Discrete transport problems
and the concavity of entropy

Oliver Johnson and Erwan Hillion
University of Bristol and University of Luxembourg

Bristol Probability and Statistics Seminar, March 2014

Funded by EPSRC *Information Geometry of Graphs* EP/I009450/1
Paper arXiv:1303.3381
Motivating Problem I

- Suppose we have a pile of soil we need to move somewhere (say along \mathbb{R}, or along \mathbb{Z}).
- Each spadeful moved from point x to point y costs us something.
- Fix cost function e.g. $c(t) = |t|^p$ for $p \geq 1$.
- Moving one spadeful from x to y costs $c(y - x) = |y - x|^p$.
- Can we find a moving strategy that minimises the total cost ...?
... Yes We Can!

- Source and destination piles need to have same size.
- Suppose piles have the same shape.
- Intuitive solution: just translate (move everything same distance).
More general case

- What if piles not the same shape?
- For many cost functions c, intuitive ‘non-crossing principle’.
Non-crossing principle

Suppose spadefuls of soil at w and x to move to y and z.

Take cost $c(t) = t^2$ for simplicity.

Strategy 1: $w \rightarrow z$, $x \rightarrow y$. Cost $c_1 = (z - w)^2 + (y - x)^2$.

Strategy 2: $w \rightarrow y$, $x \rightarrow z$. Cost $c_2 = (y - w)^2 + (z - x)^2$.

$c_1 - c_2 = 2(x - w)(z - y) \geq 0$.

Prefer Strategy 2: not to let soil cross over.

Similar argument for any convex cost function.
Transport of probability measures

- Can rephrase problem more mathematically.
- Transport probability density function (or mass function) f_0 to f_1.
- Equivalently think in terms of distribution functions F_0 and F_1.
- Write $\Gamma(F_0, F_1)$ for the set of joint probability distributions with marginals F_0 and F_1 (couplings).
- Joint density $f(x, y)$ codes the amount of mass to be moved from x to y for particular strategy.
Transport of probability measures on \(\{0, 1\} \)

Example

- Consider marginals \(f_0 = (3/4, 1/4) \) and \(f_1 = (1/4, 3/4) \).
- Could define \(f(x, y) \) as follows:

<table>
<thead>
<tr>
<th>(f(x, y))</th>
<th>(y = 0)</th>
<th>(y = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>1/4</td>
<td>1/2</td>
</tr>
<tr>
<td>(x = 1)</td>
<td>0</td>
<td>1/4</td>
</tr>
</tbody>
</table>

\(f_0(0) = 3/4 \quad f_0(1) = 1/4 \)
\(f_1(0) = 1/4 \quad f_1(1) = 3/4 \)

- Cost of strategy \(f \) is

\[
\sum_{x,y} f(x, y) c(y - x) = \sum_{x,y} f(x, y) |y - x|^p.
\]
Distance between probability measures

- This gives us a way to measure how similar F_0 and F_1 are . . .
- . . . measure cost to move one distribution to the other . . .
- . . . under optimal strategy.
Distance between probability measures

Definition

Given F_0 and F_1 and cost function $c(t) = |t|^p$, write

$$W_p(F_0, F_1) = \left(\inf_{F \in \Gamma(F_0, F_1)} \int |y - x|^p dF(x, y) \right)^{1/p}.$$

- Using non-crossing principle, optimal strategy gives

 $$W_p(F_0, F_1) = \left(\int_0^1 |F_0^{-1}(t) - F_1^{-1}(t)|^p dt \right)^{1/p}.$$

- This is the Wasserstein distance . . . (or Vasershtein) . . . (or earth mover’s) . . . (or Mallows) . . . (or Kantorovich) . . . (or Kantorovich-Rubinstein) . . . (or Monge-Kantorovich) . . . (or Tanaka) . . . (or transport) . . . (or transportation) . . . SEO hell!
Motivating problem II

- Suppose want to run from $x = 0$ to $x = D$ in T units of time.
- Suppose to maintain a speed of v costs us v^2 in energy.
- What is correct speed to run to minimise total energy use?
- Represent trajectory in terms of a function $x(t)$, with $x(0) = 0$ and $x(T) = D$.
- Wish to minimise $\int_0^T x'(t)^2 dt$.

