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Symmetric simple random walk

(Yi)i≥1 i.i.d. sequence with P(Yi = 1) = P(Yi = −1) = 1/2

S0 := a ∈ Z, Sn+1 = Sn + Yn+1,

(Sn)n≥0 defines a Markov chain with valued in Z.
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Symmetric simple random walk with reflection

Xn+1 :=


Xn + Yn+1 if Xn > 0

1 if Xn = 0.

This defines a Markov chain with values in Z+ = {0, 1, . . .}.
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Absolute value of the SSRW

Let Zn := |Sn|, with S0 = a ≥ 0. Although this is not obvious at first
sight, (Zn)n≥0 is also a Markov chain:

Zn+1 =


Zn + Wn+1 if Zn > 0

1 if Zn = 0,

where Wn+1 := Yn+1(1Sn≥0 − 1Sn<0).

It is easy to see that (Wi)i≥1 is a copy of (Yi)i≥1 and then (Zn)n≥0 and
(Xn)n≥0 (for the same fixed a) have the same law.
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Discrete interfaces

We define now a Markov chain with values in discrete paths. We fix
N ∈ N and we define the state space

EN := {w ∈ Z2N : w(0) = w(2N) = 0,

|w(i)− w(i− 1)| = 1, ∀ i = 1, . . . , 2N}.

0 2N

0 2N

0 2N

1

Figure: A typical path in EN
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The free evolution

Then we define a Markov chain with values in EN as follows: we define
a map F : EN × {1, . . . , 2N − 1} → EN , F(w, j) = ŵ ∈ EN , where

ŵi =


wi + 2 if i = j and wi−1 = wi+1 > wi

wi − 2 if i = j and wi−1 = wi+1 < wi

wi otherwise.

0 2N

We let (Un)n≥1 be an i.i.d. sequence of uniform random variables on
{1, . . . , 2N − 1}; then

en+1 := F(en,Un+1), e0 ∈ EN .
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The free evolution

We denote the transition matrix of (en)n≥0 by

P(x, y) = P(F(x,U1) = y).

It is easy to see that P(x, y) = P(y, x) and therefore the uniform
measure on EN is invariant and reversible for P.

This is in fact the unique probability invariant measure of (en)n≥0 by
the following

Lemma
The Markov chain (en)n≥0 is aperiodic and irreducible.
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The reflected interface

Let us now add reflection to our discrete interface. We set

E+
N := {w ∈ EN : w(i) ≥ 0, ∀ i = 0, . . . , 2N}.
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Figure: A typical path in E+
N

Reflection means now suppression of transitions which would let e+n
take negative values:
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The reflected interface

The Markov evolution in E+
N is defined as follows:

F+ : E+
N × {1, . . . , 2N − 1} → E+

N

F+(w, j) =

{
F(w, j) if F(w, j) ∈ E+

N
w otherwise.

Then our E+
N -valued Markov chain (e+n )n≥0 is defined by

e+n+1 := F+(e+n ,Un+1), e+0 ∈ E+
N .

Lemma
The Markov chain (e+n )n≥0 has a unique invariant probability measure,
the uniform probability measure on E+

N , which is furthermore
reversible for (e+n )n≥0.

We see that the reflection for the dynamics is equivalent to a
conditioning for the invariant measure.
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An important remark

Let |en| be the absolute value of the free interface (en)n≥0. If (en)n≥0 is
stationary then the distribution of |e0| is a probability measure on E+

N

P(|e0| = w) ∝ #{w′ ∈ EN : |w′| = w} = 2L(w),

L(w) :=

2N∑
i=1

1(wi=0), w ∈ E+
N .

In other words L(w) is the number of excursions of w.

On the other hand, if (e+n )n≥0 is stationary then the law of e+0 is
uniform on E+

N , so that e+0 and |e0| have different laws.

Moreover (|en|)n≥0 is not Markovian.
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Scaling limits

Let (Sn)n≥0 be the SSRW with S0 := 0 and

BN
t :=

1√
N

SbNtc, t ≥ 0.

