Discrete transport problems and the concavity of entropy

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

Bristol Probability and Statistics Seminar, March 2014

Funded by EPSRC Information Geometry of Graphs EP/I009450/1 Paper arXiv:1303.3381

Oliver Johnson and Erwan Hillion

 < □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ </td>

 University of Bristol and University of Luxembourg

Motivating Problem I

- Suppose we have a pile of soil we need to move somewhere (say along ℝ, or along ℤ).
- Each spadeful moved from point x to point y costs us something.
- Fix cost function e.g. $c(t) = |t|^p$ for $p \ge 1$.
- Moving one spadeful from x to y costs $c(y x) = |y x|^{p}$.
- Can we find a moving strategy that minimises the total cost ...?

A (1) > A (2) > A

... Yes We Can!

- Source and destination piles need to have same size.
- Suppose piles have the same shape.
- Intuitive solution: just translate (move everything same distance).

University of Bristol and University of Luxembourg

Oliver Johnson and Erwan Hillion

More general case

- What if piles not the same shape?
- ► For many cost functions *c*, intuitive 'non-crossing principle'.

University of Bristol and University of Luxembourg

Oliver Johnson and Erwan Hillion

Non-crossing principle

- Suppose spadefuls of soil at w and x to move to y and z.
- Take cost $c(t) = t^2$ for simplicity.
- Strategy 1: $w \longrightarrow z$, $x \longrightarrow y$. Cost $c_1 = (z w)^2 + (y x)^2$.
- Strategy 2: $w \longrightarrow y$, $x \longrightarrow z$. Cost $c_2 = (y w)^2 + (z x)^2$.
- $c_1 c_2 = 2(x w)(z y) \ge 0.$
- Prefer Strategy 2: not to let soil cross over.
- Similar argument for any convex cost function.

A (1) > (1) > (1)

Transport of probability measures

- Can rephrase problem more mathematically.
- Transport probability density function (or mass function) f_0 to f_1 .
- Equivalently think in terms of distribution functions F_0 and F_1 .
- Write Γ(F₀, F₁) for the set of joint probability distributions with marginals F₀ and F₁ (couplings).
- ► Joint density f(x, y) codes the amount of mass to be moved from x to y for particular strategy.

Transport of probability measures on $\{0, 1\}$ Example

- Consider marginals $f_0 = (3/4, 1/4)$ and $f_1 = (1/4, 3/4)$.
- ► Could define *f*(*x*, *y*) as follows:

Cost of strategy f is

$$\sum_{x,y} f(x,y)c(y-x) = \sum_{x,y} f(x,y)|y-x|^p.$$

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

/⊒ > < ∃ >

Distance between probability measures

- This gives us a way to measure how similar F_0 and F_1 are ...
- ... measure cost to move one distribution to the other ...
- ... under optimal strategy.

ৰ া চা ব লি চাৰ ইচাৰ ইচাই তিও University of Bristol and University of Luxembourg

Oliver Johnson and Erwan Hillion

Distance between probability measures

Definition

Given F_0 and F_1 and cost function $c(t) = |t|^p$, write

$$W_p(F_0,F_1) = \left(\inf_{F \in \Gamma(F_0,F_1)} \int |y-x|^p dF(x,y)\right)^{1/p}$$

Using non-crossing principle, optimal strategy gives

$$W_{p}(F_{0},F_{1}) = \left(\int_{0}^{1} |F_{0}^{-1}(t) - F_{1}^{-1}(t)|^{p} dt\right)^{1/p}$$

This is the Wasserstein distance ... (or Vasershtein) ... (or earth mover's) ... (or Mallows) ... (or Kantorovich) ... (or Kantorovich-Rubinstein) ... (or Monge-Kantorovich) ... (or Tanaka) ... (or transport) ... (or transportation) ... SEQ hell!

Oliver Johnson and Erwan Hillion

Motivating problem II

- Suppose want to run from x = 0 to x = D in T units of time.
- Suppose to maintain a speed of v costs us v² in energy.
- What is correct speed to run to minimise total energy use?
- Represent trajectory in terms of a function x(t), with x(0) = 0 and x(T) = D.
- Wish to minimise $\int_0^T x'(t)^2 dt$.

