Discrete transport problems
and the concavity of entropy

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg

Bristol Probability and Statistics Seminar, March 2014

Funded by EPSRC Information Geometry of Graphs EP/1009450/1
Paper arXiv:1303.3381

Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg

Discrete transport problems and the concavity of entropy



Continuous transport problems

Motivating Problem |

» Suppose we have a pile of soil we need to move somewhere
(say along R, or along Z).

» Each spadeful moved from point x to point y costs us
something.

» Fix cost function e.g. c¢(t) = |t|P for p > 1.

» Moving one spadeful from x to y costs c(y — x) = |y — x|P.

» Can we find a moving strategy that minimises the total cost
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Continuous transport problems

... Yes We Can!

» Source and destination piles need to have same size.
» Suppose piles have the same shape.

» Intuitive solution: just translate (move everything same
distance).
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Continuous transport problems

More general case

» What if piles not the same shape?

» For many cost functions c, intuitive ‘non-crossing principle’.
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Continuous transport problems

Non-crossing principle

| | | |
I I I I

w X y z

» Suppose spadefuls of soil at w and x to move to y and z.

» Take cost c(t) = t2 for simplicity.

» Strategy 1: w — z, x —> y. Cost ¢; = (z—w)? + (y — x)%.
» Strategy 2: w — y, x — z. Cost ¢ = (y — w)? + (z — x)%.
»—a=2(x—-w)(z—y)>0.

> Prefer Strategy 2: not to let soil cross over.

» Similar argument for any convex cost function.
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Continuous transport problems

Transport of probability measures

» Can rephrase problem more mathematically.

» Transport probability density function (or mass function) fy to
fi.

» Equivalently think in terms of distribution functions Fy and F;.

» Write ['(Fo, F1) for the set of joint probability distributions
with marginals o and F; (couplings).

» Joint density f(x,y) codes the amount of mass to be moved
from x to y for particular strategy.
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Continuous transport problems

Transport of probability measures on {0,1}

Example

» Consider marginals fy = (3/4,1/4) and f; = (1/4,3/4).

» Could define f(x,y) as follows:

f(x,y) y=0 y=1
x=0 1/4 1/2 f(0) = 3/4
x=1 0 1/4 fo(1) =1/4

AQ0)=1/4 A(1) = 3/4

» Cost of strategy f is

D fxy)ely —x) =D fxy)ly — xIP.
X,y X,y
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Continuous transport problems

Distance between probability measures

» This gives us a way to measure how similar Fg and F; are ...
> . ..measure cost to move one distribution to the other . ..

> ...under optimal strategy.
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Continuous transport problems

Distance between probability measures

Definition
Given Fg and F; and cost function c(t) = |t|P, write

WP(F07F1)—< inf /Iy—X\”dF(X y)>1/p-

Fer Fo,Fl

» Using non-crossing principle, optimal strategy gives

1/p
W,(Fo. Fr) = (/ I 11(t)|”dt> |

» This is the Wasserstein distance ... (or Vasershtein) ... (or
earth mover's) ... (or Mallows) ... (or Kantorovich) ... (or
Kantorovich-Rubinstein) ... (or Monge-Kantorovich) ... (or
Tanaka) ... (or transport) ... (or transportation) ...SEO hell!
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Benamou—Brenier geodesics

Motivating problem I

» Suppose want to run from x = 0 to
x = D in T units of time.

» Suppose to maintain a speed of v
costs us v in energy.

» What is correct speed to run to
minimise total energy use?

» Represent trajectory in terms of a
function x(t), with x(0) = 0 and
x(T)=D.

> Wish to minimise [, x'(t)?dt.
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Benamou—Brenier geodesics

Constant speed paths

» Obvious strategy: x(t)=tD/T.
» Gives fo )2dt = T(D/T)?> = D?/T.
> Now by Cauchy—Schwarz:
T T T 2
</ 1dt> </ x’(t)2dt> > (/ x’(t)dt) = D?
0 0 0
> Thatis T [} x'(t)%dt > D2.
» Obvious strategy (constant speed path) is optimal.
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Benamou—Brenier geodesics

What does this tell us about the Wasserstein distance?

» We saw how to move probability density fy to f; on R.

» Can think of this as taking 1 unit of time.

» Now suppose that we interrupt the process at time t.

» Where would we have got to?

» Can use ideas from fluid dynamics.

» Benamou—Brenier proved variational characterization of W.
» Works for R, R?, Riemannian manifolds . .. but not eg. Z.
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Benamou—Brenier geodesics

Benamou—Brenier formula

» Given distribution functions Fy and Fy, write Pgr(Fo, F1) for
the set of densities f;(x) such that Fo(x) = [~ fo(y)dy and

Fi(x) = J7 Aly)dy.
» Given a sequence of densities, define velocity field v¢(x) by

o 0
aft(X) = o (ve(x)fe(x)) -

Theorem (Benamou—Brenier)

The quadratic Wasserstein distance on R is given by

1 %) 1/2
Ws(Fo. F1) = inf f, 2dy | dt .
(ko) = (it [ (At ) &)
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Benamou—Brenier geodesics

Benamou—Brenier geodesics

» If f; € Pr(Fo, F1) achieves infimum in Benamou—Brenier, call
it a geodesic.

