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What is data assimilation ?

Combine

* a model estimate of a system including
* its uncertainties with

* observations of that system including

e their uncertainties to give

* a new model estimate including

* uncertainties.



Big Data

How big is the nonlinear data-assimilation problem?

Assume we need 10 frequency bins for each variable
to build the joint pdf of all variables.

Let’s assume we have a modest model with a million
variables.

Then we need to store 101000000 hnumbers.

The total number of atoms in the universe is
estimated to be about 103

So the data-assimilation problem is larger than the
universe...



Example of numerical model

The Agulhas Sys em as Key Region of‘{th&lobal cha"nic Circulation
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Near-Surface Speeds in a High-Resolution Model, Nested in a Global, Coarse-Resolution Ocean Model Biastoch and Boning, Ocean Modelling Group



The model state space

u(x2)

u(x1)

T(x3)



Observations

In situ observations:

irregular in space and time e.g.
sparse hydrographic
observations,

Satellite observations: indirect
e.g. of the sea-surface




Notation

Prior knowledge, the Stochastic model:
vt = ")+ 0

mn

Observations: U

Relation between the two:

y’n — H(x?ruth) T €"

with 2", 2. ., € RV and y" € RV



Nonlinear filtering: Particle filter

p(ylx)p(x)
J p(y|z)p(x) do

p(xly) =

N
1
l Use ensemble p(x) _ Z N&(x — x@)
1=1

p(x|y) sz T — ;)

with ) — p(ylzi) the weights.
> p(ylz;)




What are these weights?

The weight w; is the normalised value of the
pdf of the observations given model stateX’;.

For Gaussian distributed variables is given by:

w; o< plylw;)

o exp [ (y— H(x) B (y — H(z:)

One can just calculate this value
That is all 1!



Standard Particle filter




A closer look at the weights |

Probability space in large-dimensional systems is
‘'empty :the curse of dimensionality

N

N

u(x2) T(Z) '
A




A closer look at the weights Il

Assume particle 1 is at 0.1 standard deviations s of M
iIndependent observations.

Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

1

Wy X exp [—5 (y — H(z;)) R (y — H(w;))| = exp(—0.005M)

and particle 2 gives

1

Wy X €XP {—— (y — H(x;)) R (y — H(x;))

5 = exp(—0.02M)




A closer look at the weights Il

The ratio of the weights is

2 exp(—0.015M)
wq

Take M=1000 to find

2 _ exp(—15) ~ 310"
wq

Conclusion: the number of independent observations is
responsible for the degeneracy in particle filters.



A closer look at the weights IV

 The volume of a hyperball of radius rin an M
dimensional space is

?“]\/[

(M2 —1)

y
T

* Taking for the radius r ~ 30, we find, using
Stirling:

- S M/2
90, /

y
> M2

* So very small indeed.



The volume in hyperspace occupied
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How can we make particle filters useful?

The joint-in-time prior pdf can be written as:

n—l) n—l)

p(a”, x — p(x”lx”_l)p(x

So the marginal prior pdf at time n becomes:

pa") = [ pla”la" p(a"") da!

We introduced the transition densities

p(a™|z" ")




Meaning of the transition densities

Stochastic model: — f(SCn_l) 1 6n—1

Assume Gaussian distributed model errors:

B" ~ N(0,Q)

This leads to:

plaa" ) = N (f(@" ), Q)




Bayes Theorem and the proposal density

Bayes Theorem now becomes:

p(y"|z")p(x")
p(y)

p(y"|a") n| .n—1 n—1 n—1
o el () da

p(x"y") =

We have a set of particles at time n-7 so we can write

1 N
pa"™ ) == 0" — i)
N3

and use this in the equation above to perform the integral:



The magic: the proposal density

Performing the integral over the sum of delta functions gives:

y x" n—
p(a"y") = ‘ Zp 22 )

The posterior is now given as a sum of transition densities.
In the standard particle filter we use these to draw particles
at time n, which, remember, is running the stochastic model
from time n-1 to time n. We know that is degenerate.

So we introduce another transition density, the proposal.



