Exact simulation of diffusions with a finite boundary

Paul A. Jenkins

Departments of Statistics University of Warwick

Statistics seminar, University of Bristol 26 Sep 2014

Joint work with Dario Spanò

00000	00000000000	0000000000	00000000	00

Outline

- 2 Overview of the exact algorithm
- 3 Bessel-EA
- Wright-Fisher diffusion

5 Summary

Introduction ●0000	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
14/1	ince i i			

Why are diffusions important?

Diffusion models crop up all over the place in scientific modelling:

- Molecular models of interacting particles
- Stock prices in perfect financial markets
- Communications systems with noise
- Neurophysiological activities with disturbances
- Ecological modelling
- Population genetics
- Fluid flows
- Queueing and network theory
- Learning theory

00000	0000000000	000000000	0000000	00
Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary

Why are diffusions important?

Diffusion models crop up all over the place in scientific modelling:

- Molecular models of interacting particles
- Stock prices in perfect financial markets
- Communications systems with noise
- Neurophysiological activities with disturbances
- Ecological modelling
- Population genetics
- Fluid flows
- Queueing and network theory
- Learning theory

Time

Wright-Fisher SDE

$$dX_t = \mu_{\theta}(X_t)dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$$

The infinitesimal drift, $\mu_{\theta}(x)$, encapsulates directional forces such as natural selection, migration, mutation, ...

Introduction

Exact algorithm

Bessel-EA

Wright-Fisher diffusion

Summary

Population genetic Motivation I: Demographic inference

Given a sample of DNA sequences obtained in the present-day, what can we infer about the demographic history of the population?

Introduction

Exact algorithm

Bessel-EA

Wright-Fisher diffusion

Summary

Population genetic Motivation II: Time-series analysis of selection

Given a sample of genetic data obtained over several generations, what can we infer about the strength of natural selection?

Example (Biston betulaeria; Mathieson & McVean, 2013)

ntroduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

• Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.

troduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

$$X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$$

Image: Solution of Kolmogorov PDEs, or spectral expansions, ...)

troduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

$$X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$$

Image: Solution of Kolmogorov PDEs, or spectral expansions, ...)

• But—discretization introduces a bias we would like to remove.

troduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

$$X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$$

Image: Solution of Kolmogorov PDEs, or spectral expansions, ...)

• But—discretization introduces a bias we would like to remove.

ntroduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
0000				

- Like many interesting diffusions, the transition function of the Wright-Fisher diffusion is unknown.
- Inference typically proceeds by
 - Model-discretization such as an Euler approximation:

 $X_{t+dt} \mid (X_t = z) \sim \mathcal{N}(\mu_{\theta}(z)dt, \sigma^2(z)dt),$

- Image: Solution of Kolmogorov PDEs, or spectral expansions, ...)
- But—discretization introduces a bias we would like to remove.

Three sentence summary

- There exist so-called exact algorithms for simulating diffusions without discretization error, even if the transition density is unknown.
- They can perform poorly when there are entrance boundaries.
- I will outline how to fix these problems.

Introduction 00000	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
Outline				

Overview of the exact algorithm

- 3 Bessel-EA
- Wright-Fisher diffusion

5 Summary

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA)—one-dimensional bridge version

Goal: return exact bridge samples from the one-dimensional diffusion $X = (X_t : t \ge 0)$ on \mathbb{R} satisfying

$$dX_t = \mu_{\theta}(X_t)dt + \sigma(X_t)dW_t, \qquad X_0 = x, \quad 0 \le t \le T.$$

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	•000000000			

Exact algorithm (EA)—one-dimensional bridge version

Goal: return exact bridge samples from the one-dimensional diffusion $X = (X_t : t \ge 0)$ on \mathbb{R} satisfying

$$dX_t = \mu_{\theta}(X_t)dt + \sigma(X_t)dW_t, \qquad X_0 = x, \quad 0 \le t \le T.$$

• Reduce the problem to unit diffusion coefficient via the Lamperti transform $X_t \mapsto Y_t$:

$$Y_t := \int^{X_t} \frac{1}{\sigma(u)} du,$$

so now we work with

$$dY_t = \alpha_{\theta}(Y_t)dt + dW_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

oduction	Exact algorithm	Bessel-EA 0000000000	Wright-Fisher diffusion	Summary 00

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Now we can consider a rejection algorithm using Brownian bridge paths as candidates.

If \mathbb{Q}_y is the target law (of *Y*) and \mathbb{W}_y is the law of a Brownian motion then we need

$$\frac{d\mathbb{Q}_y}{d\mathbb{W}_y}(Y)$$

to provide the rejection probability

oduction	Exact algorithm	Bessel-EA 0000000000	Wright-Fisher diffusion	Summary 00

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Now we can consider a rejection algorithm using Brownian bridge paths as candidates.

If \mathbb{Q}_y is the target law (of *Y*) and \mathbb{W}_y is the law of a Brownian motion then we need

$$\frac{d\mathbb{Q}_{y}}{d\mathbb{W}_{y}}(Y) = \exp\left\{\int_{0}^{T} \alpha_{\theta}(Y_{t})dY_{t} - \frac{1}{2}\int_{0}^{T} \alpha_{\theta}^{2}(Y_{t})dt\right\}$$

to provide the rejection probability, by the Girsanov theorem.

oduction	Exact algorithm	Bessel-EA 0000000000	Wright-Fisher diffusion	Summary 00

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Now we can consider a rejection algorithm using Brownian bridge paths as candidates.

If \mathbb{Q}_y is the target law (of *Y*) and \mathbb{W}_y is the law of a Brownian motion then we need

$$\frac{d\mathbb{Q}_{y}}{d\mathbb{W}_{y}}(Y) = \exp\left\{\int_{0}^{T} \alpha_{\theta}(Y_{t})dY_{t} - \frac{1}{2}\int_{0}^{T} \alpha_{\theta}^{2}(Y_{t})dt\right\}$$

to provide the rejection probability, by the Girsanov theorem.

• Such a rejection algorithm is impossible: it requires simulation of complete (infinite-dimensional) Brownian sample paths!

