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Correlation vs Causation

"Correlation does not imply Causation": For an observed
association between two variables of interest (e.g. a risk factor X
and a disease status Y ), it is possible to argue in totally different
directions:

◮ X is causal for Y (causation)

◮ Y is causal for X (reverse causation)

◮ U is causal for both X and Y (confounding)

Detection and assessment of causality is fundamental for the
design of public health intervention policies. Causal inference is a
central aim for most medical and epidemiological studies.

For the purposes of this talk, we consider as causal the effect of an
intervention.
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Intervention and Confounding variables

Intervention: Controlling some quantity to take on a particular
value (as oppose to observing it taking this value naturally).

Example (Lindley, 2002): Let X denote the size of foot and Y
denote the size of hand. The binding of feet, practiced in some
societies to lessen X , has no effect on size of hand. Thus

◮ p(y | x) 6= p(y | do(X = x))

◮ But p(y | do(X = x)) could be p(y)

Pearl (1997) writes p(y | do(X = x)) when we force X to be equal
to x and p(y | see(X = x)) when we see X being equal to x .

Rubin (1974) introduces the Potential Responses Framework,
where Y = (Y0, Y1).

Aiming to detect, assess and compare the effects of different
interventions, extracting "causal conclusions" from observational
data might be seriously misleading!
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Observational data and confounding

Observational data: Data that have been gathered under
conditions which the statistician was not able to control.

Examples:

◮ Doctor assigns treatment only to patients that look healthier.

◮ Treatment is taken only by patients who wish to take it.

Problem: In such cases we will not know whether to ascribe
observed differences between the responses in different treatment
groups to the treatments themselves, or to other differences
between the groups, whose effects would persist even if all units
were treated identically.

Confounding: Variables that we have failed to account or control
that may damage the validity of our "causal" conclusions.

5 / 36



The Decision-Theoretic Framework

Dawid (2000, 2007a)

Example:

T =

{

0, control treatment
1, active treatment

Y =

{

0, no illness
1, illness

Question: Will intervention on the treatment variable T cause an
effect on the illness outcome Y ?

Aim: Compare the distribution of Y in the two interventional
regimes.
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The Decision-Theoretic Framework

Consider an index variable Σ to differentiate between the different
regimes.

Σ =











∅, observational regime.
0, interventional regime under control treatment.
1, interventional regime under active treatment.

Note: Any probabilistic statement about the stochastic variables of
interest must be conditional on the regime.

We want to explore under which conditions we can extract
information from the observational regime for the interventional
regimes.
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Average Causal Effect (1/3)

Identification of the Average Causal Effect (ACE), defined by:

ACE := E1(Y ) − E0(Y )

= E1(Y | T = 1) − E0(Y | T = 0) (since Pt(T = t) = 1)

Assumption: Given treatment T , Y has the same distribution in
observational and interventional regimes. Notation: Y ⊥⊥Σ | T .

Then
ACE = E∅(Y | T = 1) − E∅(Y | T = 0)

and we have achieved identification of a causal quantity from
observational data.
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Average Causal Effect (2/3)

Problem: In most contexts Y ⊥⊥Σ | T is an assumption which
don’t believe and thus are not in position to defend. It would be
valid if the observational regime represented a Randomized
Controlled Trial (where patients are randomly assigned to
treatment) but in general this would not be the case.

Way out: We can explore different conditional independence
properties which we believe better represent the problem under
study and explore if under those conditions we can still identify the
ACE from observational data. For example, we can consider
Strongly Sufficient Covariates (Guo and Dawid, 2010).
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Average Causal Effect (3/3)

Strongly Sufficient Covariates: Additional variable(s) U that are
present in the observational regime and can influence the choice
for treatment, as well as, the response variable we are interested in.
In particular, they have the following properties:

i) U ⊥⊥Σ

ii) Y ⊥⊥Σ | (U, T )

iii) For t = 0, 1, P∅(T = t | U) > 0 a.s. [P∅]

Assuming the existence of a strongly sufficient covariate we can
achieve identification of the ACE:

ACE = E1(Y ) − E0(Y )

...

