Some percolation processes with infinite range dependencies

Marcelo Hilário

UFMG (Belo Horizonte) and Unige (Genève)
partialy joint with H. Duminil-Copin (Genève), G. Kozma (Tel-Aviv), V. Sidoravicius (Rio de Janeiro) and A.Teixeira (Rio de Janeiro)

$$
2015 \text { - Bristol }
$$

Bernoulli Percolation

- \mathbb{Z}^{d}-lattice $=\left(V\left(\mathbb{Z}^{d}\right), E\left(\mathbb{Z}^{d}\right)\right)$.
- $p \in[0,1]$.
- Declare each site (or edge) independently
$\begin{cases}\text { open } & \text { with prob. } p \\ \text { closed } & \text { with prob. } 1-p .\end{cases}$

- \mathbb{P}_{p} corresponding law in $\{0,1\}^{\mathbb{Z}^{d}}$ (or $\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}$).
- Important events

$$
\{0 \leftrightarrow \partial B(n)\} \quad\{0 \leftrightarrow \infty\} \quad \mathcal{C}_{R L}(\tau n, n) \quad \mathcal{C}_{T B}(\tau n, n) .
$$

The phase transition

- $p \mapsto \mathbb{P}_{p}(0 \leftrightarrow \infty)$ is a non-decreasing function.
- Critical point: $p_{c}\left(\mathbb{Z}^{d}\right)=\inf \left\{p \in[0,1] ; \mathbb{P}_{p}(0 \leftrightarrow \infty)\right\}>0$.
- Phase transition: For $d \geq 2,0<p_{c}\left(\mathbb{Z}^{d}\right)<1$.

only finite components subcritical phase
unique infinite component supercritical phase

Exponential decay of connectivity

How does the quantity $\{0 \leftrightarrow \partial B(n)\}$ behaves as a function of n ?
Subcritical phase:
If $p<p_{c}\left(\mathbb{Z}^{d}\right)$, then there exists $\alpha=\alpha(p, d)>0$ such that

$$
\mathbb{P}_{p}\left(\{0 \leftrightarrow \partial B(n)) \leq e^{-\alpha(p) n}\right.
$$

(Menshikov '86, Aizenman \& Barsky '87).

Supercritical phase:

If $p>p_{c}\left(\mathbb{Z}^{d}\right)$, then there exists $\sigma=\sigma(p, d)>0$ such that

$$
\mathbb{P}_{p}\left(\{0 \leftrightarrow \partial B(n) \leftrightarrow \infty) \leq e^{-\sigma(p) n} .\right.
$$

(Chayes, Chayes \& Newman '87).

only infinite components			unique infinite component	
0	exponential decay	$p_{c}\left(\mathbb{Z}^{d}\right)$	exponential decay	1

Drilling a wooden cube or playing with the Oskar's puzzle

Coordinate Percolation

- \mathbb{Z}^{d}-lattice, $d \geq 3$.
- $\left\{e_{1}, \ldots, e_{d}\right\}$ standard orthonormal basis.
- $p_{1}, \ldots, p_{d} \in[0,1]$ intensity parameters.
- Remove at random lines parallel to e_{i} with probability p_{i} independently.

- $\mathcal{L}=$ set of removed sites.
- $\mathcal{V}=\mathbb{Z}^{d} \backslash \mathcal{L}$ vacant set.
- $\mathbf{p}=\left(p_{1}, \ldots, p_{d}\right)$.
- $\mathbb{P}_{\mathbf{p}}=$ law of the process.