/⊒ > < ∃ >

Oliver Johnson and Erwan Hillion

Constant speed paths

- Obvious strategy: x(t) = tD/T.
- Gives $\int_0^T x'(t)^2 dt = T(D/T)^2 = D^2/T$.
- Now by Cauchy-Schwarz:

$$\left(\int_0^T 1dt\right)\left(\int_0^T x'(t)^2 dt\right) \geq \left(\int_0^T x'(t) dt\right)^2 = D^2$$

• That is
$$T \int_0^T x'(t)^2 dt \ge D^2$$
.

Obvious strategy (constant speed path) is optimal.

What does this tell us about the Wasserstein distance?

- We saw how to move probability density f_0 to f_1 on \mathbb{R} .
- Can think of this as taking 1 unit of time.
- ▶ Now suppose that we interrupt the process at time *t*.
- Where would we have got to?
- Can use ideas from fluid dynamics.
- ▶ Benamou–Brenier proved variational characterization of *W*₂.
- Works for \mathbb{R} , \mathbb{R}^d , Riemannian manifolds ... but not e.g. \mathbb{Z} .

Benamou-Brenier formula

- Given distribution functions F₀ and F₁, write P_ℝ(F₀, F₁) for the set of densities f_t(x) such that F₀(x) = ∫^x_{-∞} f₀(y)dy and F₁(x) = ∫^x_{-∞} f₁(y)dy.
- Given a sequence of densities, define velocity field $v_t(x)$ by

$$\frac{\partial}{\partial t}f_t(x) = -\frac{\partial}{\partial x}\left(v_t(x)f_t(x)\right).$$

Theorem (Benamou-Brenier)

The quadratic Wasserstein distance on ${\mathbb R}$ is given by

$$W_2(F_0,F_1) = \left(\inf_{f_t \in \mathcal{P}_{\mathbb{R}}(F_0,F_1)} \int_0^1 \left(\int_{-\infty}^\infty f_t(y) v_t(y)^2 dy\right) dt\right)^{1/2}$$

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

/⊒ > < ∃ >

Benamou-Brenier geodesics

- If f_t ∈ P_ℝ(F₀, F₁) achieves infimum in Benamou–Brenier, call it a geodesic.
- Geodesics have nice properties.

Theorem

Geodesics satisfy fixed speed property:

$$W_2(F_s, F_t) = |t - s| W_2(F_0, F_1),$$
 for all s and t.

- Say that W_2 induces a length space.
- Fits with idea that geodesics are straight lines.

Entropy

Definition

Recall we measure 'randomness' of probability density f by entropy

$$H(f) = -\int_{\mathbb{R}} f(x) \log f(x) dx.$$

- Interested in how entropy varies along paths f_t .
- In particular, what is behaviour along geodesics?

University of Bristol and University of Luxembourg

Oliver Johnson and Erwan Hillion

Behaviour of entropy along paths

Definition

Given a path $f_t(x)$, introduce functions g_t and h_t such that

$$\frac{\partial f_t(x)}{\partial t} = -\frac{\partial g_t(x)}{\partial x}, \qquad \qquad \frac{\partial^2 f_t(x)}{\partial t^2} = \frac{\partial^2 h_t(x)}{\partial x^2}.$$

Theorem

Writing $H(t) = H(f_t)$ for the entropy along the path, under integrability conditions:

$$H''(t) = -\int_{\mathbb{R}} \left(h_t(x) - \frac{g_t(x)^2}{f_t(x)} \right) \frac{\partial^2}{\partial x^2} \left(\log f_t(x) \right) dx$$
$$- \int_{\mathbb{R}} f_t(x) \left(\frac{\partial}{\partial x} \left(\frac{g_t(x)}{f_t(x)} \right) \right)^2 dx.$$

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

Behaviour of entropy along paths

Proof.

$$H'(t) = -\int_{\mathbb{R}} \frac{\partial f_t(x)}{\partial t} \log f_t(x) dx$$

$$H''(t) = -\int_{\mathbb{R}} \frac{\partial^2 f_t(x)}{\partial t^2} \log f_t(x) dx - \int_{\mathbb{R}} \frac{1}{f_t(x)} \left(\frac{\partial f_t(x)}{\partial t}\right)^2 dx$$

$$= -\int_{\mathbb{R}} \frac{\partial^2 h_t(x)}{\partial x^2} \log f_t(x) dx - \int_{\mathbb{R}} \frac{1}{f_t(x)} \left(\frac{\partial g_t(x)}{\partial x}\right)^2 dx.$$

Integration by parts deals with these terms.