By Donsker’s theorem (BN
t )t≥0 =⇒ (Bt)t≥0 as N → +∞.

Under the same scaling the reflecting SSRW (Xn)n≥0 converges to the
reflecting Brownian motion (ρt)t≥0.

This process is given by a stochastic differential equation

dρt = dBt + d`t, ρt ≥ 0, d`t ≥ 0,
∫ ∞

0
ρt d`t = 0,

I t 7→ (ρt, `t) is continuous, ρt is non-negative
I `0 = 0, `s ≤ `t for s ≤ t
I supp(d`t) ⊂ {t ≥ 0 : ρt = 0}.

The measure d`t is the reflection term.
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Scaling of the free interface

Let us first consider the stationary version of (en)n≥0 and define

vN(t, x) =
1√
2N

eb4N2tc(b2Nxc), t ≥ 0, x ∈ [0, 1].
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Figure: A typical path of vN(t, ·) for any t ≥ 0 when N is large
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The stochastic heat equation

As N → +∞, vN =⇒ (v(t, x), t ≥ 0, x ∈ [0, 1]), stationary solution to
a stochastic partial differential equation (SPDE)

∂v
∂t

=
1
2
∂2v
∂x2 + W,

v(t, 0) = v(t, 1) = 0, t ≥ 0,

v(0, x) = v0(x), x ∈ [0, 1].

Here W is a space-time white noise.
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Scaling of the reflected interface

Let us now consider the stationary version of (e+n )n≥0 and define

uN(t, x) =
1√
2N

e+b4N2tc(b2Nxc), t ≥ 0, x ∈ [0, 1].
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Figure: A typical path of uN(t, ·) for any t ≥ 0 when N is large
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A SPDE with reflection

As N → +∞, uN =⇒ (u(t, x), t ≥ 0, x ∈ [0, 1]), t, that we are going to
study in detail from chapter 5 on and is a stationary solution to a SPDE
with reflection (Funaki-Olla, Z., Etheridge-Labbé)

∂u
∂t

=
1
2
∂2u
∂x2 + W + η

u(0, x) = u0(x), u(t, 0) = u(t, 1) = 0

u ≥ 0, dη ≥ 0,
∫

u dη = 0.

Here (u, η) is a random pair that consists of
I a continuous non-negative functions u(t, x) ≥ 0
I a Radon measure η on ]0,+∞[× ]0, 1[,

such that the support of η is contained in {(t, x) : u(t, x) = 0}.
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The contact set

For all t ≥ 0 the typical profile of u(t, ·) is positive on ]0, 1[. Where
does the reflection act?

This apparent paradox is solved if we formulate the sentence more
precisely: the correct result is that for all t ≥ 0, a.s. u(t, ·) > 0 on ]0, 1[:

∀ t > 0, P(∃ x ∈ ]0, 1[ : u(t, x) = 0) = 0.

However this does not exclude the existence, with positive probability,
of exceptional times t ≥ 0 and x ∈ ]0, 1[ such that u(t, x) = 0:

P(∃ t > 0, x ∈ ]0, 1[ : u(t, x) = 0) > 0.
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The contact set

The next question is: what can be said about the contact set

Z := {(t, x) : t > 0, x ∈ ]0, 1[, u(t, x) = 0}.
After proving that with positive probability u visits 0, one can ask:

I what is the typical behavior at exceptional times t ≥ 0 ?
I That is, if t > 0 is such that there exists x ∈ ]0, 1[ so that

u(t, x) = 0, then how many such points x exist?
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Figure: How many x such that u(t, x) = 0: infinitely many?
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The contact set
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Figure: How many x such that u(t, x) = 0: finitely many?
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Figure: How many x such that u(t, x) = 0: just one? or two? or three?
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SDEs with reflection

Proposition
Let (Bt)t≥0 be a standard BM and x ≥ 0. Then there exists a unique
couple (ρt, `t)t≥0 of continuous real processes such that

ρt = x + Bt +

∫ t

0
f (ρs) ds + `t, t ≥ 0

`0 = 0,

ρt ≥ 0, d`t ≥ 0,
∫ ∞

0
ρt d`t = 0.