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
00000	000000000			

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Skey observation: The Radon-Nikodým derivative can be put in the form

$$\frac{d\mathbb{Q}_{y}}{d\mathbb{W}_{y}}(Y) \propto \exp\left\{-\int_{0}^{T}\phi(Y_{s})ds\right\} \leq 1,$$

where $\phi(\cdot) := \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	000000000			

$$dY_t = \alpha_{\theta}(Y_t)dt + dB_t, \qquad Y_0 = y, \quad 0 \le t \le T.$$

Key observation: The Radon-Nikodým derivative can be put in the form

$$\frac{d\mathbb{Q}_{\mathcal{Y}}}{d\mathbb{W}_{\mathcal{Y}}}(\mathcal{Y})\propto\exp\left\{-\int_{0}^{T}\phi(\mathcal{Y}_{s})ds\right\}\leq1,$$

where $\phi(\cdot) := \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$

Assume we can arrange for $\phi \ge 0$. Then the right-hand side is the probability that a Poisson point process of unit rate on $[0, T] \times [0, \infty)$ has no points under the graph of $t \mapsto \phi(Y_s)$.

Introduction

Exact algorithm

Bessel-EA

Wright-Fisher diffusion

Summary

 $rac{d\mathbb{Q}_{Y}}{d\mathbb{W}_{Y}}(Y)\propto\exp\left\{-\int_{0}^{\mathcal{T}}\phi(Y_{s})ds
ight\}\leq1.$

Exact algorithm (EA)

A proposed Brownian path should be rejected if a simulated Poisson point process has any points under its graph.

Introduction

Exact algorithm

Bessel-EA

Wright-Fisher diffusion

Summary

 $\frac{d\mathbb{Q}_{Y}}{d\mathbb{W}_{Y}}(Y)\propto\exp\left\{-\int_{0}^{T}\phi(Y_{s})ds
ight\}\leq1.$

Exact algorithm (EA)

A proposed Brownian path should be rejected if a simulated Poisson point process has any points under its graph.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- ② Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Process has unbounded intensity.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- 3 Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Provide a straight of the s

Solutions

Exploit retrospective sampling; switch the order of simulation!

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Brownian bridge $(Y_t)_{0 \le t \le T}$ from Y_0 to Y_T .
- 3 Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Provide a straight of the s

Solutions

Exploit retrospective sampling; switch the order of simulation!

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Simulate the Brownian bridge at the times of the Poisson points.
- Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Process has unbounded intensity.

Solutions

Exploit retrospective sampling; switch the order of simulation!

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

Exact algorithm (EA) for simulating a bridge from Y_0 to Y_T

- Simulate a Poisson point process of unit rate on $[0, T] \times [0, \infty)$.
- Simulate the Brownian bridge at the times of the Poisson points.
- 3 Accept if all points are in the epigraph of $t \mapsto \phi(Y_t)$, otherwise return to 1.

Problems

- We still need an infinite-dimensional Brownian path.
- Provide a straight of the s

Solutions

Exploit retrospective sampling; switch the order of simulation!

2 Assume φ is bounded, φ ≤ K (for now), and use Poisson thinning ("EA1").

Introduction

Exact algorithm

Bessel-EA

Wright-Fisher diffusion

Summary 00

Exact algorithm (EA1); Beskos & Roberts (2005)

Exact algorithm (EA1); Beskos & Roberts (2005)

Simulate a Poisson point process on $[0, T] \times [0, K]$.

2 Simulate the Brownian bridge at the times of the Poisson points.

Exact algorithm (EA1); Beskos & Roberts (2005)

- Simulate a Poisson point process on $[0, T] \times [0, K]$.
- Simulate the Brownian bridge at the times of the Poisson points.
- If any of the former are beneath any of the latter, return to 1.

00000000000000000000000000000000000000	troduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		00000000000			

• Output of the algorithm is a set of skeleton points of the bridge.

 Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!
Exact algorithm (EA)

- Output of the algorithm is a set of skeleton points of the bridge.
- Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!

$$\phi(\cdot) = \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$$

 There have been many further refinements to this algorithm (multidimensions, jumps, killing, reflection, ...): Beskos *et al.* (2006, 2008, 2012), Casella & Roberts (2008, 2011), Chen & Huang (2013), Étoré & Martinez (2013), Giesecke & Smelov (2013), Gonçalves & Roberts (2013), Mousavi & Glynn (2013), Blanchet & Murthy (2014), Pollock *et al.* (2014).

Exact algorithm (EA)

- Output of the algorithm is a set of skeleton points of the bridge.
- Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!

$$\phi(\cdot) = \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$$

- There have been many further refinements to this algorithm (multidimensions, jumps, killing, reflection, ...): Beskos *et al.* (2006, 2008, 2012), Casella & Roberts (2008, 2011), Chen & Huang (2013), Étoré & Martinez (2013), Giesecke & Smelov (2013), Gonçalves & Roberts (2013), Mousavi & Glynn (2013), Blanchet & Murthy (2014), Pollock *et al.* (2014).
- In all cases the function ϕ is important.

Exact algorithm (EA)

- Output of the algorithm is a set of skeleton points of the bridge.
- Any further points can be filled in by further draws from the Brownian bridge—no further reference to the target law, Q_y, is necessary!

$$\phi(\cdot) = \frac{1}{2} [\alpha_{\theta}^2(\cdot) + \alpha_{\theta}'(\cdot)] + C.$$

- There have been many further refinements to this algorithm (multidimensions, jumps, killing, reflection, ...): Beskos *et al.* (2006, 2008, 2012), Casella & Roberts (2008, 2011), Chen & Huang (2013), Étoré & Martinez (2013), Giesecke & Smelov (2013), Gonçalves & Roberts (2013), Mousavi & Glynn (2013), Blanchet & Murthy (2014), Pollock *et al.* (2014).
- In all cases the function ϕ is important.
- The assumption φ ≤ K is restrictive, but it can in fact be relaxed ("EA2", Beskos *et al.*, 2006).