Phase transition

Existence of the subcritical phase
Existence of the supercritical phase

Phase transition

Theorem (H., Sidoravicius, '11)
Assume that $p_{i}<p_{c}\left(\mathbb{Z}^{d-1}\right)$ for some $i \in\{1, \ldots, d\}$, and that $p_{j} \neq 1$ for some $j \in\{1, \ldots, d\} \backslash\{i\}$ then

$$
\begin{equation*}
\mathbb{P}_{\mathbf{p}}(\{\mathbf{0} \leftrightarrow \infty\})=0 . \tag{1}
\end{equation*}
$$

On the other hand if p_{1}, \ldots, p_{d} are sufficiently close to 1 , then

$$
\begin{equation*}
\mathbb{P}_{\mathbf{p}}(\{\mathbf{0} \leftrightarrow \infty\})>0 \tag{2}
\end{equation*}
$$

Theorem (H., Sidoravicius, '11)
Let N be the number of infinite connected components. Almost surely under $\mathbb{P}_{\mathbf{p}}, N$ is a constant random variable taking values in the set $\{0,1, \infty\}$.

Decay of correlations

Theorem (H., Sidoravicius '11)
If $p_{i}<p_{c}\left(\mathbb{Z}^{d-1}\right)$ and $p_{j}<p_{c}\left(\mathbb{Z}^{d-1}\right)$ for some $i \neq j \in\{1, \ldots, d\}$, then there exists a constant $\psi=\psi(\mathbf{p}, d)>0$ such that, for $n \geq 0$,

$$
\begin{equation*}
\mathbb{P}_{\mathbf{p}}(\{\mathbf{0} \leftrightarrow \partial B(n)\}) \leq e^{-\psi(\mathbf{p}, d) n} \tag{3}
\end{equation*}
$$

Theorem (H., Sidoravicius '11)
Let $d=3$. Assume that $p_{2}>p_{c}\left(\mathbb{Z}^{2}\right), p_{3}>p_{c}\left(\mathbb{Z}^{2}\right)$ and $0<p_{1}<1$. Then, there exists constants $\alpha(\mathbf{p})>0$ and $\alpha^{\prime}(\mathbf{p})>0$ such that, for all $n \geq 0$,

$$
\begin{equation*}
\mathbb{P}_{\mathbf{p}}(\{\mathbf{0} \leftrightarrow \partial B(n), \mathbf{0} \leftrightarrow \infty\}) \geq \alpha^{\prime}(\mathbf{p}) n^{-\alpha(\mathbf{p})} . \tag{4}
\end{equation*}
$$

'Proof' of the power-law decay

More about the phase transition for $d=3$.

$d=3, \tilde{p}_{c}\left(\mathbb{Z}^{2}\right)=$ critical point for site oriented percolation in \mathbb{Z}^{2}.
Theorem (H., Sidoravicius '11)

- If $p_{i}>\tilde{p}_{c}\left(\mathbb{Z}^{2}\right)^{1 / 3}$ for all $i=1,2,3$, then $\mathbb{P}_{\mathbf{p}}(\{\mathbf{0} \leftrightarrow \infty\})>0$.
- If $p_{2}>p_{c}\left(\mathbb{Z}^{2}\right)$ and $p_{3}>p_{c}\left(\mathbb{Z}^{2}\right)$, then there exists $\epsilon=\epsilon\left(p_{2}, p_{3}\right)>0$ such that for all $p_{1}>1-\epsilon$, $\mathbb{P}_{\mathbf{p}}(\{\mathbf{0} \leftrightarrow \infty\})>0$.
$p_{1}=p_{2}=p_{3}=p$. Define $p_{*}=$ critical point. Open question: show that $p_{*}>p_{c}\left(\mathbb{Z}^{2}\right)$.

What happens when $p_{1}=p_{2}=p_{3}=p_{c}\left(\mathbb{Z}^{2}\right)+\delta$ with $\delta \approx 0$?

Simulation by K.J. Schrenk, N.A.M Araújo, H. J. Herrmann

Probability of having a crossing from bottom to top in a box with indicated side length.
The data suggest that $p_{*}=0.6339(5)$.
Compare:
$p_{c}\left(\mathbb{Z}^{2}\right) \approx 0.5927$ and $\tilde{p}_{c}\left(\mathbb{Z}^{2}\right)^{1 / 3} \approx 0.8902$.