• Key is an explicit expression for
$$\frac{\partial^2}{\partial x^2} \log f_t(x)$$
.

University of Bristol and University of Luxembourg

Oliver Johnson and Erwan Hillion

Behaviour of entropy along geodesics

- Along BB geodesics turns out g_t(x) = v_t(x)f_t(x) and h_t(x) = v_t(x)²f_t(x).
- In above theorem

$$\mathcal{H}''(t) = -\int_{\mathbb{R}} f_t(x) \left(rac{\partial v_t(x)}{\partial x}
ight)^2 dx \leq 0.$$

- This concavity used in information geometry.
- Properties of W₂ are key.
- Special case of Sturm–Lott–Villani theory. For example:

Theorem

For a Riemannian manifold (M, d) concavity of entropy along every geodesic is equivalent to positivity of the Ricci curvature tensor.

Discrete random variables

- Situation less clear for random variables supported on discrete sets.
- Will consider random variables supported on \mathbb{Z}
- ... or in fact $\{0, 1, ..., n\}$.

For discrete problems, W_2 is not a length space Example

- Consider marginals $f_0 = (3/4, 1/4)$ and $f_1 = (1/4, 3/4)$
- Obvious (and optimal) strategy $f_t = (3/4 t/2, 1/4 + t/2)$.
- Could define $f_t(x, y)$ as follows:

- Cost of f_t is $W_2^2(F_0, F_t) = \sum_{x,y} f_t(x, y) |y x|^p = t/2$.
- Hence $W_2(F_0, F_t) = \sqrt{t}W_2(F_0, F_1)$ not a length space.

Concavity of entropy: Shepp–Olkin conjecture

- ► Consider *n* independent Bernoulli random variables, with parameters **p** = (*p*₁,...*p_n*).
- Their sum has mass function $f_{\mathbf{p}}(k)$ for k = 0, 1, ..., n.
- Consider the entropy of $f_{\mathbf{p}}$, defined by

$$H(\mathbf{p}) := -\sum_{k=0}^{n} f_{\mathbf{p}}(k) \log f_{\mathbf{p}}(k).$$

Conjecture (Shepp–Olkin (1981)) $H(\mathbf{p})$ is a concave function of \mathbf{p} .

Sufficient to consider concavity for affine t, i.e. take

$$p_i(t) = p_i(0)(1-t) + p_i(1)t.$$

◆ 同 ♪ → 三 ♪

Known cases

- Folklore: n = 1.
- Shepp–Olkin (1981): n = 2, n = 3 (claim with no proof, in paper).
- Shepp–Olkin (1981): for all *i*, $p_i(t) = t$ (binomial case).
- ▶ Yu–Johnson (2009): for all *i*, either $p_i(0) = 0$ or $p_i(1) = 0$.
- ► Hillion (2012): for all i, either p_i(t) = t or p_i(t) constant (binomial translation case).

A (1) > (1) > (1)

Motivating example: binomial case

Example

- Write spatial derivative $\nabla_1 f(k) = f(k) f(k-1)$.
- ► For $0 \le p < q \le 1$, define p(t) = p(1 t) + qt.
- Write $\operatorname{Bin}_{n,p}(k) := \binom{n}{k} p^k (1-p)^{n-k}$.
- Write $f_t(k) = \operatorname{Bin}_{n,p(t)}(k)$.
- Simple calculation (e.g. Mateev, Shepp–Olkin) shows:

$$\frac{\partial f_t(k)}{\partial t} = -\nabla_1 \bigg(n(q-p) \operatorname{Bin}_{n-1,p(t)}(k) \bigg).$$

University of Bristol and University of Luxembourg

< 同 > < 三 >

Oliver Johnson and Erwan Hillion

Motivating example: binomial case (cont.)

Example

• We rewrite this using an idea of Yu:

$$\operatorname{Bin}_{n-1,p}(k) = \frac{(k+1)}{n} \operatorname{Bin}_{n,p}(k+1) + \left(1 - \frac{k}{n}\right) \operatorname{Bin}_{n,p}(k).$$

Suggests we introduce mixtures of mass functions:

$$\begin{aligned} \frac{\partial f_t(k)}{\partial t} &= -\nabla_1 \left(v g_t^{(\alpha)}(k) \right), \\ \text{for} \quad g_t^{(\alpha)}(k) &= \alpha_t(k+1) f_t(k+1) + (1 - \alpha_t(k)) f_t(k) \end{aligned}$$

• Here $\alpha_t(k) = k/n$ for all k and t and v = n(q - p).