Use a different transition density

Finite dimensional system

n n N, n N

Bayes' Theorem:
”\:v p(z ”\x” 1) n

n
y 1=1

p(z™|y") =




Transition densities

Proposal that depends on previous model state:

q(z?]...) = p(af |z ™)

Proposal that depends on observations and previous model

state: 1
q(z|...) = q(xi' |z} y")
e.g. optimal proposal density: Q(ZC:L‘) — p(gj?"gj?’_l, yn)

Proposal that depends on observations and all we know about

previous state:
q(zi|...) = qx n|$1 N> Y ")

This leads to a whole class of particle filters not hampered by

i |

classical proofs of degeneracy.



Implicit Equal-weight Particle Filter

Define an implicit map as follows:

= zd + o P2

z; is the mode of the optimal proposal density,
P.is the covariance of the optimal proposal density.

1)
2)
3)

4)
5)
6)

Draw &; from N(0,/) | |

Normalise each element 67;(‘7) = §,§”)¢N$/H§i\|
Calculate @4 such that pre-weights of all particles equal to
target weight (see next slides)

Draw k from [1,..,N, ] with equal probability

Draw é’fk) again from N(0,1)

Recalculate x,” using & and normalised & for i # k.




How to find «;

Remember the new particle is given by:

= a? + /o P2

in which T, s, & are known, & normalised . Use this in expression
for weights and set all weights equal to a target weight:

n—1

p(z;' |z y" )p(y
q(§)

—1
Vg )

dx
dg§

prev
)

w; —

and solve for &; . At this stage all weights are equal by construction!



Solution for o

For Gaussian model errors and observation errors and H
linear we find for Q;;

a; — loga;, = C' — ¢

with solution
;= ~Wo 1 {_6—<1+c—¢i>}

in which W is the Lambert W function.
We choose one of the two solutions W, or W _; with equal

probability.
Target weight chosen equal to lowest weight of all particles.



Resulting scheme:

Effectively we use N, -7 random numbers to calculate (v;
such that the weights of the particles are equal.

Then one random number is chosen to ensure a proper
map from §i to x. Weights will vary, but only slightly.
This last step also ensures that the proposal has full
support.

Scheme can be seen as adaptation of implicit particle
filter (optimal proposal) to avoid weight collapse.
Scheme is biased because target weight is set to
lowest weight of all particles at their highest weight
positions.

The latter are equal to solution of weak-constraint
4Dvar without background term.



Experiments,

model error and observation errors Gaussian, H linear

Linear model of Snyder et al. 2008.

1000 dimensional independent Gaussian linear model
20 particles

Observations every time step

1000 independent models Lorenz 1963 models

3000 variables, 1000 parameters

10 particles

Observations every 10 time steps, first two variables.

Climate model 2.3 million variables, observe SST every day



600

500

N
o
o

300

Number of timesteps

N
o
o

100

1000-dimensional linear model:

Rank histogram
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Normalised pdf 1000 time steps
1000 particles -> small bias visible
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Sequential parameter estimation

e SPDE " — f(.CCn_l,(g) —|—5n

* Unknown parameter

)
o= f@"00) + S (0~ 00) +
* Modelas 60" ="' 4+ "
of f

and Qur = QB |

509159



4000 dimensional system (3000 variables, 1000

parameters).
Evolution of first variable

Initial value 10 lower than true value.
20
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Parameter mean values (dim=1000)

Initial values between 9 and 11, true value 10.

14 = T T T T

13
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Climate model HadCM3

|Identical twin experiment
32 particles
2.3 million variables

Daily observations of Sea-Surface Temperature with
uncertainty 0.55 K

Model errors smaller than 0.1 times deterministic
model update

Correlation structure from snapshots of long model
run.



Temperature (°C)

Time evolution of particles
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RMSE (K)

Results: Observed variable SST
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RMSE (K)

Results: Ocean Temperature
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Frequency

Rank Histograms
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Estimated pdfs
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Conclusions

Fully nonlinear non-degenerate particle filters for
systems with arbitrary dimensions with small bias
have been derived.

Proposal-density freedom needs further exploration

Examples shown for 1000 dimensional linear system,
high-dimensional parameter estimation, 2.3 million
dimensional climate model.

Need to explore bias versus degeneracy issues.
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