= E∅(Y | T = 1) − E∅(Y | T = 0)
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Conditional Independence

◮ Conditional independence for stochastic variables has been
widely studied in probability theory and the properties that
accrue from this notion are well-known.

◮ In the DT-Framework we allow stochastic and non-stochastic
variables together. Aim: Formally extend the language to
incorporate stochastic and non-stochastic variables
simultaneously and explore if under the extended setting the
same calculus accrues (Dawid, 1979, 1980, 2004).

◮ Sufficiency: Let X := X1, X2, . . . , Xn be a random sample
from a probability distribution with unknown parameter θ and
consider having reduced information through a statistic
T = T (X). We say that T is sufficient for θ if:

Pθ(X = x | T (X) = T (x)) = P(X = x | T (X) = T (x))
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Stochastic Conditional Independence

Definition
Let X , Y , Z be random variables on (Ω, A,P). We say that X is
(conditionally) independent of Y given Z and write X ⊥⊥ Y | Z if
for all (real, bounded and measurable) functions f (X ),

E(f (X ) | Y , Z ) = E(f (X ) | Z ) a.s..

Definition (Discrete Case)

X ⊥⊥ Y | Z if for all events {X = x},

P(X = x |Y = y , Z = z) = P(X = x |Z = z)

whenever P(Y = y , Z = z) > 0.
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Axioms of Conditional Independence

Dawid (1979, 1980)

Notation: W � Y means that there exists f such that W = f (Y ).

Theorem
Let X , Y , Z and W be random variables. Then the following
properties hold.

1. (P1-Symmetry) X⊥⊥Y | Z ⇒ Y ⊥⊥X | Z.

2. (P2) X⊥⊥Y | X.

3. (P3-Decomposition) X⊥⊥Y | Z, W � Y ⇒ X⊥⊥W | Z.

4. (P4-Weak Union) X⊥⊥Y | Z, W � Y ⇒ X⊥⊥Y | (W , Z ).

5. (P5-Contraction) X⊥⊥Y | Z and X⊥⊥W | (Y , Z ) ⇒
X⊥⊥(Y , W ) | Z.
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Example

Nearest Neighbour Property of a Markov Chain: Let X1, X2, X3,
X4, X5 be random variables and suppose that:

i) X3 ⊥⊥ X1 | X2,

ii) X4 ⊥⊥ (X1, X2) | X3,

iii) X5 ⊥⊥ (X1, X2, X3) | X4.

Then we can show that X3 ⊥⊥ (X1, X5) | (X2, X4), just by using the
axioms.
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Extended Conditional Independence: Notation

◮ Regime space S = {σi : i ∈ I}, where I is a set of indices (e.g.
observational/interventional regimes).

◮ Non-stochastic variables which are functions defined on S (say
Θ : S → Θ(S)) which are called decision variables (e.g.
regime indicator Σ).

◮ Stochastic variables defined on (Ω, A), which have different
distributions under the different regimes σ ∈ S (e.g.
treatment variable T , disease indicator Y ).

◮ Family of P-measures defined on (Ω, A) indexed by σ ∈ S and
denoted by Pσ.
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Extended Conditional Independence

Definition
Let X , Y and Z be stochastic variables and let Σ be the regime
indicator. We say that X is (conditionally) independent of (Y ,Σ)
given Z and write X ⊥⊥ (Y ,Σ) | Z if for all (real, bounded and
measurable) functions h(X ), there exists a function w(Z ) such
that for all σ ∈ S,

Eσ[h(X ) | Y , Z ] = w(Z ) a.s. [Pσ]

Note: In fact, we can further generalise this definition to
X ⊥⊥ (Y ,Θ) | (Z ,Φ).
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Validity of the axioms: Discrete regime space

Bayesian argument:

