
Some percolation processes with infinite range
dependencies

Marcelo Hilário

UFMG (Belo Horizonte) and Unige (Genève)
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Bernoulli Percolation

I Zd-lattice = (V (Zd), E(Zd)).

I p ∈ [0, 1].

I Declare each site (or edge)
independently{

open with prob. p

closed with prob. 1− p.

I Pp corresponding law in {0, 1}Zd (or {0, 1}E(Zd)).

I Important events

{0↔ ∂B(n)} {0↔∞} CRL(τn, n) CTB(τn, n).





The phase transition

I p 7→ Pp(0↔∞) is a non-decreasing function.

I Critical point: pc(Zd) = inf{p ∈ [0, 1]; Pp(0↔∞)} > 0.

I Phase transition: For d ≥ 2, 0 < pc(Zd) < 1.

pc(Zd)0 1

only finite components unique infinite component

subcritical phase supercritical phase



Exponential decay of connectivity

How does the quantity {0↔ ∂B(n)} behaves as a function of n?
Subcritical phase:
If p < pc(Zd), then there exists α = α(p, d) > 0 such that

Pp({0↔ ∂B(n)) ≤ e−α(p)n.

(Menshikov ’86, Aizenman & Barsky ’87).
Supercritical phase:
If p > pc(Zd), then there exists σ = σ(p, d) > 0 such that

Pp({0↔ ∂B(n) =∞) ≤ e−σ(p)n.

(Chayes, Chayes & Newman ’87).

pc(Zd)0 1

only infinite components unique infinite component

exponential decay exponential decay



Drilling a wooden cube or playing with the Oskar’s puzzle



Coordinate Percolation

I Zd-lattice, d ≥ 3.

I {e1, . . . , ed} standard orthonormal basis.

I p1, . . . , pd ∈ [0, 1] intensity parameters.

I Remove at random lines parallel to ei with probability pi
independently.

ne1

ne2

ne3

I L = set of removed
sites.

I V = Zd\L vacant set.

I p = (p1, . . . , pd).

I Pp = law of the
process.



Phase transition
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Phase transition

Theorem (H., Sidoravicius, ’11)

Assume that pi < pc(Zd−1) for some i ∈ {1, . . . , d}, and that
pj 6= 1 for some j ∈ {1, . . . , d}\{i} then

Pp({0↔∞}) = 0. (1)

On the other hand if p1, . . . , pd are sufficiently close to 1, then

Pp({0↔∞}) > 0. (2)

Theorem (H., Sidoravicius, ’11)

Let N be the number of infinite connected components. Almost
surely under Pp, N is a constant random variable taking values in
the set {0, 1,∞}.



Decay of correlations

Theorem (H., Sidoravicius ’11)

If pi < pc(Zd−1) and pj < pc(Zd−1) for some i 6= j ∈ {1, . . . , d},
then there exists a constant ψ = ψ(p, d) > 0 such that, for n ≥ 0,

Pp({0↔ ∂B(n)}) ≤ e−ψ(p,d)n. (3)

Theorem (H., Sidoravicius ’11)

Let d = 3. Assume that p2 > pc(Z2), p3 > pc(Z2) and 0 < p1 < 1.
Then, there exists constants α(p) > 0 and α′(p) > 0 such that,
for all n ≥ 0,

Pp({0↔ ∂B(n), 0 =∞}) ≥ α′(p)n−α(p). (4)



‘Proof’ of the power-law decay



More about the phase transition for d = 3.

d = 3, p̃c(Z2) = critical point for site oriented percolation in Z2.

Theorem (H., Sidoravicius ’11)

I If pi > p̃c(Z2)1/3 for all i = 1, 2, 3, then Pp({0↔∞}) > 0.

I If p2 > pc(Z2) and p3 > pc(Z2), then there exists
ε = ε(p2, p3) > 0 such that for all p1 > 1− ε,
Pp({0↔∞}) > 0.

p1 = p2 = p3 = p. Define p∗ = critical point. Open question:

show that p∗ > pc(Z2).

0
no infinite components

pc(Z2)

?

p∗ infinite
components

1
p



What happens when p1 = p2 = p3 = pc(Z2) + δ with δ ≈ 0?
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Probability of having a
crossing from bottom to
top in a box with indicated
side length.
The data suggest that
p∗ = 0.6339(5).
Compare:
pc(Z2) ≈ 0.5927 and
p̃c(Z2)1/3 ≈ 0.8902.
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Cilinders’ Percolation

I Rd, d ≥ 3, L = space of lines of Rd.

Construct a Poisson point process in L
Parametrization:

I l = line parallel to the canonical vector ed.

I τx(y) = y + x.

I (x, θ) ∈ Rd−1 × SOd.

α : Rd−1 × SOd → L
(x, θ) 7→ θ(τx(l)).

Measure:

I λ: Lebesgue on Rd−1; ν: Haar on SOd.