Cilinders' Percolation

- $\mathbb{R}^{d}, d \geq 3, \mathbb{L}=$ space of lines of \mathbb{R}^{d}.

Construct a Poisson point process in \mathbb{L} Parametrization:

- $l=$ line parallel to the canonical vector e_{d}.
- $\tau_{x}(y)=y+x$.
- $(x, \theta) \in \mathbb{R}^{d-1} \times \mathrm{SO}_{d}$.

$$
\begin{array}{cccc}
\alpha: \mathbb{R}^{d-1} \times \mathrm{SO}_{d} & \rightarrow & \mathbb{L} \\
& (x, \theta) & \mapsto & \theta\left(\tau_{x}(l)\right) .
\end{array}
$$

Measure:

- λ : Lebesgue on $\mathbb{R}^{d-1} ; \nu$: Haar on SO_{d}.
- $\mu(A)=(\lambda \times \nu)\left(\alpha^{-1}(A)\right)$.

Cilinders' Percolation

- $\Omega=$ set of locally finite point measures on \mathbb{L}.
- $u>0$ parameter.
- $\mathbb{P}_{u}=$ law of a PPP in \mathbb{L} with intensity $u \cdot \mu$.
- $l \in \mathbb{L} \rightarrow C(l)=$ cylinder of radius one and axis l.

$$
\mathcal{L}(\omega)=\bigcup_{l \in \operatorname{supp}(\omega)} C(l)
$$

Vacant set:

$$
\mathcal{V}(\omega)=\mathbb{R}^{d} \backslash \mathcal{L}(\omega)
$$

Critical point

Main goal: To study the connectivity properties of \mathcal{V} under \mathbb{P}_{u}.

$$
\begin{aligned}
u \text { small } & \rightarrow \quad \text { few cylinders drilled; } \\
u \text { large } & \rightarrow \quad \text { many cylinders drilled. }
\end{aligned}
$$

$\mathbb{P}_{u}[\mathcal{V}$ has an unbounded component $]$ is non increasing in u.

$$
u_{*}=\inf \left\{u>0 ; \mathbb{P}_{u}[\mathcal{V} \text { has an unbounded component }]=0\right\}
$$

Question: $0<u_{*}<\infty$?

no infinite components
0

Phase transition

Theorem (Tykesson, Windisch '11)

$$
\begin{aligned}
& \text { For } d \geq 3, \quad u_{*}<\infty ; \\
& \text { For } d \geq 4, \quad u_{*}>0 .
\end{aligned}
$$

$d \geq 4, u$ small $\Rightarrow \mathcal{V} \cap \mathbb{R}^{2}$ has an unbounded component.
Why to look at $\mathcal{V} \cap \mathbb{R}^{2}$?

Duality

If the component of $\mathcal{V} \cap \mathbb{R}^{2}$ containing $\mathbf{0}$ is bounded, then there exists a circuit in $\mathcal{L} \cap \mathbb{R}^{2}$ surrounding the origin.

Multi-scale analysis for ruling out the existence of long circuits

The three dimensional case

Slow decay of correlations:

$$
\operatorname{cov}\left(\mathbf{1}_{x \in \mathcal{V}}, \mathbf{1}_{y \in \mathcal{V}}\right) \asymp \frac{1}{|x-y|^{d-1}} \quad d=3 \text { is slower!. }
$$

Theorem (Tykesson, Windisch '11)

$$
\begin{aligned}
& d=3, \text { for all } u>0, \mathcal{V} \cap \mathbb{R}^{2} \text { has only } \\
& \text { bounded connected components } \mathbb{P}_{u} \text { - a.s.. }
\end{aligned}
$$

Infinitely many triangles surrounding the origin in $\mathcal{L} \cap \mathbb{R}^{2}$.

- u small.
- Look for unbounded connected components beyond $\mathcal{V} \cap \mathbb{R}^{2}$.
- Avoiding being trapped by few cylinders.
- Still being use the duality principle.