Oliver Johnson and Erwan Hillion

University of Bristol and University of Luxembourg
Constant speed paths

- Obvious strategy: \(x(t) = \frac{tD}{T} \).
- Gives \(\int_0^T x'(t)^2 \, dt = T(D/T)^2 = D^2/T \).
- Now by Cauchy-Schwarz:
 \[
 \left(\int_0^T 1 \, dt \right) \left(\int_0^T x'(t)^2 \, dt \right) \geq \left(\int_0^T x'(t) \, dt \right)^2 = D^2
 \]
- That is \(T \int_0^T x'(t)^2 \, dt \geq D^2 \).
- Obvious strategy (constant speed path) is optimal.
What does this tell us about the Wasserstein distance?

- We saw how to move probability density \(f_0 \) to \(f_1 \) on \(\mathbb{R} \).
- Can think of this as taking 1 unit of time.
- Now suppose that we interrupt the process at time \(t \).
- Where would we have got to?
- Can use ideas from fluid dynamics.
- Benamou–Brenier proved variational characterization of \(W_2 \).
- Works for \(\mathbb{R} \), \(\mathbb{R}^d \), Riemannian manifolds . . . but not e.g. \(\mathbb{Z} \).
Benamou–Brenier formula

- Given distribution functions \(F_0 \) and \(F_1 \), write \(P_{\mathbb{R}}(F_0, F_1) \) for the set of densities \(f_t(x) \) such that \(F_0(x) = \int_{-\infty}^{x} f_0(y) \, dy \) and \(F_1(x) = \int_{-\infty}^{x} f_1(y) \, dy \).
- Given a sequence of densities, define velocity field \(v_t(x) \) by

\[
\frac{\partial}{\partial t} f_t(x) = -\frac{\partial}{\partial x} (v_t(x)f_t(x)).
\]

Theorem (Benamou–Brenier)

The quadratic Wasserstein distance on \(\mathbb{R} \) is given by

\[
W_2(F_0, F_1) = \left(\inf_{f_t \in P_{\mathbb{R}}(F_0, F_1)} \int_0^1 \left(\int_{-\infty}^{\infty} f_t(y) v_t(y)^2 \, dy \right) \, dt \right)^{1/2}.
\]
Benamou–Brenier geodesics

- If $f_t \in \mathcal{P}_\mathbb{R}(F_0, F_1)$ achieves infimum in Benamou–Brenier, call it a geodesic.
- Geodesics have nice properties.

Theorem

Geodesics satisfy fixed speed property:

$$W_2(F_s, F_t) = |t - s| W_2(F_0, F_1), \quad \text{for all } s \text{ and } t.$$

- Say that W_2 induces a length space.
- Fits with idea that geodesics are straight lines.
Entropy

Definition
Recall we measure ‘randomness’ of probability density f by entropy

$$H(f) = - \int_{\mathbb{R}} f(x) \log f(x) dx.$$

- Interested in how entropy varies along paths f_t.
- In particular, what is behaviour along geodesics?
Behaviour of entropy along paths

Definition
Given a path $f_t(x)$, introduce functions g_t and h_t such that

$$\frac{\partial f_t(x)}{\partial t} = -\frac{\partial g_t(x)}{\partial x}, \quad \frac{\partial^2 f_t(x)}{\partial t^2} = \frac{\partial^2 h_t(x)}{\partial x^2}.$$

Theorem
Writing $H(t) = H(f_t)$ for the entropy along the path, under integrability conditions:

$$H''(t) = -\int_{\mathbb{R}} \left(h_t(x) - \frac{g_t(x)^2}{f_t(x)} \right) \frac{\partial^2}{\partial x^2} \left(\log f_t(x) \right) dx$$

$$- \int_{\mathbb{R}} f_t(x) \left(\frac{\partial}{\partial x} \left(\frac{g_t(x)}{f_t(x)} \right) \right)^2 dx.$$
Behaviour of entropy along paths

Proof.

\[
H'(t) = - \int_{\mathbb{R}} \frac{\partial f_t(x)}{\partial t} \log f_t(x) \, dx
\]

\[
H''(t) = - \int_{\mathbb{R}} \frac{\partial^2 f_t(x)}{\partial t^2} \log f_t(x) \, dx - \int_{\mathbb{R}} \frac{1}{f_t(x)} \left(\frac{\partial f_t(x)}{\partial t} \right)^2 \, dx
\]

\[
= - \int_{\mathbb{R}} \frac{\partial^2 h_t(x)}{\partial x^2} \log f_t(x) \, dx - \int_{\mathbb{R}} \frac{1}{f_t(x)} \left(\frac{\partial g_t(x)}{\partial x} \right)^2 \, dx.
\]

Integration by parts deals with these terms.