I µ(A) = (λ× ν)(α−1(A)).



Cilinders’ Percolation

I Ω = set of locally finite point measures on L.

I u > 0 parameter.

I Pu = law of a PPP in L with intensity u · µ.

I l ∈ L→ C(l) = cylinder of radius one and axis l.

z

x y

For ω ∈ Ω

Set of cylinders:

L(ω) =
⋃

l∈supp(ω)

C(l).

Vacant set:

V(ω) = Rd\L(ω).



Critical point

Main goal: To study the connectivity properties of V under Pu.

u small → few cylinders drilled;
u large → many cylinders drilled.

Pu [V has an unbounded component] is non increasing in u.

u∗ = inf{u > 0; Pu [V has an unbounded component ] = 0}

Question: 0 < u∗ <∞?

u∗0 R
infinite components no infinite components



Phase transition

Theorem (Tykesson, Windisch ’11)

For d ≥ 3, u∗ <∞;
For d ≥ 4, u∗ > 0.

d ≥ 4, u small ⇒ V ∩ R2 has an unbounded component.

Why to look at V ∩ R2?

Duality

If the component of V ∩ R2 containing 0 is bounded, then
there exists a circuit in L ∩ R2 surrounding the origin.

Multi-scale analysis for ruling out the existence of long circuits



The three dimensional case

Slow decay of correlations:

cov(1x∈V ,1y∈V) � 1

|x− y|d−1
d = 3 is slower!.

Theorem (Tykesson, Windisch ’11)

d = 3, for all u > 0,V ∩ R2 has only
bounded connected components Pu– a.s..

Infinitely many triangles surrounding the origin in L ∩ R2.

I u small.

I Look for unbounded connected components beyond V ∩ R2.

I Avoiding being trapped by few cylinders.

I Still being use the duality principle.



The three dimensional case

Idea : Replace V∩R2 by V∩H.

H = hexagonal lattice in R2

with mesh size 2000.

H = graph of the application
x 7→ dist(x,H).

Theorem (H., Sidoravicius, Teixeira ’12)

For d = 3, for all u > 0 small enough

Pu [V ∩H has an unbounded component ] = 1.

Show that there are typically no long paths from 0 in L ∩H.



The multiscale analysis

x1

x2

I γ = 7/6 fixed.

I a0 large.

I an = aγn−1 = aγ
n

0

(super exponential growth of
scales).

I pn(u) = supx∈R2 Eu[An(x)].

An(x) = 1{S(x, an/10)↔ ∂S(x, an) in π(L ∩H)}.

Show that pn(u) decays very fast with n.



The multiscale analysis

x1

x2

cover intermediate spheres with

at most c
(

an
an−1

)
balls of radius

an−1

10

pn(u) = sup
x∈R2

Eu[An(x)] ≤ c
( an
an−1

)2
supEu[An−1(x1)An−1(x2)]

suppremum over x1 and x2, centre of balls in the coverings.



The multiscale analysis

pn(u) ≤ c
(

an
an−1

)2
supEu[An−1(x1)An−1(x2)]

≤ c
(

an
an−1

)2
[pn−1(u)2 + error].

Forget about the error: pn(u) ≤ c
(

an
an−1

)2
pn−1(u)2.

Recursion:

pn−1(u) ≤ a5/2(1−γ)
n−1 ⇒ pn(u) ≤ a5/2(1−γ)

n .

pn(u) ≤ c
(

an
an−1

)2
[pn−1(u)2 +

(
an−1

an

)6

+

(
an−1

an

)2

q2
n−1(u)︸ ︷︷ ︸

error

].

qn(u) = sup
x∈R2

sup
l1,l2∈L

Eu[An(x, ω+δl1+δl2)] ≤ R
(

an
an−1

, pn−1, qn−1

)
.



The multiscale analysis

Recursion: a0 big and u small{
pn−1 ≤ a5/2(1−γ)

n−1

qn−1 ≤ a3/2(1−γ)
n−1

⇒

{
pn ≤ a5/2(1−γ)

n

qn ≤ a3/2(1−γ)
n

Triggering: As u→ 0 both p0(u) and q0(u) vanish.

The rough shape of H plays a crucial hole for showing that q0(u)
vanishes (would be false for R2).

Pu
{

there exists a circuit in π(L ∩H)
surrounding the origin of R2

}
< 1,

Pu
{

the origin belongs to an unbounded
component of π(L ∩H)

}
> 0.



Brochette percolation

I Bernoulli edge percolation in Z2.

I Choose a random set of vertical lines.

I Increase the parameter in this set.

I How does it affect the critical point?

I Λ ⊂ Z, deterministic set.

I Evert(Λ× Z) = set of brochettes.

I p, q ∈ [0, 1] parameters.

I PΛ
p,q : open edge e with prob. =

{
p, if e ∈ Evert(Λ× Z),

q, otherwise.