Introduction	Exact algorithm oooooooooooo	Bessel-EA 0000000000	Wright-Fisher diffusion	Summary 00
Exact alg	gorithm 2 (EA2);	Beskos <i>et al.</i> (2	006)	
• More realistic is that ϕ is well behaved in one direction:				
		$\limsup_{u\to\infty}\phi(u) <$	$<\infty.$	
		u ,		

• We find
$$\phi(u) = \theta^2 \left[\frac{1}{2} e^{-2u} - e^{-u} \right] + C$$

• Idea: Simulate the minimum of $(Y_t)_{0 \le t \le T}$ to get a path-specific bound on ϕ .

- Simulate the minimum m_T (and the time, t_m , it is attained) of a Brownian bridge from Y_0 to Y_T .
- ② Find a bound $K(m_T)$ on $\phi(u)$ over the interval $[m_T, \infty)$.
- Simulate a Poisson point process on $[0, T] \times [0, K(m_T)]$.

- ② Find a bound $K(m_T)$ on $\phi(u)$ over the interval $[m_T, \infty)$.
- Simulate a Poisson point process on $[0, T] \times [0, K(m_T)]$.
- Simulate the Brownian bridge at the times of the Poisson points, conditioned on m_T and t_m .

If any of the former are beneath any of the latter, return to 1.

ntroduction	Exact algorithm ○○○○○○○○○●○	Bessel-EA 0000000000	Wright-Fisher diffusion	Summary 00

- It is possible to relax assumptions on the size of φ entirely ("EA3"; Beskos *et al.*, 2008).
- The exact algorithms will be less efficient wherever $\phi(X_t)$ is very large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

troduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

- It is possible to relax assumptions on the size of φ entirely ("EA3"; Beskos *et al.*, 2008).
- The exact algorithms will be less efficient wherever $\phi(X_t)$ is very large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

- "A diffusion at x will almost surely not hit 0 before hitting any b > x.
 A diffusion started at 0 will enter (0,∞) in finite time."
- If σ²(x) = 1, then φ explodes at the boundary.

troduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

- It is possible to relax assumptions on the size of φ entirely ("EA3"; Beskos *et al.*, 2008).
- The exact algorithms will be less efficient wherever $\phi(X_t)$ is very large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

- "A diffusion at x will almost surely not hit 0 before hitting any b > x.
 A diffusion started at 0 will enter (0,∞) in finite time."
- If σ²(x) = 1, then φ explodes at the boundary.

troduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
	0000000000			

- It is possible to relax assumptions on the size of φ entirely ("EA3"; Beskos *et al.*, 2008).
- The exact algorithms will be less efficient wherever $\phi(X_t)$ is very large—unavoidable when the diffusion travels through a region where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

- "A diffusion at x will almost surely not hit 0 before hitting any b > x.
 A diffusion started at 0 will enter (0,∞) in finite time."
- If σ²(x) = 1, then φ explodes at the boundary.

Bessel-EA

Wright-Fisher diffusion

Summary

Large φ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.

- Introduction
 Exact algorithm
 Bessel-EA
 Wright-Fisher diffusion
 Summary

 00000
 000000000
 000000000
 000000000
 000000000
 000000000
 - Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
 - Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.

- Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
- Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.
- But: the exact algorithms rely heavily on our knowledge about Brownian bridges:
 - The distribution of bridge coordinates.
 - The distribution of the minimum, m_T , and its time, t_m .
 - The distribution of bridge coordinates conditioned on (m_T, t_m) .
 - The ability to sample from these distributions *exactly*.

- Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
- Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.
- But: the exact algorithms rely heavily on our knowledge about Brownian bridges:
 - The distribution of bridge coordinates.
 - The distribution of the minimum, m_T , and its time, t_m .
 - The distribution of bridge coordinates conditioned on (m_T, t_m) .
 - The ability to sample from these distributions *exactly*.

- Large ϕ is a symptom of a poor likelihood ratio, i.e. Brownian motion is a poor mimic of the target diffusion.
- Idea: Replace Brownian motion with a different candidate process—one with an entrance boundary.
- But: the exact algorithms rely heavily on our knowledge about Brownian bridges:
 - The distribution of bridge coordinates.
 - The distribution of the minimum, m_T , and its time, t_m .
 - The distribution of bridge coordinates conditioned on (m_T, t_m) .
 - The ability to sample from these distributions exactly.

Question. Does there exist a diffusion:

- with infinitesimal variance equal to 1,
- with an entrance boundary, and such that
- the finite-dimensional distributions of its bridges are known, and
- which can be simulated exactly, and
- (bonus) whose extrema are well characterized?

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary 00

Outline

- 2 Overview of the exact algorithm
- 3 Bessel-EA
- Wright-Fisher diffusion

5 Summary

Introduction	Exact algorithm	Bessel-EA ●ooooooooo	Wright-Fisher diffusion	Summary 00
D				

Bessel process

 Infinitesimal variance 1?

✓ Drift
$$\beta(y) = (\delta - 1)/(2y)$$
,
variance $\sigma^2(y) = 1$.

- Entrance boundary?
- Finitedimensional distributions?

- Exact simulation?
- Distributions of extrema?

Introduction 00000	Exact algorithm	Bessel-EA ●ooooooooo	Wright-Fisher diffusion	Summary 00
Bessel pr	ocess			

- Infinitesimal variance 1?
- Entrance boundary?
- Finitedimensional distributions?

- ✓ Drift $\beta(y) = (\delta 1)/(2y)$, variance $\sigma^2(y) = 1$.
- \checkmark Zero is an entrance boundary when $\delta \ge$ 2.

- Exact simulation?
- Distributions of extrema?

		00000000		
Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary

- Bessel process
 - Infinitesimal variance 1?
 - Entrance boundary?
 - Finitedimensional distributions?

✓ Drift $\beta(y) = (\delta - 1)/(2y)$, variance $\sigma^2(y) = 1$.

- ✓ Zero is an entrance boundary when δ ≥ 2.
- $\begin{array}{l} \checkmark \quad p_{(y,0)\to(z,T)}(x;t) = \\ \frac{T}{2t(T-t)} e^{-\left(\frac{z(T-t)}{2tT} + \frac{xT}{2t(T-t)} + \frac{yt}{2T(T-t)}\right)} \frac{I_{\nu}(\frac{\sqrt{XZ}}{t})I_{\nu}(\frac{\sqrt{XY}}{(T-t)^2})}{I_{\nu}(\frac{\sqrt{YZ}}{T^2})}, \\ \text{ where } \nu = 2(\delta+1), \text{ is the transition density} \\ \text{ of the (squared) Bessel bridge.} \end{array}$

- Exact simulation?
- Distributions of extrema?