The three dimensional case

Idea: Replace $\mathcal{V} \cap \mathbb{R}^{2}$ by $\mathcal{V} \cap H$. $\mathcal{H}=$ hexagonal lattice in \mathbb{R}^{2} with mesh size 2000.
$H=$ graph of the application $x \mapsto \operatorname{dist}(x, \mathcal{H})$.

Theorem (H., Sidoravicius, Teixeira '12)
For $d=3$, for all $u>0$ small enough

$$
\mathbb{P}_{u}[\mathcal{V} \cap H \text { has an unbounded component }]=1 .
$$

Show that there are typically no long paths from $\mathbf{0}$ in $\mathcal{L} \cap H$.

The multiscale analysis

Show that $p_{n}(u)$ decays very fast with n.

The multiscale analysis

suppremum over x_{1} and x_{2}, centre of balls in the coverings.

The multiscale analysis

$$
\begin{aligned}
p_{n}(u) & \leq c\left(\frac{a_{n}}{a_{n-1}}\right)^{2} \sup \mathbb{E}_{u}\left[A_{n-1}\left(x_{1}\right) A_{n-1}\left(x_{2}\right)\right] \\
& \leq c\left(\frac{a_{n}}{a_{n-1}}\right)^{2}\left[p_{n-1}(u)^{2}+\text { error }\right]
\end{aligned}
$$

Forget about the error: $p_{n}(u) \leq c\left(\frac{a_{n}}{a_{n-1}}\right)^{2} p_{n-1}(u)^{2}$.
Recursion:

$$
\begin{gathered}
p_{n-1}(u) \leq a_{n-1}^{5 / 2(1-\gamma)} \Rightarrow p_{n}(u) \leq a_{n}^{5 / 2(1-\gamma)} \\
p_{n}(u) \leq c\left(\frac{a_{n}}{a_{n-1}}\right)^{2}[p_{n-1}(u)^{2}+\underbrace{\left.\left(\frac{a_{n-1}}{a_{n}}\right)^{6}+\left(\frac{a_{n-1}}{a_{n}}\right)^{2} q_{n-1}^{2}(u)\right]}_{\text {error }} \\
q_{n}(u)=\sup _{x \in \mathbb{R}^{2}} \sup _{l_{1}, l_{2} \in \mathbb{L}} \mathbb{E}_{u}\left[A_{n}\left(x, \omega+\delta_{l_{1}}+\delta_{l_{2}}\right)\right] \leq R\left(\frac{a_{n}}{a_{n-1}}, p_{n-1}, q_{n-1}\right)
\end{gathered}
$$

The multiscale analysis

Recursion: a_{0} big and u small

$$
\left\{\begin{array} { l }
{ p _ { n - 1 } \leq a _ { n - 1 } ^ { 5 / 2 (1 - \gamma) } } \\
{ q _ { n - 1 } \leq a _ { n - 1 } ^ { 3 / 2 (1 - \gamma) } }
\end{array} \Rightarrow \left\{\begin{array}{l}
p_{n} \leq a_{n}^{5 / 2(1-\gamma)} \\
q_{n} \leq a_{n}^{3 / 2(1-\gamma)}
\end{array}\right.\right.
$$

Triggering: As $u \rightarrow 0$ both $p_{0}(u)$ and $q_{0}(u)$ vanish.
The rough shape of H plays a crucial hole for showing that $q_{0}(u)$ vanishes (would be false for \mathbb{R}^{2}).

$$
\begin{aligned}
& \mathbb{P}_{u}\left\{\begin{array}{c}
\text { there exists a circuit in } \pi(\mathcal{L} \cap H) \\
\text { surrounding the origin of } \mathbb{R}^{2}
\end{array}\right\}<1, \\
& \mathbb{P}_{u}\left\{\begin{array}{c}
\text { the origin belongs to an unbounded } \\
\text { component of } \pi(\mathcal{L} \cap H)
\end{array}\right\}>0 .
\end{aligned}
$$