We consider further to to (Ω, A) and S, F := σ(S) and we define
an arbitrary P-measure on F . Then we consider the product space
Ω × S with its corresponding σ-algebra A ⊗ F (where
A ⊗ F := σ(A × F) := σ({A × B : A ∈ A, B ∈ F})). Extending
the space in this way allows us to consider both the stochastic
variables X , Y , Z , . . . and the decision variables Θ,Φ, . . . as
measurable functions defined on (Ω × S, A ⊗ F). Let us denote
them by X ∗, Y ∗, Z ∗, . . . and Θ∗,Φ∗, . . .. We further consider the
corresponding P

∗-measure for (Ω × S, A ⊗ F).

Theorem
X ⊥⊥ (Y ,Θ) | (Z ,Φ) (ECI) if and only if X ∗ ⊥⊥ (Y ∗,Θ∗) | (Z ∗,Φ∗)
(SCI).

Note: The assumption of a discrete regime space is crucial.
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Validity of the axioms

Theorem
Suppose that one of the following conditions holds:

◮ the regime space S is discrete

◮ the random variables are discrete

◮ there exists a dominating regime

Further suppose we are given a collection of extended conditional
independence properties. Any deduction made using the axioms of
stochastic conditional independence will be valid, so long as, in
both premisses and conclusions, no non-stochastic variables appear
in the left-most term in a conditional independence statement.
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Sequential decision problems

Robins (1986, 1987, 1992); Murphy (2003); Dawid and Didelez
(2010)

Sequence of domain variables: L1, A1, . . . , Ln, An, Ln+1 ≡ Y

◮ Observable variables (L1, L2, . . .)

◮ Action variables (A1, A2, . . .)

Aim: Evaluate the consequence of a strategy on the variable of
interest Y .

Regime indicator Σ, values in S = {∅} ∪ S∗

◮ ∅ is the observational regime under which data have been
gathered

◮ S∗ is a collection of interventional strategies of interest.

We would like to use data gathered under ∅ to infer what would
happen if a strategy e ∈ S∗ were applied.
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Identification of an interventional strategy

Suppose we are interested in computing Ee(Y ) for some
interventional strategy e ∈ S∗.

We need pe(y) which can be computed from pe(y , ln, an), where
l i := l1, . . . , li and ai := a1, . . . , ai .

The joint density can be factorised as follows:

pe(y , ln, an) =

{

n+1
∏

i=1

pe(li | l i−1, ai−1)

}

×

{

n
∏

i=1

pe(ai | l i , ai−1)

}

.
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G-recursion (1/2)

An alternative way to compute Ee(Y ) is by using “G-recursion”,
the backwards induction routine of dynamic programming (Robins,
1986, 1992):

◮ Denote by h a partial history of the form (l i , ai−1) or (l i , ai).

◮ Define f (h) := Ee(Y | h).

◮ For h a full history (ln+1, an), we have that f (h) = y .

◮ For h the empty history, we have that f (∅) = Ee(Y ).
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G-recursion (2/2)

◮ Applying the laws of probability, we get:

f (l i , ai−1) =
∑

ai

pe(ai | l i , ai−1) × f (l i , ai) (1)

f (l i−1, ai−1) =
∑

li

pe(li | l i−1, ai−1) × f (l i , ai−1) (2)

◮ Use f (ln+1, an) as starting values.

◮ Successively implement (1) and (2) in turn, starting with (2)
for i = n + 1 and ending with (2) for i = 1.

◮ We exit with f (∅) = Ee(Y ).
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Identification of Ee(Y )

In order to compute Ee(Y ) directly or using G-recursion, we need:

i) pe(ai | l i , ai−1) for i = 1, . . . , n

ii) pe(li | l i−1, ai−1) for i = 1, . . . , n + 1

◮ pe(ai | l i , ai−1): specified by the strategy

◮ pe(li | l i−1, ai−1): unknown and in the absence of
interventional data that represent the strategy, we want to
explore conditions that will allow us to compute it from the
observational regime.
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Simple stability
The problem exhibits (simple) stability if, with Σ denoting the
(non-random) regime indicator, taking values in S = {o} ∪ S∗,

Li ⊥⊥Σ | (Li−1, Ai−1) (i = 1, . . . , n + 1).

