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Motivating Problem I

I Suppose we have a pile of soil we need to move somewhere
(say along R, or along Z).

I Each spadeful moved from point x to point y costs us
something.

I Fix cost function e.g. c(t) = |t|p for p ≥ 1.

I Moving one spadeful from x to y costs c(y − x) = |y − x |p.

I Can we find a moving strategy that minimises the total cost
. . . ?
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. . . Yes We Can!

I Source and destination piles need to have same size.

I Suppose piles have the same shape.

I Intuitive solution: just translate (move everything same
distance).
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More general case

I What if piles not the same shape?

I For many cost functions c , intuitive ‘non-crossing principle’.

Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg

Discrete transport problems and the concavity of entropy



Continuous transport problems Benamou–Brenier geodesics Discrete transport problems Discrete concavity

Non-crossing principle

w x y z

I Suppose spadefuls of soil at w and x to move to y and z .

I Take cost c(t) = t2 for simplicity.

I Strategy 1: w −→ z , x −→ y . Cost c1 = (z −w)2 + (y − x)2.

I Strategy 2: w −→ y , x −→ z . Cost c2 = (y −w)2 + (z − x)2.

I c1 − c2 = 2(x − w)(z − y) ≥ 0.

I Prefer Strategy 2: not to let soil cross over.

I Similar argument for any convex cost function.
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Transport of probability measures

I Can rephrase problem more mathematically.

I Transport probability density function (or mass function) f0 to
f1.

I Equivalently think in terms of distribution functions F0 and F1.

I Write Γ(F0,F1) for the set of joint probability distributions
with marginals F0 and F1 (couplings).

I Joint density f (x , y) codes the amount of mass to be moved
from x to y for particular strategy.
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Transport of probability measures on {0, 1}
Example

I Consider marginals f0 = (3/4, 1/4) and f1 = (1/4, 3/4).

I Could define f (x , y) as follows:

f (x , y) y = 0 y = 1

x = 0 1/4 1/2 f0(0) = 3/4
x = 1 0 1/4 f0(1) = 1/4

f1(0) = 1/4 f1(1) = 3/4

I Cost of strategy f is∑
x ,y

f (x , y)c(y − x) =
∑
x ,y

f (x , y)|y − x |p.
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Distance between probability measures

I This gives us a way to measure how similar F0 and F1 are . . .

I . . . measure cost to move one distribution to the other . . .

I . . . under optimal strategy.
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Distance between probability measures

Definition
Given F0 and F1 and cost function c(t) = |t|p, write

Wp(F0,F1) =

(
inf

F∈Γ(F0,F1)

∫
|y − x |pdF (x , y)

)1/p

.

I Using non-crossing principle, optimal strategy gives

Wp(F0,F1) =

(∫ 1

0
|F−1

0 (t)− F−1
1 (t)|pdt

)1/p

.

I This is the Wasserstein distance . . . (or Vasershtein) . . . (or
earth mover’s) . . . (or Mallows) . . . (or Kantorovich) . . . (or
Kantorovich-Rubinstein) . . . (or Monge-Kantorovich) . . . (or
Tanaka) . . . (or transport) . . . (or transportation) . . . SEO hell!
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Motivating problem II

I Suppose want to run from x = 0 to
x = D in T units of time.

I Suppose to maintain a speed of v
costs us v 2 in energy.

I What is correct speed to run to
minimise total energy use?

I Represent trajectory in terms of a
function x(t), with x(0) = 0 and
x(T ) = D.

I Wish to minimise
∫ T

0 x ′(t)2dt.
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Constant speed paths

I Obvious strategy: x(t) = tD/T .

I Gives
∫ T

0 x ′(t)2dt = T (D/T )2 = D2/T .

I Now by Cauchy-Schwarz:(∫ T

0
1dt

)(∫ T

0
x ′(t)2dt

)
≥

(∫ T

0
x ′(t)dt

)2

= D2

I That is T
∫ T

0 x ′(t)2dt ≥ D2.

I Obvious strategy (constant speed path) is optimal.
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What does this tell us about the Wasserstein distance?

I We saw how to move probability density f0 to f1 on R.

I Can think of this as taking 1 unit of time.