Introduction	Exact algorithm	Bessel-EA ●ooooooooo	Wright-Fisher diffusion	Summary 00
Popol	oroooo			

Bessel process

- Infinitesimal variance 1?
- Entrance boundary?
- Finitedimensional distributions?

- Exact simulation?
- Distributions of extrema?

- ✓ Drift $\beta(y) = (\delta 1)/(2y)$, variance $\sigma^2(y) = 1$.
- ✓ Zero is an entrance boundary when δ ≥ 2.
- $\begin{array}{l} \checkmark \quad \mathcal{P}_{(y,0)\to(z,T)}(x;t) = \\ \frac{T}{2t(T-t)} e^{-\left(\frac{z(T-t)}{2tT} + \frac{xT}{2t(T-t)} + \frac{yt}{2T(T-t)}\right)} \frac{l_{\nu}(\frac{\sqrt{xz}}{t})l_{\nu}(\frac{\sqrt{xy}}{(T-t)^2})}{l_{\nu}(\frac{\sqrt{yz}}{T^2})}, \\ \text{where } \nu = 2(\delta+1), \text{ is the transition density} \\ \text{of the (squared) Bessel bridge.} \end{array}$
- ✓ $\delta \in \mathbb{Z}_{\geq 0}$: radial part of a δ -dimensional Brownian motion.

 $\delta \in \mathbb{R}_{\geq 0}$: See Makarov & Glew (2010).

00000	000000000000000000000000000000000000000	●000000000	00000000	00	
Roscol process					

- Bessel process
 - Infinitesimal variance 1?
 - Entrance boundary?
 - Finitedimensional distributions?

Exact simulation?

- ✓ Drift $\beta(y) = (\delta 1)/(2y)$, variance $\sigma^2(y) = 1$.
- ✓ Zero is an entrance boundary when $\delta ≥ 2$.
- $\begin{array}{l} \checkmark \quad \mathcal{P}_{(y,0)\to(z,T)}(x;t) = \\ \frac{T}{2t(T-t)} e^{-\left(\frac{z(T-t)}{2tT} + \frac{xT}{2t(T-t)} + \frac{yt}{2T(T-t)}\right)} \frac{l_{\nu}(\frac{\sqrt{xz}}{t})l_{\nu}(\frac{\sqrt{xy}}{(T-t)^2})}{l_{\nu}(\frac{\sqrt{yz}}{T^2})}, \\ \text{where } \nu = 2(\delta+1), \text{ is the transition density} \\ \text{of the (squared) Bessel bridge.} \end{array}$
- ✓ $\delta \in \mathbb{Z}_{\geq 0}$: radial part of a δ -dimensional Brownian motion.

 $\delta \in \mathbb{R}_{\geq 0}$: See Makarov & Glew (2010).

 Distributions of extrema? (√) Partly.

Introduction	Exact algorithm	Bessel-EA o●oooooooo	Wright-Fisher diffusion	Summary 00
Bessel-EA				

Exact simulation from a diffusion with law Q_y using the Bessel process (law B^δ_y ≫ Q_y) is possible by the following:

Theorem.

Under regularity conditions (similar to EA), \mathbb{Q}_y is the marginal distribution of *Y* when

$$(Y, \Phi) \sim (\mathbb{B}_{Y}^{\delta} \otimes \mathbb{PPP}) \Big| \Big\{ \Phi \subseteq \operatorname{epigraph} \Big[\widetilde{\phi}(Y) \Big] \Big\},$$

where \mathbb{PPP} is the law of a Poisson point process Φ of unit rate on $[0, T] \times [0, \infty)$,and

$$\widetilde{\phi}(u) := rac{1}{2} [\alpha_{\theta}^2(u) - \beta^2(u) + \alpha_{\theta}'(u) - \beta'(u)] + C.$$

Introduction	Exact algorithm	Bessel-EA oo●ooooooo	Wright-Fisher diffusion	Summary 00
	6			

Outline of proof.

Similar to the Brownian case: regularity conditions permit a Girsanov transformation and rearrangement so that

$$\frac{d\mathbb{Q}_{y}}{d\mathbb{B}_{y}^{\delta}}(Y) \propto \exp\left\{-\int_{0}^{T}\widetilde{\phi}(Y_{t})dt\right\} \leq 1,$$

provides the rejection probability for sampling from the conditional law $\begin{bmatrix} -2 & -1 \end{bmatrix}$

$$\left(\mathbb{B}^{\delta}_{\mathcal{Y}}\otimes\mathbb{L}
ight)\Big|\left\{\Phi\subseteq\operatorname{epigraph}\left[\widetilde{\phi}(\mathcal{Y})
ight]
ight\}.\quad \Box$$

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

Outline of proof.

Similar to the Brownian case: regularity conditions permit a Girsanov transformation and rearrangement so that

$$\frac{d\mathbb{Q}_y}{d\mathbb{B}_y^{\delta}}(Y) \propto \exp\left\{-\int_0^T \widetilde{\phi}(Y_t) dt\right\} \leq 1,$$

provides the rejection probability for sampling from the conditional law $[\sim 1]$

$$(\mathbb{B}_{\mathcal{Y}}^{\delta}\otimes\mathbb{L})\Big|\left\{\Phi\subseteq\operatorname{epigraph}\left[\widetilde{\phi}(\mathcal{Y})
ight]
ight\}.\ \ \Box$$

So what?

• We have just replaced one candidate process for another, the only substantial difference the appearance of $\widetilde{\phi}(u) := \frac{1}{2} [\alpha_{\theta}^2(u) - \beta^2(u) + \alpha_{\theta}'(u) - \beta'(u)] + C.$ instead of $\phi(u) := \frac{1}{2} [\alpha_{\theta}^2(u) + \alpha_{\theta}'(u)] + C.$

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

Example: A population growth model.