A1L1 A2L2 Y

σ

Figure : Stability

Does not take into account unobserved variables denoted by Ui

(i = 1, . . . , N).
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Extended stability

◮ Stability with respect to partially unobserved information:

(Ui , Li )⊥⊥Σ | (U i−1, Li−1, Ai−1).

◮ Does not imply simple stability.

A1 A2

U1 U2

L2L1

σ

Y

Figure : Extended stability
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Stability regained. Sequential randomization

Ai ⊥⊥ U i | (Li , Ai−1 ; Σ) (i = 1, . . . , N).

A1 A2

U1 U2

L2L1

σ

Y

Figure : Sequential randomization

◮ Extended stability and sequential randomization imply simple
stability (proof by induction).
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Stability regained? Sequential irrelevance

Li ⊥⊥ U i−1 | (Li−1, Ai−1 ; Σ) (i = 1, . . . , n + 1).

A1 A2

U1 U2

L2L1

σ

Y

Figure : Sequential irrelevance

◮ If random variables are discrete, we can rigorously deduce
simple stability from extended stability and sequential
irrelevance without requiring additional assumptions. If not,
we need to bring in additional assumptions (e.g. absolute
continuity) which involve the unobservable variables (Dawid
and Constantinou, 2014). 27 / 36



The Regression Discontinuity Design
Work with Aidan O’Keeffe.

◮ The "Regression Discontinuity Design" (RD Design) is a
design that specifies a threshold above or below which an
intervention is assigned. By comparing observations lying
closely on either side of the threshold, it is possible to make
causal inference.

◮ The RD Design was first introduced as a method in
econometrics during the 1960s. Original idea: "exploit policy
thresholds to estimate the causal effect of a particular
intervention".

◮ Medicines might be prescribed according to pre-defined
rules/guidelines (possibly government-defined). For example:

◮ Antiretroviral HIV drugs might be prescribed when a patient’s
CD4 count is less than 200 cells/mm3.

◮ Statins might be prescribed when a patient’s 10-year risk of a
cardiovascular event (10-year CVD risk score) exceeds 20 %.
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Sharp and fuzzy design

Sharp Design:

◮ Threshold behaves like a randomising device.

◮ If the threshold is adhered to very strictly (sharp design), then
we can think of the RD design as removing the confounding
due to unobserved factors.

Fuzzy Design:

◮ Threshold doesn’t behave like a randomising device.

◮ In medicine, sharp threshold is unlikely to be adhered to. For
example, often GPs override guidelines (generally because,
contrary to their recommendations, they feel that patients will
benefit from medication).

◮ Statins example: some patients might request statins
irrespective of their 10-year CVD risk score.

29 / 36



Summary

◮ The need to express causal concepts necessitates the use of an
appropriate framework which differentiates between seemingly
related observations and causally related observations.

◮ The DT framework makes this distinction by introducing a
non-stochastic variable to index the differing regimes
(observational and interventional).

◮ In practice, not usually being able to obtain data from the
interventional regimes of interest, we want to explore under
which conditions we can deduce information for the
interventional regimes using the observational regime.

◮ We can formally express and explore these conditions using
the language and calculus of conditional independence.
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Summary

Using this language we can discuss:

◮ Sequential Decision Problems where we are concerned with
controlling a variable of interest via a multi-stage procedure.

◮ We have explored conditions called stability, extended stability,
sequential randomisation and sequential irrelevance.

◮ Strict and fuzzy Regression Discontinuity Designs where we
are concerned with exploiting policy thresholds to estimate the
causal effect of a particular intervention.
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THANK YOU!
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