Key is an explicit expression for \(\frac{\partial^2}{\partial x^2} \log f_t(x) \).
Behaviour of entropy along geodesics

- Along BB geodesics turns out \(g_t(x) = v_t(x)f_t(x) \) and \(h_t(x) = v_t(x)^2f_t(x) \).
- In above theorem

\[
H''(t) = - \int_{\mathbb{R}} f_t(x) \left(\frac{\partial v_t(x)}{\partial x} \right)^2 \, dx \leq 0.
\]

- This concavity used in information geometry.
- Properties of \(W_2 \) are key.
- Special case of Sturm–Lott–Villani theory. For example:

Theorem

For a Riemannian manifold \((M, d)\) concavity of entropy along every geodesic is equivalent to positivity of the Ricci curvature tensor.
Discrete random variables

- Situation less clear for random variables supported on discrete sets.
- Will consider random variables supported on \mathbb{Z} ...
- ... or in fact $\{0, 1, \ldots, n\}$.
For discrete problems, W_2 is not a length space

Example

- Consider marginals $f_0 = (3/4, 1/4)$ and $f_1 = (1/4, 3/4)$
- Obvious (and optimal) strategy $f_t = (3/4 - t/2, 1/4 + t/2)$.
- Could define $f_t(x, y)$ as follows:

<table>
<thead>
<tr>
<th>$f_t(x, y)$</th>
<th>$y = 0$</th>
<th>$y = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0$</td>
<td>$3/4 - t/2$</td>
<td>$t/2$</td>
</tr>
<tr>
<td>$x = 1$</td>
<td>0</td>
<td>$1/4$</td>
</tr>
</tbody>
</table>

 $f_t(0) = 3/4 - t/2$ $f_t(1) = 1/4 + t/2$

- Cost of f_t is $W_2^2(F_0, F_t) = \sum_{x,y} f_t(x, y)|y - x|^p = t/2$.
- Hence $W_2(F_0, F_t) = \sqrt{t} W_2(F_0, F_1)$ – not a length space.
Consider n independent Bernoulli random variables, with parameters $\mathbf{p} = (p_1, \ldots, p_n)$.

Their sum has mass function $f_\mathbf{p}(k)$ for $k = 0, 1, \ldots, n$.

Consider the entropy of $f_\mathbf{p}$, defined by

$$H(\mathbf{p}) := -\sum_{k=0}^{n} f_\mathbf{p}(k) \log f_\mathbf{p}(k).$$

Conjecture (Shepp–Olkin (1981))

$H(\mathbf{p})$ is a concave function of \mathbf{p}.

Sufficient to consider concavity for affine t, i.e. take

$$p_i(t) = p_i(0)(1 - t) + p_i(1)t.$$
Known cases

- Folklore: \(n = 1 \).
- Shepp–Olkin (1981): \(n = 2 \), \(n = 3 \) (claim with no proof, in paper).
- Shepp–Olkin (1981): for all \(i \), \(p_i(t) = t \) (binomial case).
- Yu–Johnson (2009): for all \(i \), either \(p_i(0) = 0 \) or \(p_i(1) = 0 \).
- Hillion (2012): for all \(i \), either \(p_i(t) = t \) or \(p_i(t) \) constant (binomial translation case).
Motivating example: binomial case

Example

- Write spatial derivative $\nabla_1 f(k) = f(k) - f(k - 1)$.
- For $0 \leq p < q \leq 1$, define $p(t) = p(1-t) + qt$.
- Write $\text{Bin}_{n,p}(k) := \binom{n}{k} p^k (1-p)^{n-k}$.
- Write $f_t(k) = \text{Bin}_{n,p(t)}(k)$.
- Simple calculation (e.g. Mateev, Shepp–Olkin) shows:

$$\frac{\partial f_t(k)}{\partial t} = -\nabla_1 \left(n(q-p) \text{Bin}_{n-1,p(t)}(k) \right).$$
Motivating example: binomial case (cont.)