• A diffusion $(X_t)_{0 \le t \le T}$ with drift and diffusion coefficients

$$\mu(\mathbf{x}) = \kappa \mathbf{x}, \qquad \qquad \sigma^2(\mathbf{x}) = \mathbf{x} + \omega \mathbf{x}^2,$$

commenced from $X_0 = x_0$ and grown to $X_T = x_T$.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		00000000		

Example: A population growth model.

• A diffusion $(X_t)_{0 \le t \le T}$ with drift and diffusion coefficients

$$\mu(\mathbf{x}) = \kappa \mathbf{x}, \qquad \sigma^2(\mathbf{x}) = \mathbf{x} + \omega \mathbf{x}^2,$$

commenced from $X_0 = x_0$ and grown to $X_T = x_T$.

• The population has not died out, so we can condition the process on non-absorption at 0.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

Example: A population growth model.

• A diffusion $(X_t)_{0 \le t \le T}$ with drift and diffusion coefficients

$$\mu(\mathbf{x}) = \kappa \mathbf{x}, \qquad \sigma^2(\mathbf{x}) = \mathbf{x} + \omega \mathbf{x}^2,$$

commenced from $X_0 = x_0$ and grown to $X_T = x_T$.

- The population has not died out, so we can condition the process on non-absorption at 0.
- Conditioning and Lamperti transforming leads to new drift

$$\begin{split} \alpha(\mathbf{y}) &= \frac{\kappa}{\sqrt{\omega}} \tanh\left[\frac{\sqrt{\omega}\mathbf{y}}{2}\right] - \frac{\sqrt{\omega}}{2} \coth\left[\sqrt{\omega}\mathbf{y}\right] \\ &+ \frac{\omega - 2\kappa}{\sqrt{w}} \frac{\tanh\left[\frac{\sqrt{\omega}\mathbf{y}}{2}\right]}{1 - \cosh^{\frac{4\kappa}{\omega} - 2}\left[\frac{\sqrt{\omega}\mathbf{y}}{2}\right]}, \end{split}$$

with an entrance boundary at 0.

Introduction 00000	Exact algorithm	Bessel-EA ○○○○●○○○○○	Wright-Fisher diffusion	Summary 00
Example	A population gr	owth model.		
What what is a second secon	t does the drift lo	ook like at the b	oundary?	
	$\alpha(\mathbf{y})$	$=\frac{3}{2y}+O(y)$	as $y ightarrow 0$.	
		<i>2</i> y		

lı c	ntroduction	Exact algorithm	Bessel-EA ००००●०००००	Wright-Fisher diffusion	Summary 00
	Example:	A population gr	owth model.		
What does the drift look like at the boundary?					
		$\alpha(y)$	$=\frac{3}{2y}+O(y)$	as $y ightarrow 0$.	
	 Comp 	are with the Be	ssel process:	$\beta(\mathbf{y}) = \frac{\delta - 1}{2\mathbf{y}}.$	
	So we	e should choose	$\delta=4$ for our ca	andidate process.	

25/42

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		0000000000		

Example: A population growth model.

• $\tilde{\phi}$ is (tightly) bounded (by *K* say), while ϕ is unbounded as $y \to 0$.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

Example: A population growth model.

- $\tilde{\phi}$ is (tightly) bounded (by *K* say), while ϕ is unbounded as $y \to 0$.
- Hence we can use the following Bessel-EA to return skeleton bridges:
 - Simulate a Poisson point process on $[0, T] \times [0, K]$.
 - Simulate a Bessel bridge of dimension $\delta = 4$ at the times of the Poisson points.
 - If any of the former are beneath any of the latter, return to 1.

Introd 0000	luction	Exa	act algorithm	Bessel-EA oooooo●o	00 00	ight-Fisher diffusion	Summary 00
Re	esult	S					
	Bess	sel-EA1			$Y_0 =$	<i>y</i> to $Y_{0.15} =$	1, ω = 3.
				Poisson	Skeleton	Random	Total
	κ	У	Attempts	points	points	variables	Time (s)
	1.0	10.0	1.1	0.2	0.2	1.9	0
	1.0	1.0	1.0	0.2	0.2	1.9	0
	1.0	0.25	1.0	0.2	0.2	2.0	0
	1.0	0.15	1.0	0.2	0.2	2.0	1
	1.0	0.1	1.1	0.2	0.2	2.0	1
	1.0	0.025	1.0	0.2	0.2	2.0	0

Brownian-EA ("EA2")

			Poisson	Skeleton	Random	Total
κ	У	Attempts	points	points	variables	Time (s)
1.0	10.0	1.0	0.1	0.1	7.3	0
1.0	1.0	1.1	0.1	0.1	7.4	0
1.0	0.25	1.2	1288.6	420.6	3846.1	6
1.0	0.15	1.4	7531.1	617.4	16921.4	16
1.0	0.1	DNF	DNF	DNF	DNF	DNF
1.0	0.025	DNF	DNF	DNF	DNF	DNF

Intro 000	duction	Exact 0000	algorithm	Bessel-EA ooooooo●oo	Wrig 000	ht-Fisher diffusion	Sumi 00	nary
R	esult	S						
	Besse	el-EA1			$Y_0 =$	y to $Y_{0.15} =$	1, $\omega =$ 3.	
				Poisson	Skeleton	Random	Total	-
	κ	У	Attempts	points	points	variables	Time (s)	
	10.0	10.0	5.2	14.1	6.8	56.4	1	
	10.0	1.0	3.0	7.9	4.9	36.4	1	
	10.0	0.25	2.3	6.1	4.4	30.8	1	
	10.0	0.15	2.2	6.0	4.3	30.3	0	
	10.0	0.1	2.2	5.9	4.4	30.4	0	
	10.0	0.025	2.1	5.8	4.3	29.6	1	-
	Browr	nian-EA ("	EA2")					
				Poisson	Skeleton	Random	Total	-
	κ	У	Attempts	points	points	variables	Time (s)	
	10.0	10.0	5.0	9.8	4.8	40.9	0	
	10.0	1.0	2.9	5.9	3.6	29.8	0	
	10.0	0.25	2.6	81.4	10.7	201.9	0	
	10.0	0.15	2.9	23052.1	1981.9	52056.9	52	
	10.0	0.1	DNF	DNF	DNF	DNF	DNF	
	10.0	0.025	DNF	DNF	DNF	DNF	DNF	

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		0000000000		

When is the singularity in the drift at an entrance boundary matched by a Bessel process?