Brochette percolation

- Bernoulli edge percolation in \mathbb{Z}^{2}.
- Choose a random set of vertical lines.
- Increase the parameter in this set.
- How does it affect the critical point?
- $\Lambda \subset \mathbb{Z}$, deterministic set.
- $E_{\text {vert }}(\Lambda \times \mathbb{Z})=$ set of brochettes.
- $p, q \in[0,1]$ parameters.
- $\mathbb{P}_{p, q}^{\Lambda}$: open edge e with prob. $= \begin{cases}p, & \text { if } e \in E_{\mathrm{vert}}(\Lambda \times \mathbb{Z}), \\ q, & \text { otherwise } .\end{cases}$

Brochette percolation

Make the set of the brochettes random.

- $\xi=\left\{\xi_{z}\right\}_{z \in \mathbb{Z}}$ i.i.d. Bernoulli (ρ).
- $\Lambda(\xi)=\left\{j \in \mathbb{Z}: \xi_{j}=1\right\}$.
- $\nu(\rho)=$ law of ξ.
- $\mathbb{P}_{p, q}^{\rho}(\cdot):=\int \mathbb{P}_{p, q}^{\Lambda(\xi)}(\cdot) d \nu_{\rho}(\xi)$.

Theorem (Duminil-Copin, H., Kozma, Sidoravicius '15)
For every $\varepsilon>0$ and $\rho>0$ there exists $\delta>0$ such that

$$
\mathbb{P}_{p_{c}+\varepsilon, p_{c}-\delta}^{\rho}(0 \leftrightarrow \infty)>0 .
$$

Remark: For the rest of the talk, we fix ε and ρ.

Enhancements induced by K-syndetic sets

$\Lambda \subset \mathbb{Z}$ is k-syndetic if all its gaps have diameter smaller than k. The Aizenman-Grimmett argument (1991) implies that:

Proposition
If Λ is k-syndetic then for every $\varepsilon>0$ there exists $\delta>0$ such that,

$$
\mathbb{P}_{p_{c}+\varepsilon, p_{c}-\delta}^{\Lambda}(0 \longleftrightarrow \infty)>0
$$

Russo's Formula:
For A an increasing event depending on the state of finitely many edges only (e.g.: $\{0 \leftrightarrow \partial B(n)\}$),

$$
\frac{d}{d p} \mathbb{P}_{p}(A)=\sum_{e} \mathbb{P}_{p}(e \text { is pivotal for } A)
$$

where, $\{e$ is pivotal for $A\}=\left\{\omega^{e} \in A, \omega_{e} \notin A\right\}$.

The Aizenman-Grimmett argument

- By Russo's Formula we have:

$$
\begin{aligned}
\frac{\partial}{\partial p} \mathbb{P}_{p, q}^{\Lambda}(0 \leftrightarrow \partial B(n)) & =\sum_{f \in E_{\text {vert }}(\Lambda \times \mathbb{Z})} \mathbb{P}_{p, q}^{\Lambda}(f \text { is piv. for } 0 \leftrightarrow \partial B(n)) . \\
\frac{\partial}{\partial q} \mathbb{P}_{p, q}^{\Lambda}(0 \leftrightarrow \partial B(n)) & =\sum_{e \notin E_{\text {vert }}(\Lambda \times \mathbb{Z})} \mathbb{P}_{p, q}^{\Lambda}(e \text { is piv. for } 0 \leftrightarrow \partial B(n)) .
\end{aligned}
$$

- By local modification arguments, using that Λ is k-syndetic:

$$
\mathbb{P}_{p, q}^{\Lambda}(f(e) \text { piv. for } 0 \leftrightarrow B(n)) \geq c(k, p, q) \mathbb{P}_{p, q}^{\Lambda}(e \text { piv. for } 0 \leftrightarrow B(n)) .
$$

- This ultimately leads to:

$$
\frac{\partial}{\partial q} \mathbb{P}_{p, q}^{\Lambda}(0 \leftrightarrow \partial B(n)) \geq c(k, p, q) \frac{\partial}{\partial p} \mathbb{P}_{p, q}^{\Lambda}(0 \leftrightarrow \partial B(n)),
$$

with $c(k, p, q)$ bounded in a neighbourhood of $\left(p_{c}, p_{c}\right)$.