I Now suppose that we interrupt the process at time t.

I Where would we have got to?

I Can use ideas from fluid dynamics.

I Benamou–Brenier proved variational characterization of W2.

I Works for R, Rd , Riemannian manifolds . . . but not e.g. Z.
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Benamou–Brenier formula

I Given distribution functions F0 and F1, write PR(F0,F1) for
the set of densities ft(x) such that F0(x) =

∫ x
−∞ f0(y)dy and

F1(x) =
∫ x
−∞ f1(y)dy .

I Given a sequence of densities, define velocity field vt(x) by

∂

∂t
ft(x) = − ∂

∂x
(vt(x)ft(x)) .

Theorem (Benamou–Brenier)

The quadratic Wasserstein distance on R is given by

W2(F0,F1) =

(
inf

ft∈PR(F0,F1)

∫ 1

0

(∫ ∞
−∞

ft(y)vt(y)2dy

)
dt

)1/2

.
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Benamou–Brenier geodesics

I If ft ∈ PR(F0,F1) achieves infimum in Benamou–Brenier, call
it a geodesic.

I Geodesics have nice properties.

Theorem
Geodesics satisfy fixed speed property:

W2(Fs ,Ft) = |t − s|W2(F0,F1), for all s and t.

I Say that W2 induces a length space.

I Fits with idea that geodesics are straight lines.
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Entropy

Definition
Recall we measure ‘randomness’ of probability density f by entropy

H(f ) = −
∫
R

f (x) log f (x)dx .

I Interested in how entropy varies along paths ft .

I In particular, what is behaviour along geodesics?
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Behaviour of entropy along paths

Definition
Given a path ft(x), introduce functions gt and ht such that

∂ft(x)

∂t
= −∂gt(x)

∂x
,

∂2ft(x)

∂t2
=
∂2ht(x)

∂x2
.

Theorem
Writing H(t) = H(ft) for the entropy along the path, under
integrability conditions:

H ′′(t) = −
∫
R

(
ht(x)− gt(x)2

ft(x)

)
∂2

∂x2
(log ft(x)) dx

−
∫
R

ft(x)

(
∂

∂x

(
gt(x)

ft(x)

))2

dx .
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Behaviour of entropy along paths

Proof.

I

H ′(t) = −
∫
R

∂ft(x)

∂t
log ft(x)dx

I

H ′′(t) = −
∫
R

∂2ft(x)

∂t2
log ft(x)dx −

∫
R

1

ft(x)

(
∂ft(x)

∂t

)2

dx

= −
∫
R

∂2ht(x)

∂x2
log ft(x)dx −

∫
R

1

ft(x)

(
∂gt(x)

∂x

)2

dx .

I Integration by parts deals with these terms.

I Key is an explicit expression for ∂2

∂x2 log ft(x).
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Behaviour of entropy along geodesics

I Along BB geodesics turns out gt(x) = vt(x)ft(x) and
ht(x) = vt(x)2ft(x).

I In above theorem

H ′′(t) = −
∫
R

ft(x)

(
∂vt(x)

∂x

)2

dx ≤ 0.

I This concavity used in information geometry.

I Properties of W2 are key.

I Special case of Sturm–Lott–Villani theory. For example:

Theorem
For a Riemannian manifold (M, d) concavity of entropy along every
geodesic is equivalent to positivity of the Ricci curvature tensor.
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Discrete random variables

I Situation less clear for random variables supported on discrete
sets.

I Will consider random variables supported on Z . . .

I . . . or in fact {0, 1, . . . , n}.
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For discrete problems, W2 is not a length space

Example

I Consider marginals f0 = (3/4, 1/4) and f1 = (1/4, 3/4)

I Obvious (and optimal) strategy ft = (3/4− t/2, 1/4 + t/2).

I Could define ft(x , y) as follows:

ft(x , y) y = 0 y = 1

x = 0 3/4 - t/2 t/2 f0(0) = 3/4
x = 1 0 1/4 f0(1) = 1/4

ft(0) = 3/4− t/2 ft(1) = 1/4 + t/2

I Cost of ft is W 2
2 (F0,Ft) =

∑
x ,y ft(x , y)|y − x |p = t/2.