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		0000000000		

When is the singularity in the drift at an entrance boundary matched by a Bessel process? Here's a partial answer.

Theorem.

Suppose we have a diffusion *Y* satisfying the requirements of EA1. Then the diffusion *Y*^{*} obtained by conditioning this process on $\{T_b < T_0\}$, can be simulated via Bessel-EA1 with $\delta = 3$.

ntroduction Exa	lct algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
000 0000	0000000	0000000000		

When is the singularity in the drift at an entrance boundary matched by a Bessel process? Here's a partial answer.

Theorem.

Suppose we have a diffusion *Y* satisfying the requirements of EA1. Then the diffusion *Y*^{*} obtained by conditioning this process on $\{T_b < T_0\}$, can be simulated via Bessel-EA1 with $\delta = 3$.

Outline of proof.

- Deduce regularity requirements for Bessel-EA1 from the assumptions of EA1.
- Compute the conditioned drift *α*^{*}(*y*) by bare hands, using a Doob *h*-transform.
- We find φ̃*(u) is bounded iff δ = 3 (among all possible δ ≥ 2).

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

The previous result is perhaps not surprising given the well known observation:

A Brownian bridge conditioned to remain positive is a Bessel bridge of dimension $\delta = 3$.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

The previous result is perhaps not surprising given the well known observation:

A Brownian bridge conditioned to remain positive is a Bessel bridge of dimension $\delta = 3$.

The close relationship between Brownian bridges and Bessel(3) bridges is exploited in EA2—to simulate a Brownian bridge conditioned on its minimum (Beskos *et al.*, 2006).

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

The previous result is perhaps not surprising given the well known observation:

A Brownian bridge conditioned to remain positive is a Bessel bridge of dimension $\delta = 3$.

- The close relationship between Brownian bridges and Bessel(3) bridges is exploited in EA2—to simulate a Brownian bridge conditioned on its minimum (Beskos *et al.*, 2006).
- Hence, Bessel-EA1 and (Brownian)-EA2 are similar when applied to conditioned diffusions.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
		000000000		

The previous result is perhaps not surprising given the well known observation:

A Brownian bridge conditioned to remain positive is a Bessel bridge of dimension $\delta = 3$.

- The close relationship between Brownian bridges and Bessel(3) bridges is exploited in EA2—to simulate a Brownian bridge conditioned on its minimum (Beskos *et al.*, 2006).
- Hence, Bessel-EA1 and (Brownian)-EA2 are similar when applied to conditioned diffusions.
- The theorem does not apply to the population growth example; an 'extra' 1/(2y) comes from the Lamperti transform.

Introduction	Exact algorithm	Bessel-EA 0000000000	Wright-Fisher diffusion	Summary 00

Outline

- 2 Overview of the exact algorithm
- 3 Bessel-EA
- 4 Wright-Fisher diffusion

5 Summary

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			•0000000	

The Wright-Fisher diffusion with mutation but no selection

$$dX_t = [\theta_1(1-X_t) - \theta_2 X_t]dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$$

The transition density has eigenfunction expansion

$$f(x, y; t) = \sum_{m=0}^{\infty} q_m(t) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}} \cdot \underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$$

where $q_m(t)$ is the transition function of a certain pure death process on \mathbb{N} (related to Kingman's coalescent):

$$m \mapsto m-1$$
 at rate $\frac{m(m+\theta_1+\theta_2-1)}{2}$

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			•0000000	

The Wright-Fisher diffusion with mutation but no selection

$$dX_t = [\theta_1(1-X_t) - \theta_2 X_t]dt + \sqrt{X_t(1-X_t)}dW_t, \qquad X_0 = x, \quad t \ge 0.$$

The transition density has eigenfunction expansion

$$f(x, y; t) = \sum_{m=0}^{\infty} q_m(t) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}} \cdot \underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$$

where $q_m(t)$ is the transition function of a certain pure death process on \mathbb{N} (related to Kingman's coalescent):

$$m\mapsto m-1$$
 at rate $\frac{m(m+\theta_1+\theta_2-1)}{2}$.

• So f(x, y; t) is a known infinite mixture of beta random variables.

 Introduction
 Exact algorithm
 Bessel-EA
 Wright-Fisher diffusion
 Summary

 Duality and the transition density of the Wright-Fisher diffusion
 diffusion
 Summary

$$f(x, y; t) = \sum_{m=0}^{\infty} q_m(t) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}} \cdot \underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$$

Convenient for simulation! (Griffiths & Li, 1983)

() Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}.$$

(a realization of Kingman's coalescent with mutation, time t).

 Introduction
 Exact algorithm
 Bessel-EA
 Wright-Fisher diffusion
 Summary

 Duality and the transition density of the Wright-Fisher diffusion
 diffusion
 Summary

$$f(x, y; t) = \sum_{m=0}^{\infty} q_m(t) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}} \cdot \underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$$

Convenient for simulation! (Griffiths & Li, 1983)

Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}$$
.

(a realization of Kingman's coalescent with mutation, time t).

2 Simulate $L \sim \text{Binomial}(M, x)$.

 Introduction
 Exact algorithm
 Bessel-EA
 Wright-Fisher diffusion
 Summary

 Duality and the transition density of the Wright-Fisher diffusion
 diffusion
 Summary

$$f(x, y; t) = \sum_{m=0}^{\infty} q_m(t) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}} \cdot \underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$$

Convenient for simulation! (Griffiths & Li, 1983)

• Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}$$
.

(a realization of Kingman's coalescent with mutation, time t).

2 Simulate $L \sim \text{Binomial}(M, x)$.

3 Return
$$Y \sim \text{Beta}(\theta_1 + L, \theta_2 + M - L)$$
.

ntroduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			000000	

Exact simulation with the Wright-Fisher diffusion

- We can simulate from this Wright-Fisher diffusion directly.
- Key idea: Use it as the candidate in an exact algorithm for more complicated drifts.