(1)

If f ≡ 0 we call ρ the reflecting BM.
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The reflecting BM

0 t
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Penalisation

Let n ≥ 1, x ≥ 0 and

ρn
t = x + Bt + n

∫ t

0
(ρn

s )− ds +

∫ t

0
f (ρn

s ) ds, t ∈ [0,T],

where r− = (r)− := max{−r, 0}, r ∈ R.

Additive noise and Lipschitz drift, so clearly pathwise uniqueness and
existence of solutions by a Picard iteration.

Proposition

1. if n ≤ m then ρn
t ≤ ρm

t for all t ∈ [0,T].

2. ρn ↑ ρ uniformly on [0,T] as n ↑ +∞, where (ρt, `t)t≥0 is the
unique solution to the equation with reflection (1). Moreover

lim
n↑+∞

n
∫ t

0
(ρn

s )− ds = `t, t ∈ [0,T].
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Penalisation
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The penalised SDE

For x ∈ R and B a standard BM we set

ρn
t (x) = x + Bt + n

∫ t

0
(ρn

s (x))− ds +

∫ t

0
f (ρn

s (x)) ds, t ≥ 0,

The infinitesimal generator of ρn is for ϕ ∈ C2
c(R)

Lnϕ(x) :=
1
2
ϕ′′(x) + (nx− + f (x))ϕ′(x), x ∈ R.

Moreover ρn admits as reversible invariant measure

µn(dx) = e−n (x−)2+2F(x) dx

where F : R 7→ R is any function such that

F′(x) = f (x), x ∈ R.

Note that µn(]−∞, 0]) < +∞ for n large, but µn([0,+∞[) ≤ +∞ in
general.
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The penalised SDE

Lemma
The measure µ is invariant and reversible for (ρt)t≥0 and

lim
n→+∞

∫
R
ϕ dµn =

∫
R
ϕ dµ, ∀ϕ ∈ Cc(R),

where
µ(dx) := 1(x≥0) e2F(x) dx.

Here is an important message, that we have already noticed for discrete
interfaces:

Remark
A reflection for the dynamics means a conditioning for the invariant
measure.
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Bessel processes

δ-Bessel processes are solutions (ρt)t≥0 to the SDE with δ > 1

ρt = x +
δ − 1

2

∫ t

0
ρ−1

s ds + Bt, ρt ≥ 0, t ≥ 0, (2)

where (Bt)t≥0 is a BM. If δ ↓ 1 the equation becomes

ρt = x + `t + Bt, `0 = 0, d` ≥ 0,
∫ t

0
ρs d`s = 0, (3)

i.e. the reflecting Brownian motion.

Bessel processes have the same scaling invariance of BM.

It is well known that a δ-Bessel process visits 0 with positive
probability iff δ < 2.
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White noise

W : L2(R2
+)→ L2(Ω) isometry

⇥
0

A1

A2

A3

1

Figure: The family (W(Ai))i is Gaussian and independent since the sets Ai are
pairwise disjoint. W(Ai) ∼ N (0,m(Ai)) and W(∪iAi) ∼ N (0,

∑
i m(Ai)).

For all measurable set A, W(A) is the amount of noise contained in A.
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Space-time white noise and Cylindrical Brownian motion

Lemma
Let (ei)i be a complete orthonormal system in L2([0,+∞[). Then

1. Let wi
t := W(1[0,t] ⊗ ei), t ≥ 0, i ∈ N. Then (wi)i is an iid

sequence of standard Brownian motions.

2. For all h ∈ L2([0,+∞[) and t ≥ 0

W(1[0,t] ⊗ h) =
∑

i

wi
t 〈ei, h〉

where the equality is in L2(Ω).