Example

- We rewrite this using an idea of Yu:

\[
\text{Bin}_{n-1,p}(k) = \frac{(k + 1)}{n} \text{Bin}_{n,p}(k + 1) + \left(1 - \frac{k}{n}\right) \text{Bin}_{n,p}(k).
\]

- Suggests we introduce mixtures of mass functions:

\[
\frac{\partial f_t(k)}{\partial t} = -\nabla_1 \left(v g^{(\alpha)}_t(k) \right),
\]

for

\[
g^{(\alpha)}_t(k) = \alpha_t(k + 1)f_t(k + 1) + (1 - \alpha_t(k))f_t(k)
\]

- Here \(\alpha_t(k) = k/n \) for all \(k \) and \(t \) and \(v = n(q - p) \).

- Remember continuous equation \(\frac{\partial}{\partial t} f_t(x) = -\frac{\partial}{\partial x} (v_t(x)f_t(x)) \).
Discrete Benamou–Brenier formula

Definition

- Write $\mathcal{P}_Z(f_0, f_1)$ for the set of probability mass functions $f_t(k)$, given end constraints $f_t(k)|_{t=0} = f_0(k)$ and $f_t(k)|_{t=1} = f_1(k)$.
- Write \mathcal{A} for the set of $\alpha(k)$ with $\alpha_t(0) \equiv 0$, $\alpha_t(n) \equiv 1$ and with $0 \leq \alpha_t(k) \leq 1$ for all k.
Discrete Benamou–Brenier formula

Definition

For $f_t(k) \in P_\mathbb{Z}(f_0, f_1)$ and $\alpha \in A$, define probability mass function $g_t^{(\alpha)}(k)$, velocity field $v_{\alpha, t}(k)$ and distance V_n by

$$g_t^{(\alpha)}(k) = \alpha_t(k + 1)f_t(k + 1) + (1 - \alpha_t(k))f_t(k)$$

$$\frac{\partial f_t}{\partial t}(k) = -\nabla_1 \left(v_{\alpha, t}(k)g_t^{(\alpha)}(k) \right)$$

$$V_n(f_0, f_1) = \left(\inf_{f_t \in P_\mathbb{Z}(f_0, f_1), \alpha_t(k) \in A} \int_0^1 \left(\sum_{k=0}^{n-1} g_t^{(\alpha)}(k)v_{\alpha, t}(k)^2 \right) dt \right)^{1/2}$$

Refer to any path achieving the infimum as a geodesic.
Discrete Benamou–Brenier formula

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q - p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition

- V_n is a metric for probability measures on $\{0, \ldots, n\}$.
- V_n defines a length space: for any geodesic f, distance $V_n(f_s, f_t) = |t - s| V_n(f_0, f_1)$.
- If there exists a constant speed path then
 - f_0 and f_1 are stochastically ordered.
 - Wasserstein distance W_1 and V_n coincide.
Framework for concavity of entropy

- Want conditions under which entropy is concave.
- Give conditions in terms of $\alpha_t(k)$ to generalize binomial case.
- Recall that in that case, $\alpha_t(k) \equiv k/n$.
\textit{k-monotonicity condition}

\textbf{Condition (k-MON)}

\textit{Given }t\textit{, we say that the }$\alpha_t(k)$\textit{ are }k\textit{-monotone at }t\textit{ if}

$$\alpha_t(k) \leq \alpha_t(k + 1) \quad \text{for all } k = 0, \ldots, n - 1.$$
t-monotonicity condition

Condition (t-MON)

Given t, we say that the $\alpha_t(k)$ are t-monotone at t if

$$\frac{\partial \alpha_t(k)}{\partial t} \geq 0 \quad \text{for all } k = 0, \ldots, n.$$

- Given a constant speed path
 $$\frac{\partial f_t(k)}{\partial t} = -v \nabla_1 \left(g_t^{(\alpha)}(k) \right),$$
 introduce $h(k)$ such that
 $$\frac{\partial^2 f_t(k)}{\partial t^2} = v^2 \nabla_1^2 (h(k)).$$

- t-MON condition provides an upper bound on $h(k)$.