With proposal drift $\alpha(x)$ and target drift $\beta(x)$, the Radon-Nikodým derivative is:

$$\frac{d\mathbb{WF}_{\beta}}{d\mathbb{WF}_{\alpha}}(X) \propto \exp\left\{\int_{0}^{T}\widehat{\phi}(X_{t})dt\right\},\,$$

where

$$\widehat{\phi}(x) := \frac{1}{2} \left[\frac{\beta^2(x) - \alpha^2(x)}{x(1-x)} + \beta'(x) - \alpha'(x) - [\beta(x) - \alpha(x)] \frac{1-2x}{x(1-x)} \right].$$

This provides the required rejection probability.

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
			0000000	

Example (Natural selection)

Proposal drift:
$$\alpha(x) = \theta_1(1-x) - \theta_2 x$$
.
Target drift: $\beta(x) = \alpha(x) + \gamma x(1-x)$.

Radon-Nikodým derivative:

$$\frac{d\mathbb{WF}_{\beta}}{d\mathbb{WF}_{\alpha}}(X) \propto \exp\Bigg\{\int_{0}^{T}\underbrace{\left[\frac{1}{2}\gamma^{2}x(1-x)+\gamma\theta_{1}(1-x)-\gamma\theta_{2}x\right]}_{\widehat{\phi}(x)}dt\Bigg\}.$$

 $\hat{\phi}(x)$ is just a quadratic polynomial on a compact interval, so bounded!

-	0000000000	000000000	00000000	00
Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary

Issues

$$f(x, y; t) = \sum_{m=0}^{\infty} q_m(t) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}} \cdot \underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$$

Simulating from \mathbb{WF}_{α} .

1 Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}.$$

(a realization of Kingman's coalescent with mutation, time t).

Simulate
$$L \sim \text{Binomial}(M, x)$$
.

3 Return
$$Y \sim \text{Beta}(\theta_1 + L, \theta_2 + M - L)$$
.

Introduction	Exact algorithm	Bessel-EA 0000000000	Wright-Fisher diffusion ooooooooo	Summary 00
-				

Issues

$$f(x, y; t) = \sum_{m=0}^{\infty} q_m(t) \sum_{l=0}^{m} \underbrace{\mathcal{B}_{m,x}(l)}_{\text{Binomial PMF}} \cdot \underbrace{\mathcal{D}_{\theta_1+l,\theta_2+m-l}(y)}_{\text{Beta density}},$$

Simulating from \mathbb{WF}_{α} .

) Simulate
$$M \sim \{q_m(t) : m = 0, 1, ...\}.$$

(a realization of Kingman's coalescent with mutation, time t).

Simulate
$$L \sim \text{Binomial}(M, x)$$
.

3 Return
$$Y \sim \text{Beta}(\theta_1 + L, \theta_2 + M - L)$$
.

Problem.

Mixture weights are known only as an infinite series:

$$q_m(t) = \sum_{k=m}^{\infty} (-1)^{k-m} \frac{(\theta + 2k - 1)\Gamma(\theta + m + k - 1)}{m!(k-m)!\Gamma(\theta + m)} e^{-k(k+\theta - 1)t/2}.$$

IntroductionExact algorithm
cococococoBessel-EA
cocococococoWright-Fisher diffusion
cocococococoSummary
cocSolution: A variant of the alternating sories method (Devroye, 1986).Suppose X has PMF { $p_m : m = 0, 1, ...$ } of the form
 $p_m = \sum_{k=0}^{\infty} (-1)^k b_k(m)$, where $b_k(m) \downarrow 0$ as $k \to \infty$.Then for each M, K,
 $M = \frac{M}{2K+1}$ M $M = \frac{2K}{2K}$

 $\sum_{m=0}^{M}\sum_{k=0}^{2K+1}(-1)^{k}b_{k}(m) \leq \sum_{m=0}^{M}p_{m} \leq \sum_{m=0}^{M}\sum_{k=0}^{2K}(-1)^{k}b_{k}(m),$

and these lower and upper bounds converge monotonically to the required CDF.

$$\sum_{m=0}^{M}\sum_{k=0}^{2K+1}(-1)^{k}b_{k}(m) \leq \sum_{m=0}^{M}p_{m} \leq \sum_{m=0}^{M}\sum_{k=0}^{2K}(-1)^{k}b_{k}(m),$$

and these lower and upper bounds converge monotonically to the required CDF.

Hence, we can employ standard inversion sampling:

• Sample *U* ~ Uniform[0, 1]; then

Introduction Exact algorithm Suppose A method (Devroye, 1986). Solution: A variant of the alternating series method (Devroye, 1986). Suppose X has PMF { $p_m : m = 0, 1, ...$ } of the form $p_m = \sum_{k=0}^{\infty} (-1)^k b_k(m)$, where $b_k(m) \downarrow 0$ as $k \to \infty$. Then for each M, K, M = 2K + 1

$$\sum_{m=0}^{M}\sum_{k=0}^{2K+1}(-1)^{k}b_{k}(m) \leq \sum_{m=0}^{M}p_{m} \leq \sum_{m=0}^{M}\sum_{k=0}^{2K}(-1)^{k}b_{k}(m),$$

and these lower and upper bounds converge monotonically to the required CDF.

Hence, we can employ standard inversion sampling:

• Sample *U* ~ Uniform[0, 1]; then

• inf
$$\left\{ M \in \mathbb{N} : \sum_{m=0}^{M} p_m > U \right\} \stackrel{d}{=} X$$
,

Introduction Exact algorithm Suppose A method (Devroye, 1986). Solution: A variant of the alternating series method (Devroye, 1986). Suppose X has PMF { $p_m : m = 0, 1, ...$ } of the form $p_m = \sum_{k=0}^{\infty} (-1)^k b_k(m)$, where $b_k(m) \downarrow 0$ as $k \to \infty$. Then for each M, K, M = 2K + 1

$$\sum_{m=0}^{M}\sum_{k=0}^{2K+1}(-1)^{k}b_{k}(m) \leq \sum_{m=0}^{M}p_{m} \leq \sum_{m=0}^{M}\sum_{k=0}^{2K}(-1)^{k}b_{k}(m),$$

and these lower and upper bounds converge monotonically to the required CDF.