• Remember continuous equation $\frac{\partial}{\partial t}f_t(x) = -\frac{\partial}{\partial x}(v_t(x)f_t(x))$.

Discrete Benamou-Brenier formula

Definition

- ▶ Write $\mathcal{P}_{\mathbb{Z}}(f_0, f_1)$ for the set of probability mass functions $f_t(k)$, given end constraints $f_t(k)|_{t=0} = f_0(k)$ and $f_t(k)|_{t=1} = f_1(k)$.
- ▶ Write \mathcal{A} for the set of $\alpha(k)$ with $\alpha_t(0) \equiv 0$, $\alpha_t(n) \equiv 1$ and with $0 \leq \alpha_t(k) \leq 1$ for all k.

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

Discrete Benamou-Brenier formula

Definition

For f_t(k) ∈ P_ℤ(f₀, f₁) and α ∈ A, define probability mass function g^(α)_t(k), velocity field v_{α,t}(k) and distance V_n by

$$g_t^{(\alpha)}(k) = \alpha_t(k+1)f_t(k+1) + (1-\alpha_t(k))f_t(k)$$
$$\frac{\partial f_t}{\partial t}(k) = -\nabla_1 \left(v_{\alpha,t}(k)g_t^{(\alpha)}(k) \right)$$
$$\mathcal{V}_n(f_0, f_1) = \left(\inf_{\substack{f_t \in \mathcal{P}_{\mathbb{Z}}(f_0, f_1), \\ \alpha_t(k) \in \mathcal{A}}} \int_0^1 \left(\sum_{k=0}^{n-1} g_t^{(\alpha)}(k)v_{\alpha,t}(k)^2 \right) dt \right)^{1/2}.$$

Refer to any path achieving the infimum as a geodesic.

Oliver Johnson and Erwan Hillion

Discrete Benamou-Brenier formula

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition

- V_n is a metric for probability measures on $\{0, \ldots n\}$.
- ► V_n defines a length space: for any geodesic f, distance $V_n(f_s, f_t) = |t s| V_n(f_0, f_1).$
- If there exists a constant speed path then
 - *f*⁰ and *f*¹ are stochastically ordered.
 - ▶ Wasserstein distance W₁ and V_n coincide.

Framework for concavity of entropy

- Want conditions under which entropy is concave.
- Give conditions in terms of $\alpha_t(k)$ to generalize binomial case.
- Recall that in that case, $\alpha_t(k) \equiv k/n$.

Oliver Johnson and Erwan Hillion

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </td>

 University of Bristol and University of Luxembourg

k-monotonicity condition

Condition (k-MON)

Given t, we say that the $\alpha_t(k)$ are k-monotone at t if

$$\alpha_t(k) \leq \alpha_t(k+1)$$
 for all $k = 0, \ldots, n-1$.

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </td>

 University of Bristol and University of Luxembourg

Oliver Johnson and Erwan Hillion

t-monotonicity condition

Condition (t-MON)

Given t, we say that the $\alpha_t(k)$ are t-monotone at t if

$$\frac{\partial \alpha_t(k)}{\partial t} \geq 0 \quad \text{ for all } k = 0, \dots, n.$$

Given a constant speed path

$$\frac{\partial f_t(k)}{\partial t} = -v \nabla_1 \left(g_t^{(\alpha)}(k) \right),$$

introduce h(k) such that

$$\frac{\partial^2 f_t(k)}{\partial t^2} = v^2 \nabla_1^2 \left(h(k) \right).$$

• *t*-MON condition provides an upper bound on h(k).

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

GLC condition

Condition (GLC)

We say $f_t(k)$ is α -generalized log-concave at t, if for all k = 0, ..., n-2,

$$GLC(\alpha_{t})(k) := \alpha_{t}(k+1)(1-\alpha_{t}(k+1))f_{t}(k+1)^{2} \\ -\alpha_{t}(k+2)(1-\alpha_{t}(k))f_{t}(k)f_{t}(k+2) \\ \geq 0.$$

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

/⊒ > < ∃ >

Theorem (Hillion–Johnson 2014)

Consider constant speed path $f_t(k)$ and associated optimal $\alpha(t)$. If Conditions k-MON, t-MON and GLC hold at given $t = t^*$, the entropy $H(f_t)$ is concave in t at $t = t^*$.