Oliver Johnson and Erwan Hillion
University of Bristol and University of Luxembourg

Discrete transport problems and the concavity of entropy
GLC condition

Condition (GLC)

We say $f_t(k)$ is α-generalized log-concave at t, if for all $k = 0, \ldots, n - 2$,

$$GLC(\alpha_t)(k) := \alpha_t(k + 1)(1 - \alpha_t(k + 1))f_t(k + 1)^2$$

$$-\alpha_t(k + 2)(1 - \alpha_t(k))f_t(k)f_t(k + 2)$$

$$\geq 0.$$
Theorem (Hillion–Johnson 2014)

Consider constant speed path $f_t(k)$ and associated optimal $\alpha(t)$. If Conditions k-MON, t-MON and GLC hold at given $t = t^*$, the entropy $H(f_t)$ is concave in t at $t = t^*$.
Proof

▶ Dealing with logarithm remains key – but harder.
▶ \(k\text{-MON and GLC together imply that}\)

\[
\frac{f_t(k)g_t(k + 1)}{f_t(k + 1)g_t(k)} \leq 1 \quad \text{and} \quad \frac{f_t(k + 2)g_t(k)}{f_t(k + 1)g_t(k + 1)} \leq 1.
\]

▶ Also \(- \log \nu \leq \theta(\nu) = 1/(2\nu) - \nu/2, \text{ for } \nu \leq 1.\)
▶ Hence

\[
- \log \left(\frac{f_t(k)f_t(k + 2)}{f_t(k + 1)^2}\right) = - \log \left(\frac{f_t(k)g_t(k + 1)}{f_t(k + 1)g_t(k)}\right) - \log \left(\frac{f_t(k + 2)g_t(k)}{f_t(k + 1)g_t(k + 1)}\right) \leq \theta \left(\frac{f_t(k)g_t(k + 1)}{f_t(k + 1)g_t(k)}\right) + \theta \left(\frac{f_t(k + 2)g_t(k)}{f_t(k + 1)g_t(k + 1)}\right)
\]
Proof (cont.)

\[H''(t) = \sum_{k=0}^{n} \frac{\partial^2 f_t(k)}{\partial t^2} \log f_t(k) - \sum_{k=0}^{n} \frac{1}{f_t(k)} \left(\frac{\partial f_t(k)}{\partial t} \right)^2 \]

\[= -\sum_{k=0}^{n} v^2 \nabla_1^2 (h_t(k)) \log f_t(k) - \sum_{k=0}^{n} \frac{(\nabla_1(vg_t(k)))^2}{f_t(k)} \]

\[= v^2 \sum_{k=0}^{n} h_t(k) \left(-\log \left(\frac{f_t(k)f_t(k+2)}{f_t(k+1)^2} \right) \right) - \sum_{k=0}^{n} \frac{(\nabla_1(vg_t(k)))^2}{f_t(k)} \]

\[\leq v^2 \sum_{k=0}^{n} h_t(k) \left(\theta \left(\frac{f_t(k)g_t(k+1)}{f_t(k+1)g_t(k)} \right) + \theta \left(\frac{f_t(k+2)g_{t}(k+1)}{f_t(k+1)g_t(k+1)} \right) \right) \]

\[- \sum_{k=0}^{n} \frac{(\nabla_1(vg_t(k)))^2}{f_t(k)} \]
Proof (cont.)

... and then, as if by magic, this becomes minus a perfect square!!

Details best left to Mathematica . . .

\(H''(t) \) becomes \(\leq -v^2 \) times . . .

\[
\sum_{k=0}^{n-2} \frac{f_t(k)f_t(k+1)f_t(k+2)}{2g_t(k)g_t(k+1)} \left(\frac{g_t(k)^2}{f_t(k)f_t(k+1)} - \frac{g_t(k+1)^2}{f_t(k+1)f_t(k+2)} \right)^2
\]

Would like to know how to interpret this cf (above)

\[
H''(t) = -\int f_t(x) \left(\frac{\partial v_t(x)}{\partial x} \right)^2 dx \leq 0.
\]
Relating this to Shepp–Olkin

Proposition

For Shepp–Olkin interpolations, if all p'_i have the same sign (‘monotone case’):

- We have a constant speed path
- k-MON condition holds.
- GLC condition holds.
- However, t-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker ‘Condition 4’.
- Condition 4 holds for Shepp–Olkin paths.
Main result of our paper

Theorem (Hillion–Johnson 2014)

*If all p'_i have the same sign, $H(p)$ is a concave function of p.***

- Call this monotone Shepp–Olkin theorem.
- General case remains open (not constant speed path).