A cylindrical Brownian motion in a separable Hilbert space H is

〈Wt, h〉 :=
∑

i

Bi
t 〈ei, h〉, t ≥ 0,

where (ei)i is a complete orthonormal system in H and (Bi)i is an iid
sequence of Brownian motions.
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The stochastic heat equation

We want to study the stochastic PDE

∂v
∂t

=
1
2
∂2v
∂x2 + W,

v(t, 0) = v(t, 1) = 0, t ≥ 0,

v(0, x) = v0(x), x ∈ [0, 1]

(4)

where W(t, x) is a space-time white-noise over [0,+∞[×[0, 1].

This SPDE is interpreted in the PDE-weak sense: for all h ∈ C2
c(0, 1)

and t ≥ 0

〈vt, h〉 = 〈v0, h〉 +
1
2

∫ t

0
〈vs, h′′〉 ds +

∫ t

0

∫ 1

0
h(x) W(ds, dx).
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Fourier decomposition

We set for all k ≥ 1:

ek(x) :=
√

2 sin(kπx), x ∈ [0, 1]. (5)

Note that {ek}k≥1 is a complete basis of eigenvectors of the second
derivative with homogeneous Dirichlet boundary conditions:

d2

dx2 ek = −(πk)2ek, ek(0) = ek(1) = 0, k ≥ 1.

Setting vk
t := 〈v(t, ·), ek〉 we obtain

dvk
t = −(kπ)2

2
vk

t dt + dBk
t , vk

0 = 〈v0, ek〉

Bk
t :=

∫
[0,t]×[0,1]

ek(x) W(ds, dx) = W
(
1[0,t] ⊗ ek

)
.
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Fourier decomposition

We proved in Lemma 7 that (Bk
t , t ≥ 0)k≥1 is an independent sequence

of Brownian motions. Then (vk
· )k≥1 is an independent family of O-U

processes of respective parameter (πk)2

2 > 0, and

v(t, x) =
∑

k

(
e−

(πk)2

2 tvk
0 +

∫ t

0
e−

(πk)2

2 (t−s) dBk
s

)
ek(x).

An important remark is the following:∑
k

2
(πk)2 < +∞ (d = 1).

Proposition
There exists a continuous modification of v s.t.

sup
x,y∈[0,1], t,s∈[0,T]

|v(t, x)− v(s, y)|
|t − s| 1−ε4 + |x− y| 1−ε2

< +∞.
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The invariant measure

If we let t→ +∞ in

v(t, ·) =
∑

k

(
e−

(πk)2

2 tvk
0 +

∫ t

0
e−

(πk)2

2 (t−s) dBk
s

)
ek

we obtain that the invariant measure of v is the law of

β :=

+∞∑
k=1

1
πk

Zk ek,

where (Zk)k≥1 is an i.i.d. sequence of N (0, 1).

Proposition
β = (β(x), x ∈ [0, 1]) is a Brownian bridge.
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Obstacle problems

Let a ≥ 0. We fix a space-time white noise W on [0,+∞[×[0, 1]. We
study the following SPDE with reflection:

∂u
∂t

=
1
2
∂2u
∂x2 + f (u) + W + η

u(0, x) = u0(x), u(t, 0) = u(t, 1) = a

u ≥ 0, dη ≥ 0,
∫

u dη = 0

(6)

where we assume that:

1. u0 : [0, 1] 7→ R is continuous and u0 ≥ 0.

2. f : R 7→ R is Lipschitz and bounded.
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Reduction to a PDE with random obstacle

Let a ≥ 0 and v be the unique solution to
∂v
∂t

=
1
2
∂2v
∂x2 + W,

v(t, 0) = v(t, 1) = a, v(0, x) = u0(x).

(7)

Then the function z := u− v solves

∂z
∂t

=
1
2
∂2z
∂x2 + f (z + v) + η

z(0, x) = 0, z(t, 0) = z(t, 1) = 0

z ≥ −v, dη ≥ 0,
∫

(z + v) dη = 0.