Brochette percolation

Make the set of the brochettes random.

I ξ = {ξz}z∈Z i.i.d. Bernoulli(ρ).

I Λ(ξ) = {j ∈ Z : ξj = 1}.
I ν(ρ) = law of ξ.

I Pρp,q(·) :=
∫
PΛ(ξ)
p,q (·)dνρ(ξ).

Theorem (Duminil-Copin, H., Kozma, Sidoravicius ’15)

For every ε > 0 and ρ > 0 there exists δ > 0 such that

Pρpc+ε,pc−δ(0↔∞) > 0.

Remark: For the rest of the talk, we fix ε and ρ.



Enhancements induced by K-syndetic sets

Λ ⊂ Z is k-syndetic if all its gaps have diameter smaller than k.
The Aizenman-Grimmett argument (1991) implies that:

Proposition

If Λ is k-syndetic then for every ε > 0 there exists δ > 0 such that,

PΛ
pc+ε,pc−δ(0←→∞) > 0.

Russo’s Formula:
For A an increasing event depending on the state of finitely many
edges only (e.g.: {0↔ ∂B(n)}),

d

dp
Pp(A) =

∑
e

Pp(e is pivotal for A),

where, {e is pivotal for A} = {ωe ∈ A,ωe /∈ A}.



The Aizenman-Grimmett argument

I By Russo’s Formula we have:

∂

∂p
PΛ
p,q(0↔ ∂B(n)) =

∑
f∈Evert(Λ×Z)

PΛ
p,q(f is piv. for 0↔ ∂B(n)).

∂

∂q
PΛ
p,q(0↔ ∂B(n)) =

∑
e/∈Evert(Λ×Z)

PΛ
p,q(e is piv. for 0↔ ∂B(n)).

I By local modification arguments, using that Λ is k-syndetic:

PΛ
p,q(f(e) piv. for 0↔ B(n)) ≥ c(k, p, q)PΛ

p,q(e piv. for 0↔ B(n)).

I This ultimately leads to:

∂

∂q
PΛ
p,q(0↔ ∂B(n)) ≥ c(k, p, q) ∂

∂p
PΛ
p,q(0↔ ∂B(n)),

with c(k, p, q) bounded in a neighbourhood of (pc, pc).



The KSV Theorem

I Z2
♦

I Edges oriented in the NE and
NW sense.

I Declare columns good
independently with probability ρ′.

I Parameter in good lines: pG.

I Parameter in bad lines: pB.

I P̃ρ
′
pG,pB = law

Theorem (Kesten, Sidoravicius, Vares, ’12)

For all pB > 0 and pG > p̃c(Z2) there exists ρ′ > 0 such that

P̃ρ
′
pG,pB

(oriented infinite path in Z2
♦) > 0.



The renormalisation scheme

c−7 c−6 c−5 c−4 c−3 c−2 c−1 c0 c1 c2 c3 c4 c5 c6 c7

0−15n−13n−11n−9n −7n −5n −3n 3n 5n 7n 9n 11n 13n 15nn−n

vn(0)

i1

i2

i3

i4

i5

i6

Scale n
Blocks:
vn(z) = [−n, n]2+2nz.
Lattice:
Z2
n = {vn(z); z even}.

I Columns: cn(i) = {vn(i, j); i+ j is even}.
I cn(i) is good if Λ(ξ) ∩ [2n(i− 1), 2n(i+ 1)] is

2
ρ log 2n-syndetic.

I vn(z) is good if crossed as above.



Crossing probabilities in k-syndetic boxes

Lemma
limn→∞ Pρp,q(cn(i) is a good column) = 1.

Proposition

There exists c > 0 and α > 0 such that for all Λ k-syndetic,

PΛ
pc+ε,pc(CRL(τn, n)) ≥ Ppc+ck−α(CRL(τn, n)).

Lemma
limn→∞ Ppc+[ 2c

ρ
log(2n)]−α(CRL(τn, n)) = 1.

I Conclusion: For n large, process in good columns dominates
a 0.999 Bernoulli site percolation.

I Also one can show that the process in bad columns dominates
a 0.001 Bernoulli site percolation.



Proof of the theorem

I Define pB = 0.0001 and pG = 0.99.

I By KSV, there exists ρ′ such that P̃ρ
′
p,q(0↔∞) > 0.

I Fix n large enough so that:
– The process of good lines dominates a 1-d i.i.d.
Bernoulli(ρ′) sequence.
– The process of occupied blocks in good lines dominates an
0.999 Bernoulli percolation.

I With n fixed, find δ small enough so that, under Pρ
′

pc+ε,pc−δ,
– The process of occupied sites in bad columns still dominates
an independent Bernoulli percolation with parameter 0.0001.
– The process of occupied sites in good columns still
dominates an independent Bernoulli percolation with
parameter 0.99.

I The result follows from KSV.