I Hence W2(F0,Ft) =
√

tW2(F0,F1) – not a length space.
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Concavity of entropy: Shepp–Olkin conjecture

I Consider n independent Bernoulli random variables, with
parameters p = (p1, . . . pn).

I Their sum has mass function fp(k) for k = 0, 1, . . . , n.

I Consider the entropy of fp, defined by

H(p) := −
n∑

k=0

fp(k) log fp(k).

Conjecture (Shepp–Olkin (1981))

H(p) is a concave function of p.

I Sufficient to consider concavity for affine t, i.e. take

pi (t) = pi (0)(1− t) + pi (1)t.

Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg
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Known cases

I Folklore: n = 1.

I Shepp–Olkin (1981): n = 2, n = 3 (claim with no proof, in
paper).

I Shepp–Olkin (1981): for all i , pi (t) = t (binomial case).

I Yu–Johnson (2009): for all i , either pi (0) = 0 or pi (1) = 0.

I Hillion (2012): for all i , either pi (t) = t or pi (t) constant
(binomial translation case).
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Motivating example: binomial case

Example

I Write spatial derivative ∇1f (k) = f (k)− f (k − 1).

I For 0 ≤ p < q ≤ 1, define p(t) = p(1− t) + qt.

I Write Binn,p(k) :=
(n
k

)
pk(1− p)n−k .

I Write ft(k) = Binn,p(t)(k).

I Simple calculation (e.g. Mateev, Shepp–Olkin) shows:

∂ft(k)

∂t
= −∇1

(
n(q − p)Binn−1,p(t)(k)

)
.
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Motivating example: binomial case (cont.)

Example

I We rewrite this using an idea of Yu:

Binn−1,p(k) =
(k + 1)

n
Binn,p(k + 1) +

(
1− k

n

)
Binn,p(k).

I Suggests we introduce mixtures of mass functions:

∂ft(k)

∂t
= −∇1

(
vg

(α)
t (k)

)
,

for g
(α)
t (k) = αt(k + 1)ft(k + 1) + (1− αt(k))ft(k)

I Here αt(k) = k/n for all k and t and v = n(q − p).

I Remember continuous equation ∂
∂t ft(x) = − ∂

∂x (vt(x)ft(x)) .

Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg
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Discrete Benamou–Brenier formula

Definition

I Write PZ(f0, f1) for the set of probability mass functions ft(k),
given end constraints ft(k)|t=0 = f0(k) and ft(k)|t=1 = f1(k).

I Write A for the set of α(k) with αt(0) ≡ 0, αt(n) ≡ 1 and
with 0 ≤ αt(k) ≤ 1 for all k .
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Discrete Benamou–Brenier formula

Definition

I For ft(k) ∈ PZ(f0, f1) and α ∈ A, define probability mass

function g
(α)
t (k), velocity field vα,t(k) and distance Vn by

g
(α)
t (k) = αt(k + 1)ft(k + 1) + (1− αt(k))ft(k)

∂ft
∂t

(k) = −∇1

(
vα,t(k)g

(α)
t (k)

)

Vn(f0, f1) =

 inf
ft∈PZ(f0,f1),
αt(k)∈A

∫ 1

0

(
n−1∑
k=0

g
(α)
t (k)vα,t(k)2

)
dt


1/2

.

I Refer to any path achieving the infimum as a geodesic.
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Discrete Benamou–Brenier formula

Definition

I Example: binomial path is geodesic with vα,t(k) ≡ n(q − p).

I Call path with vα,t(k) fixed in k and t a constant speed path.

Proposition

I Vn is a metric for probability measures on {0, . . . n}.
I Vn defines a length space: for any geodesic f , distance

Vn(fs , ft) = |t − s|Vn(f0, f1).
I If there exists a constant speed path then

I f0 and f1 are stochastically ordered.
I Wasserstein distance W1 and Vn coincide.
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Framework for concavity of entropy

I Want conditions under which entropy is concave.

I Give conditions in terms of αt(k) to generalize binomial case.

I Recall that in that case, αt(k) ≡ k/n.

Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg
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k-monotonicity condition

Condition (k-MON)

Given t, we say that the αt(k) are k-monotone at t if

αt(k) ≤ αt(k + 1) for all k = 0, . . . , n − 1.

Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg
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t-monotonicity condition

Condition (t-MON)

Given t, we say that the αt(k) are t-monotone at t if

∂αt(k)

∂t
≥ 0 for all k = 0, . . . , n.

I Given a constant speed path

∂ft(k)

∂t
= −v∇1

(
g

(α)
t (k)

)
,

introduce h(k) such that

∂2ft(k)

∂t2
= v 2∇2

1 (h(k)) .

I t-MON condition provides an upper bound on h(k).
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GLC condition

Condition (GLC)

We say ft(k) is α-generalized log-concave at t, if for all
k = 0, . . . , n − 2,

GLC (αt)(k) := αt(k + 1)(1− αt(k + 1))ft(k + 1)2

−αt(k + 2)(1− αt(k))ft(k)ft(k + 2)

≥ 0.
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Theorem (Hillion–Johnson 2014)

Consider constant speed path ft(k) and associated optimal α(t).
If Conditions k-MON, t-MON and GLC hold at given t = t∗, the
entropy H(ft) is concave in t at t = t∗.

Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg
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Proof

I Dealing with logarithm remains key – but harder.

I k-MON and GLC together imply that

ft(k)gt(k + 1)

ft(k + 1)gt(k)
≤ 1 and

ft(k + 2)gt(k)

ft(k + 1)gt(k + 1)
≤ 1.

I Also − log v ≤ θ(v) = 1/(2v)− v/2, for v ≤ 1.

I Hence

− log

(
ft(k)ft(k + 2)

ft(k + 1)2

)
= − log

(
ft(k)gt(k + 1)

ft(k + 1)gt(k)

)
− log

(
ft(k + 2)gt(k)

ft(k + 1)gt(k + 1)

)
≤ θ

(
ft(k)gt(k + 1)

ft(k + 1)gt(k)

)
+ θ

(
ft(k + 2)gt(k)

ft(k + 1)gt(k + 1)

)
Oliver Johnson and Erwan Hillion University of Bristol and University of Luxembourg
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Proof (cont.)

H ′′(t) =
n∑

k=0

∂2ft(k)

∂t2
log ft(k)−

n∑
k=0

1

ft(k)

(
∂ft(k)

∂t

)2

= −
n∑

k=0

v 2∇2
1 (ht(k)) log ft(k)−

n∑
k=0

(∇1(vgt(k)))2

ft(k)

= v 2
n∑

k=0

ht(k)

(
− log

(
ft(k)ft(k + 2)

ft(k + 1)2

))
−

n∑
k=0

(∇1(vgt(k)))2

ft(k)

≤ v 2
n∑

k=0

ht(k)

(
θ

(
ft(k)gt(k + 1)

ft(k + 1)gt(k)

)
+ θ

(
ft(k + 2)gt(k)

ft(k + 1)gt(k + 1)

))

−
n∑

k=0

(∇1(vgt(k)))2

ft(k)
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Proof (cont.)
I . . . and then, as if by

magic, this becomes
minus a perfect square!!

I Details best left to
Mathematica . . .

I H ′′(t) becomes ≤ −v 2

times . . .

n−2∑
k=0

ft(k)ft(k + 1)ft(k + 2)

2gt(k)gt(k + 1)

(
gt(k)2

ft(k)ft(k + 1)
− gt(k + 1)2

ft(k + 1)ft(k + 2)

)2

I Would like to know how to interpret this cf (above)

H ′′(t) = −
∫
R

ft(x)

(
∂vt(x)

∂x

)2

dx ≤ 0.
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Relating this to Shepp–Olkin

Proposition

For Shepp–Olkin interpolations, if all p′i have the same sign
(‘monotone case’):

I We have a constant speed path

I k-MON condition holds.

I GLC condition holds.

I However, t-MON condition fails for some Shepp–Olkin paths.

I Entropy remains concave if replace by t-MON by weaker
‘Condition 4’.

I Condition 4 holds for Shepp–Olkin paths.
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Main result of our paper

Theorem (Hillion–Johnson 2014)

If all p′i have the same sign, H(p) is a concave function of p.

I Call this monotone Shepp–Olkin theorem.

I General case remains open (not constant speed path).
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