Hence, we can employ standard inversion sampling:

• Sample *U* ~ Uniform[0, 1]; then

• inf
$$\left\{ M \in \mathbb{N} : \sum_{m=0}^{M} p_m > U \right\} \stackrel{d}{=} X$$
,

Introduction Exact algorithm Bessel-EA Wright-Fisher diffusion Summarv Solution: A variant of the alternating series method (Devroye, 1986). Suppose X has PMF { $p_m : m = 0, 1, ...$ } of the form $p_m = \sum (-1)^k b_k(m)$, where $b_k(m) \downarrow 0$ as $k \to \infty$. k=0Then for each M, K, $\sum_{m=1}^{M}\sum_{k=1}^{2K+1}(-1)^{k}b_{k}(m)\leq \sum_{m=1}^{M}p_{m}\leq \sum_{k=1}^{M}\sum_{k=1}^{2K}(-1)^{k}b_{k}(m),$ $M \ 2K+1$

m=0 k=0

 $m=0 \ k=0$ m=0and these lower and upper bounds converge monotonically to the

required CDF.

Hence, we can employ standard inversion sampling:

• Sample $U \sim \text{Uniform}[0, 1]$; then

• inf
$$\left\{ M \in \mathbb{N} : \sum_{m=0}^{M} p_m > U \right\} \stackrel{d}{=} X$$
,

-except computing only as many terms in the series as needed in order to determine whether or not the inequality holds (testing each *M* in turn).

Introduction

Exact algorithm

Bessel-EA

Wright-Fisher diffusion

Summary 00

Proposition (Jenkins & Spanò, in preparation).

The coefficients of the ancestral process of Kingman's coalescent,

$$\{q_m(t): m=0,1,\ldots\},\$$

can be rearranged so that the alternating series method applies.

Introduction	Exact algorithm	Bessel-EA 000000000	Wright-Fisher diffusion	Summary 00
Outline				

1 Introduction

- 2 Overview of the exact algorithm
- 3 Bessel-EA
- Wright-Fisher diffusion

roduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
				•0

• It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.

oduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
000				•0

- It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.
- Candidate diffusions other than Brownian motion:
 - Bessel process
 - Wright-Fisher diffusion

suggest the potential for further generalizing the exact algorithms.

oduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
000				•0

- It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.
- Candidate diffusions other than Brownian motion:
 - Bessel process
 - Wright-Fisher diffusion

suggest the potential for further generalizing the exact algorithms.

Further work

Extend to an inference algorithm; applications to population genetic data.

oduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
000				•0

- It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.
- Candidate diffusions other than Brownian motion:
 - Bessel process
 - Wright-Fisher diffusion

suggest the potential for further generalizing the exact algorithms.

Further work

- Extend to an inference algorithm; applications to population genetic data.
- Other types of boundary (sticky, absorbing, ...)

oduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
000				•0

- It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.
- Candidate diffusions other than Brownian motion:
 - Bessel process
 - Wright-Fisher diffusion

suggest the potential for further generalizing the exact algorithms.

Further work

- Extend to an inference algorithm; applications to population genetic data.
- Other types of boundary (sticky, absorbing, ...)
- What other candidate processes are both easy to simulate and useful?
| oduction | Exact algorithm | Bessel-EA | Wright-Fisher diffusion | Summary |
|----------|-----------------|-----------|-------------------------|---------|
| | | | | •0 |
| | | | | |

Summary

- It is possible to simulate efficiently from several diffusions with a finite entrance boundary, without discretization error.
- Candidate diffusions other than Brownian motion:
 - Bessel process
 - Wright-Fisher diffusion

suggest the potential for further generalizing the exact algorithms.

Further work

- Extend to an inference algorithm; applications to population genetic data.
- Other types of boundary (sticky, absorbing, ...)
- What other candidate processes are both easy to simulate and useful?
- Extensions to infinite-dimensions (cf. Fleming-Viot process)?

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
				0•

Plug

Jenkins, P. A. "Exact simulation of the sample paths of a diffusion with a finite entrance boundary." arXiv:1311.5777.

Acknowledgements

Many helpful conversations:

- Steve Evans
- Murray Pollock
- Gareth Roberts
- Joshua Schraiber

Introduction	Exact algorithm	Bessel-EA	Wright-Fisher diffusion	Summary
				0•

Plug

Jenkins, P. A. "Exact simulation of the sample paths of a diffusion with a finite entrance boundary." arXiv:1311.5777.

Acknowledgements

Many helpful conversations:

- Steve Evans
- Murray Pollock
- Gareth Roberts
- Joshua Schraiber

Thank you for listening!

Outline

Conditioned diffusion:

$$\widetilde{\phi}^*(u) = rac{1}{2} \left[lpha^2(u) + lpha'(u) + rac{(\delta - 3)(\delta - 1)}{4u^2}
ight] + C.$$

Convergent series method

$$f(m) = \sum_{k=1}^{\infty} a_k(m).$$

REPEAT

- Generate $X \sim h$.
- Generate $U \sim U[0, 1]$.
- Set W := Uch(X), S = 0, k = 0.
- REPEAT

•
$$k \mapsto k+1$$
,

- $S \mapsto S + a_k(X)$,
- UNTIL $|S W| > R_{k+1}(X)$ UNTIL S < W. RETURN X.

41/42

Alternating series method

 $f(m) = ch(m) \sum_{n=0}^{\infty} (-1)^n b_n(m)$ and $b_n(m) \downarrow 0$. REPEAT

- Generate $X \sim h$.
- Generate *U* ~ *U*[0, *c*].
- Set *W* := 0, *n* = 0.
- REPEAT
 - $n \mapsto n+1$,
 - $W \mapsto W + b_n(X)$,
 - IF $U \ge W$ THEN RETURN X.
 - $n \mapsto n+1$,
 - $W \mapsto W b_n(X)$.
- UNTIL *U* < *W*

UNTIL FALSE.

This works because

$$1 + \sum_{n=1}^{k} (-1)^n b_n(x) \le \frac{f(x)}{ch(x)} \le 1 + \sum_{n=1}^{k+1} (-1)^n b_n(x), \qquad k \text{ odd.}$$