» Geodesics have nice properties.

Theorem
Geodesics satisfy fixed speed property:

Wa(Fs, Ft) = |t — s|Wa(Fo, F1), forall s and t.

» Say that W5 induces a length space.

> Fits with idea that geodesics are straight lines.
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Benamou—Brenier geodesics

Entropy

Definition
Recall we measure ‘randomness’ of probability density f by entropy

H(f) = —/}Rf(x) log f(x)dx.

> Interested in how entropy varies along paths f;.

» In particular, what is behaviour along geodesics?
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Benamou—Brenier geodesics

Behaviour of entropy along paths

Definition
Given a path f;(x), introduce functions g; and h; such that
of(x) _  Oge(x) P?f(x)  0%he(x)
ot ox '’ otz ox2
Theorem

Writing H(t) = H(f;) for the entropy along the path, under
integrability conditions:

He) = = [ (- SV 2 (og i) o

- [0 (52 (509)) o
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Benamou—Brenier geodesics

Behaviour of entropy along paths

Proof.

>

g / Of(x Io fo(x)dx

H”(t) N R82ft2 N gft( )dx_/ f;.‘(lX) <8fé(tX)>2

5 dx
B 92he(x) 1 (0g(x)\’
= | o log f(x)dx — /]R ) < I > dx.

> Integration by parts deals with these terms.

. - . 2
» Key is an explicit expression for % log f(x).
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Benamou—Brenier geodesics

Behaviour of entropy along geodesics

» Along BB geodesics turns out g¢(x) = v¢(x)f(x) and
he(x) = ve(x)?fe(x).
In above theorem

H'(t) = — /R fi(x) (ag(x)f dx < 0.

v

X

v

This concavity used in information geometry.

v

Properties of W, are key.

v

Special case of Sturm—Lott-Villani theory. For example:

Theorem
For a Riemannian manifold (M, d) concavity of entropy along every
geodesic is equivalent to positivity of the Ricci curvature tensor.
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Discrete transport problems

Discrete random variables

» Situation less clear for random variables supported on discrete
sets.

» Will consider random variables supported on Z . ..

» ...orin fact {0,1,...,n}.
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Discrete transport problems

For discrete problems, W, is not a length space
Example
» Consider marginals fy = (3/4,1/4) and f; = (1/4,3/4)
» Obvious (and optimal) strategy f; = (3/4 — t/2,1/4 + t/2).

» Could define f;(x,y) as follows:

fe(x, ¥) y=0 y=1

x=0 3/4-12 t/2 f(0) = 3/4

x=1 0 1/4 fo(1) = 1/4
f(0)=3/4—t/2 f(1)=1/4+1t/2

» Cost of f, is W2(Fo, Ft) = Zx’y fr(x,y)ly — x|P =t/2.
» Hence Wh(Fo, F¢) = vtWa(Fo, F1) — not a length space.
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Discrete transport problems

Concavity of entropy: Shepp—Olkin conjecture

» Consider n independent Bernoulli random variables, with
parameters p = (p1, ... pn)-
» Their sum has mass function fy(k) for k =0,1,...,n

» Consider the entropy of f;,, defined by
H(p) : Z fo(k) log f,(k

Conjecture (Shepp—Olkin (1981))
H(p) is a concave function of p.

» Sufficient to consider concavity for affine t, i.e. take

pi(t) = pi(0)(1 — t) + pi(1)t.
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Discrete transport problems

Known cases

Folklore: n = 1.

Shepp—Olkin (1981): n =2, n = 3 (claim with no proof, in
paper).

Shepp—Olkin (1981): for all i, pi(t) = t (binomial case).
Yu—Johnson (2009): for all i, either p;(0) = 0 or p;(1) = 0.
Hillion (2012): for all i, either p;(t) = t or pj(t) constant
(binomial translation case).

v

v

v

v

v
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Discrete transport problems

Motivating example: binomial case

Example

» Write spatial derivative V1f(k) = f(k) — f(k — 1).
For 0 < p < g <1, define p(t) = p(1 — t) + qt.
Write Bin,, »(k) := (})p*(1 — p)"~%.

Write fi(k) = Bin, p(¢)(k).

v

v

v

» Simple calculation (e.g. Mateev, Shepp—Olkin) shows:
of:(k .
(;(t ) = —Vi <n(q - p)Blnn—l,p(t)(k)) :
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Discrete transport problems

Motivating example: binomial case (cont.)

Example

» We rewrite this using an idea of Yu:

k+1 k
Bin, 1 (k) = (k+ )Bin,hp(k +1)+ (1 —— ) Bing p(k).
n n

> Suggests we introduce mixtures of mass functions:

8%&” = -V1 (vgt(a)(k)) :

for gl®(k) = aelk+1)fi(k+1)+ (1 - ae(k)fe(k)

» Here aiy(k) = k/n for all k and t and v = n(q — p).
0

» Remember continuous equation %ft(x) = —5x (e(x)fe(x)) .
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Discrete transport problems

Discrete Benamou—Brenier formula

Definition
» Write Pz(fo, f1) for the set of probability mass functions f¢(k),
given end constraints f;(k)|t=0 = fo(k) and fi(k)|i=1 = (k).