The KSV Theorem

- $\mathbb{Z}_{\diamond}^{2}$
- Edges oriented in the $N E$ and $N W$ sense.
- Declare columns good independently with probability ρ^{\prime}.
- Parameter in good lines: p_{G}.
- Parameter in bad lines: p_{B}.
- $\tilde{\mathbb{P}}_{p_{G}, p_{B}}^{\rho^{\prime}}=$ law

Theorem (Kesten, Sidoravicius, Vares, '12)
For all $p_{B}>0$ and $p_{G}>\tilde{p}_{c}\left(\mathbb{Z}^{2}\right)$ there exists $\rho^{\prime}>0$ such that $\tilde{\mathbb{P}}_{p_{G}, p_{B}}^{\rho^{\prime}}\left(\right.$ oriented infinite path in $\left.\mathbb{Z}_{\diamond}^{2}\right)>0$.

The renormalisation scheme

Scale n
Blocks:
$v_{n}(z)=[-n, n]^{2}+2 n z$.
Lattice:
$\mathbb{Z}_{n}^{2}=\left\{v_{n}(z) ; z\right.$ even $\}$.

- Columns: $c_{n}(i)=\left\{v_{n}(i, j) ; i+j\right.$ is even $\}$.
- $c_{n}(i)$ is good if $\Lambda(\xi) \cap[2 n(i-1), 2 n(i+1)]$ is $\frac{2}{\rho} \log 2 n$-syndetic.
- $v_{n}(z)$ is good if crossed as above.

Crossing probabilities in k-syndetic boxes

Lemma
$\lim _{n \rightarrow \infty} \mathbb{P}_{p, q}^{\rho}\left(c_{n}(i)\right.$ is a good column $)=1$.

Proposition

There exists $c>0$ and $\alpha>0$ such that for all Λk-syndetic,

$$
\mathbb{P}_{p_{c}+\varepsilon, p_{c}}^{\Lambda}\left(\mathcal{C}_{R L}(\tau n, n)\right) \geq \mathbb{P}_{p_{c}+c k^{-\alpha}}\left(\mathcal{C}_{R L}(\tau n, n)\right) .
$$

Lemma
$\lim _{n \rightarrow \infty} \mathbb{P}_{p_{c}+\left[\frac{2 c}{\rho} \log (2 n)\right]^{-\alpha}}\left(\mathcal{C}_{R L}(\tau n, n)\right)=1$.

- Conclusion: For n large, process in good columns dominates a 0.999 Bernoulli site percolation.
- Also one can show that the process in bad columns dominates a 0.001 Bernoulli site percolation.

Proof of the theorem

- Define $p_{B}=0.0001$ and $p_{G}=0.99$.
- By KSV, there exists ρ^{\prime} such that $\tilde{\mathbb{P}}_{p, q}^{\rho^{\prime}}(0 \leftrightarrow \infty)>0$.
- Fix n large enough so that:
- The process of good lines dominates a 1-d i.i.d.

Bernoulli(ρ^{\prime}) sequence.

- The process of occupied blocks in good lines dominates an
0.999 Bernoulli percolation.
- With n fixed, find δ small enough so that, under $\mathbb{P}_{p_{c}+\varepsilon, p_{c}-\delta}^{\rho^{\prime}}$, - The process of occupied sites in bad columns still dominates an independent Bernoulli percolation with parameter 0.0001.
- The process of occupied sites in good columns still dominates an independent Bernoulli percolation with parameter 0.99.
- The result follows from KSV.