(8)

The important remark here is that equation (8) is a PDE (rather than a
SPDE) with random obstacle −v.
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The Nualart-Pardoux equation

Theorem (Nualart-Pardoux, 1992)
Let w ∈ C([0,T]× [0, 1]) with w(0, ·) ≥ 0, w(·, 0) ≥ 0, w(·, 1) ≥ 0.
Then there exists a unique pair (z, η) such that

I z ∈ C([0,T]× [0, 1]), z(0, ·) = 0, z(·, 0) = z(·, 1) = 0

I η(dt, dx) is a measure on ]0,T]× ]0, 1[ such that
η(]0,T]× [δ, 1− δ]) < +∞ for all δ > 0

I For all t ∈ [0,T] and h ∈ C∞c (0, 1)

〈zt, h〉 =
1
2

∫ t

0
〈zs, h′′〉 ds +

∫ t

0
〈 f (zs + ws), h〉 ds

+

∫ t

0

∫ 1

0
h(x) η(ds, dx)

(9)

I z ≥ −w,
∫

(z + w) dη = 0.
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Existence: penalisation

We introduce the following approximating problem:
∂uε

∂t
=

1
2
∂2uε

∂x2 + f (uε) +
(uε)−

ε
+ W

uε(0, ·) = u0, uε(t, 0) = uε(t, 1) = a.

Proposition
The pair (u, η) is the limit of the pair (uε, ηε) where

ηε(dt, dx) :=
(uε(t, x))−

ε
dt dx.
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The invariant measure

Let us consider a Brownian motion (B(d)
t )t≥0 in Rd where

B(d) = (B1, . . . ,Bd) and the Bi’s are iid standard BMs.

Let V : Rd → R be a smooth function and let

dXt = ∇V(Xt) dt + dB(d)
t , X0 = x ∈ Rd.

It is a classical fact that an invariant measure for (Xt)t≥0 is given by

exp(2V(x)) dx.

If this measure is finite on Rd, we obtain an invariant probability
measure.
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The penalised invariant measure

We consider now the penalised SPDE
∂uε

∂t
=

1
2
∂2uε

∂x2 + f (uε) +
(uε)−

ε
+ W

uε(0, ·) = u0, uε(t, 0) = uε(t, 1) = a.

The invariant measure is

νa
ε(dζ) :=

1
Za
ε

exp (2〈Fε(ζ), 1〉) Wa,a(dζ),

where Wa,a is the law of a + β and Fε satisfies

Fε(0) = 0, F′ε(y) := f (y) +
y−

ε
= fε(y).
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The penalised invariant measure

Note that
d
dr

(
r−
)2

= −2r−.

Then for a > 0

νa
ε(dζ) =

1
Za
ε

exp
(

2〈F(ζ), 1〉 − 1
ε
〈
(
ζ−
)2
, 1〉
)

Wa,a(dζ),

converges as ε ↓ 0 to

νa(dζ) :=
1

Za exp (2〈F(ζ), 1〉)1K(ζ) Wa,a(dζ),

where K := {u0 : [0, 1]→ R : u0 ∈ L2(0, 1), u0 ≥ 0}.
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The Brownian excursion, or the 3-Bessel bridge

It turns out that
P3

a,a = Wa,a( · |K).

Then
νa(dζ) :=

1
Ẑa

exp (2〈F(ζ), 1〉) P3
a,a(dζ),

and as a ↓ 0

νa(dζ) =⇒ ν0(dζ) :=
1

Ẑa
exp (2〈F(ζ), 1〉) P3

0,0(dζ).