» Write A for the set of a(k) with a(0) =0, at(n) =1 and
with 0 < a(k) < 1 for all k.
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Discrete transport problems

Discrete Benamou—Brenier formula

Definition
» For f(k) e Pz(fb, fi) and a € A, define probability mass
function gt (k) velocity field v, ¢(k) and distance V), by

g (k) = ae(k + Dfi(k + 1) + (1 — ar(k))fu(K)

O (k) = 91 (v (K18 (K)

Vo (fy, i) = f wt(k)? | dt
(0.8) = | cnith i, / (th Vil )

ar(k)eA

1/2

> Refer to any path achieving the infimum as a geodesic.
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Discrete transport problems

Discrete Benamou—Brenier formula

Definition
» Example: binomial path is geodesic with v, (k) = n(q — p).
» Call path with v, (k) fixed in k and t a constant speed path.

Proposition

» V), is a metric for probability measures on {0,...n}.

» V, defines a length space: for any geodesic f, distance
Vi(fs, fr) = [t — s|Va(fo, f1).

> If there exists a constant speed path then

» fo and fi are stochastically ordered.
» Wasserstein distance W, and V,, coincide.
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Discrete concavity

Framework for concavity of entropy

» Want conditions under which entropy is concave.
» Give conditions in terms of a(k) to generalize binomial case.
» Recall that in that case, a:(k) = k/n.
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Discrete concavity

k-monotonicity condition

Condition (k-MON)

Given t, we say that the a(k) are k-monotone at t if

ar(k) <aik+1) forallk=0,...,n—1.
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Discrete concavity

t-monotonicity condition
Condition (t-MON)
Given t, we say that the a(k) are t-monotone at t if

da(k)
ot

>0 forallk=0,..., n.

» Given a constant speed path

Ofi(k) _ (o)
5 = "V1 (gt (k)> 7
introduce h(k) such that
0f(k
82(2 ) _ v2V2 (h(k)).

» t-MON condition provides an upper bound on h(k).
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Discrete concavity

GLC condition

Condition (GLC)

We say fi(k) is a-generalized log-concave at t, if for all
k=0,....,n—2,

GLC(aw)(k) = ai(k+1)(1 — ar(k + 1))fi(k + 1)
—ae(k +2)(1 — ae(k)) (k) fe(k + 2)
> 0.
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Discrete concavity

Theorem (Hillion—Johnson 2014)

Consider constant speed path f;(k) and associated optimal o (t).
If Conditions k-MON, t-MON and GLC hold at given t = t*, the
entropy H(f;) is concave in t at t = t*.
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Discrete concavity

Proof

» Dealing with logarithm remains key — but harder.
» k-MON and GLC together imply that

gk 1) Rk 2a(k)
fe(k +1)ge(k) — fe(k+1)ge(k+1) ~
» Also —logv < 6(v) =1/(2v) — v/2, for v < 1.
» Hence
fe(k)fe(k +2)
—log < fe(k 4 1) )

ft(k)gt(k + 1) ft(k + 2)gt(k)
~ log (ft(k n l)gt(k)> ~log (ft(k T Dgelk + 1))

fe(k)ge(k +1) fe(k + 2)ge(k)

< 0(ftis vam) ** (et 1 0)
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Discrete concavity

Proof (cont.)

n 2 n 2
i = S= PR g (aft(k)>

2
= ot pr ot

=S () log (k) — 3 (V8
= = fi(k)

. th(k <_| ( ik (>lff(+k+)2)>> é(vl(fftk()k»f
Z”f“‘ (o (Fiermec) +* (e mate +37))

" @ m0)
= K
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Discrete concavity

Proof (cont.
( ) » ...and then, as if by

magic, this becomes

minus a perfect square!!
» Details best left to

Mathematica . ..

» H"(t) becomes < —v?

times . ..
2 (k) ek + 1)f(k+2) < g(k?  g(k+1)? )
—  28i(k)gi(k +1) fe(k)fe(k+1)  fe(k +1)fe(k+2)

» Would like to know how to interpret this cf (above)

H'(t) = — /R fo(x) (8g(x)>2 dx < 0.

X
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Discrete concavity

Relating this to Shepp—Olkin

Proposition
For Shepp—Olkin interpolations, if all p; have the same sign
(‘monotone case’):

» We have a constant speed path

» k-MON condition holds.

» GLC condition holds.

» However, t-MON condition fails for some Shepp—Olkin paths.

» Entropy remains concave if replace by t-MON by weaker
‘Condition 4'.

» Condition 4 holds for Shepp—Olkin paths.
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Discrete concavity

Main result of our paper

Theorem (Hillion—Johnson 2014)
If all p} have the same sign, H(p) is a concave function of p.

» Call this monotone Shepp—Olkin theorem.

» General case remains open (not constant speed path).
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