[0,+\infty[\times[0,1] \mapsto[0,+\infty[$ the projection $(t, x) \mapsto t$, and for a set $S \subset[0,+\infty[\times[0,1]$ we write

$$
S_{t}:=\{x \in[0,1]:(t, x) \in S\}, \quad t \geq 0
$$

Theorem

Let (u, η) be the stationary solution to equation (6). Let us denote by

$$
\mathscr{C}:=\{(t, x): u(t, x)=0, t>0, x \in] 0,1[\}
$$

the contact set and let us recall that the support of η is contained in \mathscr{C}. Then a.s. the set $\pi(\mathscr{C})$ has zero Lebesgue measure and there exists a measurable set $S \subset \mathscr{C}$ such that

1. $\eta(\mathscr{C} \backslash S)=0$
2. for all $t>0$, either $S_{t}=\emptyset$ or $S_{t}=\left\{r_{t}\right\}$, with $\left.r_{t} \in\right] 0,1[$.
3. if $S_{t}=\left\{r_{t}\right\}$, then $u(t, x)>0$ for all $\left.x \in\right] 0,1\left[\backslash\left\{r_{t}\right\}\right.$ and $u\left(t, r_{t}\right)=0$.

The contact set

SPDEs with repulsion from 0

We study now the SPDE

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{c}{u^{3}}+W \\
u(t, 0)=u(t, 1)=a, \quad t \geq 0 \\
u(0, x)=u_{0}(x), \quad x \in[0,1]
\end{array}\right.
$$

where $a \geq 0$ and $c>0$ are fixed and we search for solutions $u \geq 0$.
This SPDE has the same invariance scaling as the linear and the reflected SPDE.

This SPDE is an analogue of Bessel processes for $\delta>1$ (see the slide no. 28).

SPDEs with repulsion

Theorem

Let $a \geq 0, c>0$ and $u_{0} \in C([0,1]) \cap K$. Then there exists a unique continuous $u:[0,+\infty[\times[0,1] \mapsto[0,+\infty[$ such that

1. $u^{-3} \in L_{l o c}^{1}([0,+\infty[\times] 0,1[)$
2. A.s. for all $t \geq 0$ and $h \in C_{c}^{\infty}(0,1)$

$$
\begin{gather*}
\left\langle u_{t}, h\right\rangle=\left\langle u_{0}, h\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle u_{s}, h^{\prime \prime}\right\rangle \mathrm{d} s+\int_{0}^{1} h(x) W(\mathrm{~d} s, \mathrm{~d} x) \\
+c \int_{0}^{t} \int_{0}^{1} h(x) u^{-3}(s, x) \mathrm{d} s \mathrm{~d} x . \tag{10}
\end{gather*}
$$

If $\delta>3$ is such that $c=\frac{(\delta-3)(\delta-1)}{8}$, then the only invariant probability measure of (10) is $\mathbf{P}_{a, a}^{\delta}$, law of the δ-Bessel bridge.

Hitting of zero

We have now functions $u=u^{\delta}$ for $\delta \geq 3$, stationary solutions to equations with reflection $(\delta=3)$ or repulsion from $0(\delta>3)$.

One of the main results of this course is the following
Theorem (Dalang, Mueller, Z. 2006)
Let $\delta \geq 3$. If $k \in \mathbb{N}$ satisfies

$$
k>\frac{4}{\delta-2}
$$

the probability that there exist $t>0$ and $x_{1}, \ldots, x_{k} \in[0,1]$ such that $0<x_{1}<\cdots<x_{k}<1$ and $u\left(t, x_{i}\right)=0$ for all $i=1, \ldots, k$, is zero.

Hitting of zero

In particular, setting for $\delta \geq 3$

$$
\left.\left.\zeta(\delta):=\sup \left\{k: \exists\left(t, x_{1}, \ldots, x_{k}\right) \in\right] 0,1\right] \times\right] 0,1\left[, u\left(t, x_{i}\right)=0\right\}
$$

then

- for $\delta=3$, a.s. $\zeta(\delta) \leq 4$
- for $\delta \in] 3,3+1 / 3]$, a.s. $\zeta(\delta) \leq 3$
- for $\delta \in] 3+1 / 3,4]$, a.s. $\zeta(\delta) \leq 2$
- for $\delta \in] 4,6]$, a.s. $\zeta(\delta) \leq 1$
- for $\delta>6$, a.s. $\zeta(\delta)=0$.

In any case $\zeta(\delta) \leq 4$ a.s. for all $\delta \geq 3$. The behavior at the transition points $\delta \in\{3,3+1 / 3,4,6\}$ might be non-optimal. Indeed, we conjecture that a.s.

$$
\zeta(3) \leq 3, \quad \zeta(3+1 / 3) \leq 2, \quad \zeta(4) \leq 1, \quad \zeta(6)=0
$$

Hitting of zero

Theorem (Dalang, Mueller, Z.)

(a) For all $\delta \in[3,5]$, with positive probability, there exist $t>0$ and $x \in] 0,1\left[\right.$ such that $u_{t}(x)=0$.
(b) For $\delta=3$, with positive probability there exist $t>0$ and $\left.\left\{x_{1}, x_{2}, x_{3}\right\} \subset\right] 0,1\left[, x_{1}<x_{2}<x_{3}\right.$, such that $u_{t}\left(x_{i}\right)=0$, $i=1,2,3$.

We conjecture that for all $\delta \geq 3$ a.s.

$$
\zeta(\delta)=\left\lceil\frac{4}{\delta-2}\right\rceil-1
$$

Back to the discrete interface

- What can be said on the contact set of the dynamical discrete interface as $N \rightarrow+\infty$?

Other open problems

- Construct SPDEs whose invariant measure is the δ-Bessel bridge for $\delta<3$ (log-concavity is lost).
- One can conjecture that a.s.

$$
\zeta(\delta)=\left\lceil\frac{4}{\delta-2}\right\rceil-1, \quad \delta \geq 2
$$

- For $\delta<2$ the situation is even more complicated since 0 is hit by the stationary profile.
- The case $\delta=1$ (reflecting BM) is the most intriguing since it is the limit of homogeneous pinning models.
- There is an IbPF for $\delta=1$ but the form of the dynamics is hard even to conjecture.
- Dynamics of random trees (Aldous' CRT)