In particular if f ≡ 0 then the invariant measure of the SPDE with
reflection is simply P3

a,a.
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Integration by parts

Consider a regular bounded open set O ⊂ Rd. Then the classical
Gauss-Green formula states that for all h ∈ Rd∫

O
(∂hϕ) ρ dx = −

∫
O
ϕ
∂hρ

ρ
ρ dx −

∫
∂O
ϕ 〈n̂, h〉 ρ dσ

I ϕ, ρ ∈ C1
b(O) with λ ≤ ρ ≤ λ−1, λ ∈ ]0, 1] is a constant,

I n̂ is the inward-pointing normal vector to the boundary ∂O
I σ is the surface measure on ∂O
I ∂hϕ is the directional derivative of ϕ along h
I ∂h log ρ = (∂hρ)/ρ.

For us, Wa,a = ρ dx, K = O.

What is the analog of ρ dσ? and of n̂? and of ∂O?
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Integration by parts

Consider a regular bounded open set O ⊂ Rd. Then the classical
Gauss-Green formula states that for all h ∈ Rd∫

O
(∂hϕ) ρ dx = −

∫
O
ϕ
∂hρ

ρ
ρ dx −

∫
∂O
ϕ 〈n̂, h〉 ρ dσ

I ϕ, ρ ∈ C1
b(O) with λ ≤ ρ ≤ λ−1, λ ∈ ]0, 1] is a constant,

I n̂ is the inward-pointing normal vector to the boundary ∂O
I σ is the surface measure on ∂O
I ∂hϕ is the directional derivative of ϕ along h
I ∂h log ρ = (∂hρ)/ρ.

For us, Wa,a = ρ dx, K = O.

What is the analog of ρ dσ? and of n̂? and of ∂O?
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The boundary measure

P3
a,a [∂hϕ] =−P3

a,a
[
ϕ(X) 〈X, h′′〉

]
−
∫ 1

0
dr h(r) γ(r, a) P3

a,a [ϕ(X) |Xr = 0] .

where γ(r, a) ≥ 0 is an explicit function of r ∈ ]0, 1[, a ≥ 0.

∫
O

(∂hϕ) ρ dx = −
∫

O
ϕ
∂hρ

ρ
ρ dx −

∫
∂O
ϕ 〈n̂, h〉 ρ dσ.
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The boundary measure

0 1 0 1

0 r 1

1

Figure: A typical path under the boundary measure.
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The Revuz measure of η

Theorem
For all bounded Borel ϕ : H 7→ R and h ∈ Cc(0, 1)∫

νa(du0)E
[∫ t

0

∫ 1

0
h(x)ϕ(us) η(ds, dx)

]
=

=
t

2Za

∫ 1

0
dr h(r) γ(r, a)

∫
ϕ(ζ) e2F(ζ) Σa(r, dζ).

where Σa(r, ·) := P3
a,a[ · |Xr = 0].
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The contact set

We denote by π : [0,+∞[×[0, 1] 7→ [0,+∞[ the projection (t, x) 7→ t,
and for a set S ⊂ [0,+∞[×[0, 1] we write

St := {x ∈ [0, 1] : (t, x) ∈ S}, t ≥ 0.

Theorem
Let (u, η) be the stationary solution to equation (6). Let us denote by

C := {(t, x) : u(t, x) = 0, t > 0, x ∈ ]0, 1[ }

the contact set and let us recall that the support of η is contained in C .
Then a.s. the set π(C ) has zero Lebesgue measure and there exists a
measurable set S ⊂ C such that

1. η(C \ S) = 0

2. for all t > 0, either St = ∅ or St = {rt}, with rt ∈ ]0, 1[.

3. if St = {rt}, then u(t, x) > 0 for all x ∈ ]0, 1[ \{rt} and
u(t, rt) = 0.
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The contact set
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t
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SPDEs with repulsion from 0

We study now the SPDE

∂u
∂t

=
1
2
∂2u
∂x2 +

c
u3 + W

u(t, 0) = u(t, 1) = a, t ≥ 0

u(0, x) = u0(x), x ∈ [0, 1]

where a ≥ 0 and c > 0 are fixed and we search for solutions u ≥ 0.