University of Bristol and University of Luxembourg

Oliver Johnson and Erwan Hillion

Proof

- Dealing with logarithm remains key but harder.
- k-MON and GLC together imply that

$$\frac{f_t(k)g_t(k+1)}{f_t(k+1)g_t(k)} \le 1 \quad \text{and} \quad \frac{f_t(k+2)g_t(k)}{f_t(k+1)g_t(k+1)} \le 1.$$

Also $-\log v \le \theta(v) = 1/(2v) - v/2$, for $v \le 1$.

Hence

$$\begin{aligned} &-\log\left(\frac{f_t(k)f_t(k+2)}{f_t(k+1)^2}\right) \\ &= -\log\left(\frac{f_t(k)g_t(k+1)}{f_t(k+1)g_t(k)}\right) - \log\left(\frac{f_t(k+2)g_t(k)}{f_t(k+1)g_t(k+1)}\right) \\ &\leq \theta\left(\frac{f_t(k)g_t(k+1)}{f_t(k+1)g_t(k)}\right) + \theta\left(\frac{f_t(k+2)g_t(k)}{f_t(k+1)g_t(k+1)}\right) \end{aligned}$$

Oliver Johnson and Erwan Hillion

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </td>

 University of Bristol and University of Luxembourg

Proof (cont.)

I

$$\begin{aligned} \mathcal{H}''(t) &= \sum_{k=0}^{n} \frac{\partial^2 f_t(k)}{\partial t^2} \log f_t(k) - \sum_{k=0}^{n} \frac{1}{f_t(k)} \left(\frac{\partial f_t(k)}{\partial t}\right)^2 \\ &= -\sum_{k=0}^{n} v^2 \nabla_1^2 \left(h_t(k)\right) \log f_t(k) - \sum_{k=0}^{n} \frac{\left(\nabla_1(vg_t(k))\right)^2}{f_t(k)} \\ &= v^2 \sum_{k=0}^{n} h_t(k) \left(-\log\left(\frac{f_t(k)f_t(k+2)}{f_t(k+1)^2}\right)\right) - \sum_{k=0}^{n} \frac{\left(\nabla_1(vg_t(k))\right)^2}{f_t(k)} \\ &\leq v^2 \sum_{k=0}^{n} h_t(k) \left(\theta\left(\frac{f_t(k)g_t(k+1)}{f_t(k+1)g_t(k)}\right) + \theta\left(\frac{f_t(k+2)g_t(k)}{f_t(k+1)g_t(k+1)}\right)\right) \\ &- \sum_{k=0}^{n} \frac{\left(\nabla_1(vg_t(k))\right)^2}{f_t(k)} \end{aligned}$$

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

Proof (cont.)

- ... and then, as if by magic, this becomes minus a perfect square!!
- Details best left to Mathematica ...
- H''(t) becomes $\leq -v^2$ times ...

$$\sum_{k=0}^{n-2} \frac{f_t(k)f_t(k+1)f_t(k+2)}{2g_t(k)g_t(k+1)} \left(\frac{g_t(k)^2}{f_t(k)f_t(k+1)} - \frac{g_t(k+1)^2}{f_t(k+1)f_t(k+2)}\right)^2$$

Would like to know how to interpret this cf (above)

$$H''(t) = -\int_{\mathbb{R}} f_t(x) \left(\frac{\partial v_t(x)}{\partial x}\right)^2 dx \leq 0.$$

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

Relating this to Shepp–Olkin

Proposition

For Shepp–Olkin interpolations, if all p'_i have the same sign ('monotone case'):

- We have a constant speed path
- k-MON condition holds.
- GLC condition holds.
- However, t-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker 'Condition 4'.
- Condition 4 holds for Shepp–Olkin paths.

Main result of our paper

Theorem (Hillion–Johnson 2014)

If all p'_i have the same sign, $H(\mathbf{p})$ is a concave function of \mathbf{p} .

- Call this monotone Shepp–Olkin theorem.
- General case remains open (not constant speed path).