This SPDE has the same invariance scaling as the linear and the
reflected SPDE.

This SPDE is an analogue of Bessel processes for δ > 1 (see the slide
no. 28).
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SPDEs with repulsion

Theorem
Let a ≥ 0, c > 0 and u0 ∈ C([0, 1]) ∩ K. Then there exists a unique
continuous u : [0,+∞[×[0, 1] 7→ [0,+∞[ such that

1. u−3 ∈ L1
loc([0,+∞[× ]0, 1[)

2. A.s. for all t ≥ 0 and h ∈ C∞c (0, 1)

〈ut, h〉 = 〈u0, h〉+
1
2

∫ t

0
〈us, h′′〉 ds +

∫ 1

0
h(x) W(ds, dx)

+ c
∫ t

0

∫ 1

0
h(x) u−3(s, x) ds dx.

(10)

If δ > 3 is such that c = (δ−3)(δ−1)
8 , then the only invariant probability

measure of (10) is Pδa,a, law of the δ-Bessel bridge.
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Hitting of zero

We have now functions u = uδ for δ ≥ 3, stationary solutions to
equations with reflection (δ = 3) or repulsion from 0 (δ > 3).

One of the main results of this course is the following

Theorem (Dalang, Mueller, Z. 2006)
Let δ ≥ 3. If k ∈ N satisfies

k >
4

δ − 2
,

the probability that there exist t > 0 and x1, . . . , xk ∈ [0, 1] such that
0 < x1 < · · · < xk < 1 and u(t, xi) = 0 for all i = 1, . . . , k, is zero.
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Hitting of zero

In particular, setting for δ ≥ 3

ζ(δ) := sup{k : ∃ (t, x1, . . . , xk) ∈ ]0, 1]× ]0, 1[, u(t, xi) = 0}

then
I for δ = 3, a.s. ζ(δ) ≤ 4
I for δ ∈ ]3, 3 + 1/3], a.s. ζ(δ) ≤ 3
I for δ ∈ ]3 + 1/3, 4], a.s. ζ(δ) ≤ 2
I for δ ∈ ]4, 6], a.s. ζ(δ) ≤ 1
I for δ > 6, a.s. ζ(δ) = 0.

In any case ζ(δ) ≤ 4 a.s. for all δ ≥ 3. The behavior at the transition
points δ ∈ {3, 3 + 1/3, 4, 6} might be non-optimal. Indeed, we
conjecture that a.s.

ζ(3) ≤ 3, ζ(3 + 1/3) ≤ 2, ζ(4) ≤ 1, ζ(6) = 0.
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Hitting of zero

Theorem (Dalang, Mueller, Z.)

(a) For all δ ∈ [3, 5], with positive probability, there exist t > 0 and
x ∈ ]0, 1[ such that ut(x) = 0.

(b) For δ = 3, with positive probability there exist t > 0 and
{x1, x2, x3} ⊂ ]0, 1[, x1 < x2 < x3, such that ut(xi) = 0,
i = 1, 2, 3.

We conjecture that for all δ ≥ 3 a.s.

ζ(δ) =

⌈
4

δ − 2

⌉
− 1.
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Back to the discrete interface

0 2N

I What can be said on the contact set of the dynamical discrete
interface as N → +∞?

Lorenzo Zambotti (LPMA, Univ. Paris 6) November 2015, Bristol



Other open problems

I Construct SPDEs whose invariant measure is the δ-Bessel bridge
for δ < 3 (log-concavity is lost).

I One can conjecture that a.s.

ζ(δ) =

⌈
4

δ − 2

⌉
− 1, δ ≥ 2.

I For δ < 2 the situation is even more complicated since 0 is hit by
the stationary profile.

I The case δ = 1 (reflecting BM) is the most intriguing since it is
the limit of homogeneous pinning models.

I There is an IbPF for δ = 1 but the form of the dynamics is hard
even to conjecture.

I Dynamics of random trees (Aldous’ CRT)
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